
Joint EUROGRAPHICS - IEEE TCVG Symposium on Visualization (2002)
D. Ebert, P. Brunet, I. Navazo (Editors)

A Generic Solution for
Hardware-Accelerated Remote Visualization

Simon Stegmaier, Marcelo Magallón and Thomas Ertl

Visualization and Interactive Systems Group, IfI, University of Stuttgart
Breitwiesenstr. 20-22, D-70565 Stuttgart, Germany

(stegmaier|magallon|ertl)@informatik.uni-stuttgart.de

Abstract
This paper presents a generic solution for hardware-accelerated remote visualization that works transparently for
all OpenGL-based applications and OpenGL-based scene graphs. Universality is achieved by taking advantage of
dynamic linking, efficient data transfer by means of VNC. The proposed solution does not require any modifications
of existing applications and allows for remote visualization with different hardware architectures involved in the
visualization process. The library’s performance is evaluated using standard OpenGL example programs and by
volume rendering substantial data sets.

Categories and Subject Descriptors (according to ACM CCS): I.3.1 [Computer Graphics]: Distributed/network
graphics, C.2.4 [Distributed Systems]: Distributed applications

1. Introduction

Scientific simulations tend to produce ever-growing amounts
of data. Analyzing these data on the researcher’s local host
poses two problems: first, local analysis is impossible if the
resources needed to visualize the data exceed the local hard-
ware capabilities; second, transferring the data each time
new simulation data is available is tedious if the network-
bandwidth is low. These problems lead to an increased inter-
est in remote visualization.

The common approach for remote visualization employs
the OpenGL remote rendering facilities. In this approach the
application is run remotely while the local host does the ac-
tual rendering. This solution is application-independent and
therefore very popular, but it does not benefit from special
graphics hardware features available at the remote host such
as 3D textures and large amounts of texture memory. As a
concrete example, in the system presented by Magallón et
al11, a cluster of Linux PCs equipped with graphics acceler-
ators renders and composes images which are presented to
the user. In this situation, traditional OpenGL remote ren-
dering performs poorly because of the high bandwidth re-
quirements it imposes on the network between the cluster
and the user’s workstation. Several solutions to tackle this
shortcoming have been developed (e.g., Bethel1, Engel3 � 4 � 2,

Ma10, among others), but all of these lack application or ar-
chitecture independence.

In most cases generic solutions perform worse than spe-
cific solutions for the same problem, so why should one care
about universality? Specific solutions require the program-
mer to know the internal workings of the application to be
adapted. This often requires source code availability, thus
commercial applications do not come into question for spe-
cific solutions. And even if the source is available, it may
be hard for a programmer to modify an application originaly
implemented by someone else. So in this case, too, a generic
solution might be preferable.

For these reasons this paper presents an application- and
architecture-independent solution for hardware-accelerated
remote visualization. It is based around the well known con-
cept of dynamic linking6 and exploits characteristics of the
X Window System and its associated protocol. The idea is to
redirect OpenGL rendering requests to the hardware where
the program is running. Once the rendering is done, the re-
sulting image is read off the framebuffer and sent over the
network to the display together with all other GUI elements.
Since all the OpenGL rendering happens on the remote dis-
play, it is possible to use an existing OpenGL-based appli-
cation without requiring the availability of OpenGL-capable
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hardware locally, while taking advantage of advanced graph-
ics features as well as hardware acceleration by the remote
hardware. For example, this solution can be used to provide
remote access to distributed rendering facilities such as those
presented by Magallón et al. By leveraging already exist-
ing remote-access applications, our proposed solution also
makes it possible to access remote visualization resources
from operating environments that do not provide implemen-
tations for the required protocols by default.

The rest of this paper is organized as follows: first, other
solutions for remote access of graphics hardware are an-
alyzed; then the necessary background regarding dynamic
linking and OpenGL rendering is visited; afterwards, the ar-
chitecture of our solution is explained; in the last part, our
results are presented.

2. Previous Work

Silicon Graphics, Inc. provides a commercial solution called
OpenGL VizServer16, that enables lightweight clients such
as O2 and PC workstations to access the rendering capabili-
ties of SGI Onyx servers. Because of design decisions, other
architectures cannot be used as servers for this application.
Similarly to our solution, the VizServer relies on dynami-
cally linked executables in order to be able to implement its
functionality without modifying the target application.

