

Oracle Compatibility Developer’s Guide

Postgres Plus Advanced Server 8.3 R2

July 2, 2009

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

2

Oracle® Compatibility Developer’s Guide, version 2.14
by EnterpriseDB Corporation

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

EnterpriseDB Corporation, 235 Littleton Road, Westford, MA 01866, USA
T +1 978 589 5700 F +1 978 589 5701 E info@enterprisedb.com www.enterprisedb.com

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

3

Table of Contents

1  Introduction ...13 
1.1  What’s New ..14 
1.2  Typographical Conventions Used in this Guide...15 
1.3  Oracle Compatible Configuration Parameters..16 

1.3.1  edb_redwood_date...16 
1.3.2  edb_redwood_strings...17 
1.3.3  edb_stmt_level_tx..18 
1.3.4  oracle_home ..19 

1.4  About the Examples Used in this Guide...20 
2  SQL Tutorial..21 

2.1  Getting Started..21 
2.1.1  Sample Database ...21 

2.1.1.1  Sample Database Installation ...21 
2.1.1.2  Sample Database Description...22 

2.1.2  Creating a New Table..33 
2.1.3  Populating a Table With Rows..33 
2.1.4  Querying a Table ...34 
2.1.5  Joins Between Tables ..36 
2.1.6  Aggregate Functions..39 
2.1.7  Updates ..41 
2.1.8  Deletions..41 

2.2  Advanced Concepts ..42 
2.2.1  Views...42 
2.2.2  Foreign Keys ...43 
2.2.3  The ROWNUM Pseudo-Column ..44 
2.2.4  Synonyms ..45 

2.2.4.1  Creating a Public Synonym ..45 
2.2.4.2  Deleting a Public Synonym ..46 
2.2.4.3  Public Synonym Namespace ..46 
2.2.4.4  Public Synonym Name Resolution and the Search Path ..47 
2.2.4.5  Public Synonyms and Privileges ..47 

2.2.5  Hierarchical Queries ..47 
2.2.5.1  Defining the Parent/Child Relationship..48 
2.2.5.2  Selecting the