Ma and Camp10 developed a solution for remote visual-
ization of time-varying data over wide area networks. It in-
volves a dedicated display daemon and display interface and
display daemon. The first receives data from a render pro-
cess, compresses it and passes it to the second, which in
turn decompresses the data and presents it to the user. By
using a custom transport method, they are able to employ
arbitrary compression techniques. Bethel1 presented Visa-
pult, a prototype system developed at Lawrence Berkeley
National Laboratory that combines minimized data trans-
fers and workstation-accelerated rendering. Visapult also re-
quires modifications of the application in order to make it
“network aware” and relies to some extent on the existence
of hardware graphics acceleration on the local display. En-
gel and Ertl2 developed a solution for remote collaborative
volume visualization which exploits the characteristics of
the application domain to reduce latency as well as required
network bandwidth. Engel et at3 further developed this ap-
proach and implemented a hybrid rendering mechanism to
obtain better framerates.

Another solution for remote rendering is included
with the Open Inventor 3.0 toolkit offered by TGS
(http://www.tgs.com). The solution is very similar to our
work in that it addresses GLX and X requests to two dif-
ferent X servers and utilizes the VNC (virtual network com-
puting) client-server infrastructure for image transmission.
Based on the available information, the solution seems to be
restricted to Open Inventor.

Figure 1: GLX architecture as presented by Kilgard7

3. Background

3.1. OpenGL Graphics with the X Window System

GLX17 is an extension to the X protocol12 that allows clients
to create a so-called “GLX context” which can be used
to issue OpenGL calls that can be executed using either a
hardware-accelerated rendering engine or a software-based
one. By sitting on top of X, network transparency is obtained
for free. A GLX context can operate in either direct or indi-
rect mode. In indirect mode, the client sends requests to the
X server which propagates them to the hardware. In direct
mode, the X server only functions as a marshal making sure
that the OpenGL state of each client is kept consistent. Since
the X protocol is bypassed in direct mode, OpenGL render-
ing can achieve the maximum performance of the hardware8.
Direct rendering implies that the process is running on the
same machine as the X server and not over the network. In
the case of remote rendering, only indirect mode is possible,
if at all. Figure 1 shows both cases.

3.2. Dynamic Linking

In modern systems, programmers have the choice of stat-
ically or dynamically linking programs during compilation.
In static linking, all the object references of a program are re-
solved during the link phase of the compilation. In contrast,
with dynamic linking, the executable file contains references
to, but not the actual code of the required library functions.
In this case, symbol resolution is carried out during load-
time. The dynamic linker is in charge of finding these ref-
erences in the executable and resolving them using a list of
shared object names (libraries) that the executable contains.
One of the advantages of load-time linking is that it facili-
tates code reuse, it simplifies the task of fixing bugs and re-
duces the memory requirements imposed on systems, since
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code pages can be shared among unrelated processes. By its
very nature, it also enables users to replace libraries with
custom versions designed to modify the behavior of a pro-
gram. The only requirement in this case is to keep the appli-
cation binary interfaces unmodified. Since re-implementing
all the interfaces of a library can be cumbersome and tedious,
some systems offer the possibility to load arbitrary lists of
shared objects code before the required libraries are loaded,
with the purpose of selectively overriding functions in other
shared objects. This process is called preloading. As will be
explained later, this simplifies the implementation of our so-
lution.

In addition to load-time linking, it is also possible to per-
form runtime linking, as first described by Ho and Olsson6

and later explained in the Linux/GCC case by Lu9. In
this approach, additional objects can be opened at run-time
and symbols can be selectively added to the running pro-
gram. The most widely used interface for this purpose is
dlopen(3), available on systems such as IRIX, Linux,
and Solaris, among others. This can be used, in concurrence
with the preloading feature mentioned before, to wrap code
around the original library functions: first the function is
overridden using preloading, then its original code is recov-
ered using dynamic linking and it is used by the customized
version of the function to provide the original behavior if
necessary.

4. Implementation

By taking advantage of the dynamic linking facilities ex-
plained above, it is possible to modify the behavior of any
given program for the X Window System without changing
its source code or that of the libraries it uses. In our approach,
there are two X servers involved: one that supports GLX and
a second one, which takes care of the user interaction, and
which does not necessarily support GLX. In the following
discussion, the first X server will be called render server and
the second one the interaction server. Display will be used
in the same way the X Window System defines it.

The application is started locally to the render server but
its environment is configured to have it displayed on the in-
teraction server. It is loaded in such a way that a custom
version of every GLX function is used, whose job is to redi-
rect GLX requests to the render server. Since the display is
part of the GLX context’s properties, OpenGL calls are au-
tomatically redirected to the render server. In a sense, a new
library is inserted between the application and the system’s
OpenGL library, as depicted in Figure 2. Once the applica-
tion requests a buffer swap, the contents of the framebuffer
is read and written to an XImage structure, which is sent
to the interaction display via a XPutImage request. User
interaction works transparently since events are transported
between the interaction X server and the render server with-
out modification. A more detailed description of customiza-
tions required is provided in the rest of this section.

Figure 2: System architecture. (1) The application issues a
GLX request which is send to the render server. (2) The ap-
plication issues OpenGL calls, which are handled by the ren-
der device. (3) The library reads the contents of the frame-
buffer and (4) sends it to the interaction server using a
XPutImage request. (5) XEvents are sent from the inter-
action server to the application.

4.1. Customizations for Xlib Functions

Whenever the application calls XOpenDisplay to open
the interaction display, the custom version of this function
opens it as well as a second one on the render host. A Dis-
play structure pointing to the requested display is returned,
which ensures that the normal operation of the program is
not disrupted. The render display is closed when the number
of calls to XCloseDisplay matches the number of calls
to XOpenDisplay.

4.2. Customizations for GLX Functions

For most GLX functions the only required change is redi-
recting the request from the interaction server to the render
server. Only a few functions have to be treated in a special
way. In this discussion, it is assumed that the client is us-
ing GLX 1.2. For later versions a similar implementation
applies.

glXChooseVisual is used to select a visual that
matches the attribute set specified by the application. The
application is neither required to use the visual returned by
glXChooseVisual, nor is it prevented from calling it
multiple times. The visual glXChooseVisual returns has
to be valid on the interaction server, since it will be used
to create a widget there. The custom version of the function
matches visuals across the two X servers and returns the best
visual that is compatible with the given attribute set. In the
current implementation color depth is used as the metric, but
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this is not the optimal approach in the general case. If no
visual is found in these conditions, it is up to the applica-
tion to cope with the situation. The attribute set passed to
glXChooseVisual is saved for upcoming calls of glX-
CreateContext.

When the library creates a drawable for rendering, it tries
to use in-hardware off-screen preserved buffers (called pre-
served PBuffers) and falls back to regular windows if these
are not available. PBuffers are preferred because they are
not obscured by other windows. The use of PBuffers has
to be specified upon context creation using glXCreate-
Context but the size of the PBuffer is specified later with
a call to glXCreatePBuffer. This later call might fail
because of insufficient resources. Since the library cannot
obtain the size of the drawable preferred by the application
until glXMakeCurrent is called, a situation is possible
where a PBuffer context is created but is later unusable. This
situation can be avoided by noticing that the value returned
by glXCreateContext is a pointer to an opaque data
type. This allows the library to generate its own value when
the application calls glXCreateContext and defer the
actual creation of the context to the moment when the appli-
cation calls glXMakeCurrent.

When the application calls glXSwapBuffers, buffers
are swapped, the rendered image is read from the frame-
buffer and transmitted to the interaction server as an XIm-
age. The normal image transport method, XPutImage,
incurs a high overhead because the data is read from the
client’s memory space and is copied to the X server memory
space which hinders performance significantly. If the MIT
Shared Memory Extension is available, XShmPutImage is
used instead. The XShm extension cannot be used if shared
memory is not available, as it is normally the case when the
client and the server run on different hosts. If the applica-
tion does not use double buffering, it is necessary to use a
heuristic to determine when to send the images to the inter-
action X server. A first approximation would be to use one
of glXWaitGL, glFlush or glFinish, but in practice
this has proven to work unreliably: several tested clients do
not issue glXWaitGL calls and others issue too many syn-
chronization calls.

5. Discussion

5.1. Optimizations

Reading the rendered images from the framebuffer and send-
ing them over the network are expensive operations and re-
duce the maximum achievable frame rates of the applica-
tions that use the library. This is especially undesirable for
interactive applications where frame rates are low even when
run locally, e.g. volume renderers. Reading the framebuffer
can be considered an atomic operation that cannot be opti-
mized. Therefore, frame rate increases must be achieved by
optimizing image transmission and generation.

Figure 3: System architecture when VNC is included

The core X protocol does not include any form of image
compression. This has been implemented via an extension
oriented towards low bandwidth environments called LBX5.
Using LBX on a local area network we experienced reduced
network traffic but no performance gains. Another way of
obtaining stream compression on top of X is VNC14. VNC is
a free multi-platform client-server application for displaying
and interacting with remote desktops. The protocol underly-
ing VNC is only capable of sending rectangular framebuffer
updates to the client. VNC provides a variety of specifically
designed compression algorithms to make this transmission
as efficient as possible. The Unix variant of the VNC server
is based upon a standard X server, which means that on the
one hand it can communicate with clients using the X pro-
tocol but on the other hand that it does not implement any
X protocol extensions, especially GLX. Figure 3 shows how
VNC can be used with our library. Given this configuration
we measured a frame rate increase of up to 70 percent when
compared to the results measured using display redirection
for image transmission. Still the experiments show that use
of VNC’s hextile is only advantageous if the image to be
transmitted has large areas of uniform color.

To take advantage to the VNC’s hextile compressor char-
acteristics, the image can be downscaled to one fourth of its
original size and then it can be sent to the X server with
each pixel quadrupled. This allows to hextile compressor to
achieve higher ratios but compromises image quality. From
the user’s point of view, loss of image quality might be ac-
ceptable while modifying the scene, but not while analyzing
the image on the screen. To implement this idea, a custom
version of XNextEvent is supplied which takes note of
mouse activity in the OpenGL rendering area. When the in-
teraction starts, downsampled images are sent to the server
and once it stops, a normal image is sent. Figure 4 shows
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Figure 4: Remote visualization using VNC for image com-
pression and a web browser as VNC client. The effects of
down-sampling can be seen in the upper image.

a comparison of image quality using full and reduced res-
olution (see color plates). As long as the image does not
contain areas of high frequency the image quality is good
enough for normal interaction. Figure 5 shows a compari-
son of compression ratios using the VNC hextile compres-
sor. This approach is still work in progress since a better way
of detecting “user interaction” has to be found.

5.2. Results

The upper diagram in Figure 6 compares the library’s per-
formance with Brian Paul’s GLX port of gears over a Fast
Ethernet connection. The results are shown as a function of
window dimensions (all windows had the same width and
height) for different transport mechanisms (X display redi-
rection and VNC). The application’s frame rate in the local
case is provided for comparison.
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Figure 5: VNC compression ratio for medical image data
with and without downsampling
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Figure 6: Measured frame rates for “gears” (upper plot)
and a volume renderer (lower one)

The lower diagram shows the results of the same mea-
surements using a texture-based volume renderer13 and a
256 � 256 � 128 volume data set of an aneurysm. Again the
frame rates are shown for different transport mechanisms
and several window dimensions. In addition, a characteris-
tic for the frame rate when using reduced resolution during
object movement is shown.

As can be seen frame rates using our framework are quite
acceptable for CPU-bound applications but drop sharply
when applied to an applications with high communication
demands. This suggests that the frames rates mainly depend
on the bandwidth of the available network.

The render server that was used for all measurements was
equipped with a 900 MHz AMD Athlon CPU, 256 MB RAM
and a GeForce 2 from NVIDIA. The interaction server was
equipped with a 1.2 GHz AMD Athlon CPU, but since the
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interaction server was rarely operated at more than half ca-
pacity a much slower processor would also have sufficed.
Both systems were running a Linux 2.4.10 Kernel and were
connected using 100 Mbps Fast Ethernet.

For the VNC experiments we used VNC 3.3.3r1 and the
VNC native viewer (instead of a web browser) for displaying
the rendered image. The viewer was run with the VNC stan-
dard data encodings (hextile and copyrect) enabled.
In addition, the option -truecolor to request true color
visuals was specified. Accordingly, to provide the desired
color values, the VNC server was run using a color depth of
24 bits. Deferred updates were disabled.

The frame rates reported in this section are the frame rates
as reported by the applications on the render server. Using
VNC these frame rates do not exactly match those measured
by the interaction server, but since the error is very small (the
frame loss is about 0.1 percent at 600 fps and zero at 20 fps)
validity of the results can still be assumed.

In conjunction with VNC, the library permits remote vi-
sualization and user interaction on a pocket PC (Figure 7,
see color plates). Using the well-known engine data set
(256 � 256 � 110 voxels) we measured about 3 fps during
with 8 bit colors and an image size of about 120 pixels
squared.

5.3. Limitations

Our approach is not as generally applicable as we would
have liked it to be. The first problem is that visuals have
to be matched across X servers with potentially incompat-
ible sets of visuals. An X server that does not support the
GLX extension will not present as many visuals to the ap-
plications as one that does. When the GLX extension is not
present, each visual has a class (e.g. direct or truecolor) and
a color depth. The GLX extension adds properties such as
bits per pixel for the framebuffer and the ancillary buffers.
If the application relies on glXChooseVisual to select
the visual it will use, there is no problem. Since the appli-
cation is not aware of the existence of the render X server
when it tries to study the properties on each of the available
visuals, our library has to decide which subset of visuals on
the render server it will present to the application. When us-
ing VNC the problem becomes more evident, since the VNC
server presents only one visual to the application. This prob-
lem can be solved by telling the library explicitly which vi-
suals to use. In any case, this only emphasizes the fact that
our library uses the GLX API for something that is not part
of its design and there might be legal uses of the API which
we have not considered.

The second problem is the reliance on the availability of
dynamic linking. Some Unix variants provide only a sub-
set of the required features, in particular they lack library
preloading. Even without this feature, it is still possible to
implement the functionality by providing a custom version

Figure 7: Interaction with a volume dataset on a pocket PC
connected to the render server via 11 Mbps wireless LAN.
As can be seen in the background, the render server displays
only the GLX drawable and not any of the application’s wid-
gets.

of the OpenGL library that uses dlopen to link to the sys-
tem’s version of it. This introduces the overhead of one ex-
tra function call per OpenGL function. Another solution, in
case a dlopen-like interface does not exist at all, could be
implemented as a proxy for the X server. It would have to
decode the X stream, extract the GLX commands out of it
and reencode the remaining ones. There would be a mea-
surable overhead associated with this, mostly because the
stream would have to be kept in a consistent state.

Even when using VNC, there is a major performance
degradation because of the required network bandwidth, as
we discussed before.

The standard VNC applet client quantizes colors to 8 bits,
which produces artifacts as seen in figure 8 (see color plates).
The shown application uses the terrain visualization algo-
rithm from Röttger et al15.

Security is also a problem. For this approach to work, the
X connection to the render server has to be authorized. For
practical purposes, this means either that users are trusted or
that exclusive use of the remote display is granted. Standard
authentication features of modern Unix variants can be used
or extensions to the X security mechanisms can be developed
to overcome this problem, but it is not completely solvable
since the granularity of the X security model is coarse. This
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Figure 8: Remote terrain visualization. The effects of color
quantization can be seen in the upper image.

problem has to be handled via site policy. Similarly, con-
nections from X server to X server, or between the VNC
client and server are not encrypted and are subject to eaves-
dropping. Possible methods to solve this include the use of
technologies such as IPsec and SSH.

6. Conclusions

In this paper we propose a generic solution for hardware-
accelerated remote visualization. The presented library
serves the visualization community in two ways. First, it
shows that any OpenGL application can be used for remote
visualization—whether source code is provided or not—
as long as the required visuals can be matched. Second, it
demonstrates how cross-platform remote visualization can
be done without the need to re-invent suitable image trans-
mission and compression algorithms. Bearing in mind that
frame rates are limited by network bandwidth, we expect our
solution to become even more significant as soon as modern
high-speed interconnects find their way into our daily life.
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Figure 4: Remote visualization using VNC for image compression and a web browser as VNC client. The effects of down-
sampling can be seen in the left image.

Figure 7: Interaction with a volume dataset on a pocket
PC connected to the render server via 11 Mbps wireless
LAN. As can be seen in the background, the render server
displays only the GLX drawable and not any of the appli-
cation’s widgets.

Figure 8: Remote terrain visualization. The effects of
color quantization can be seen in the upper image.
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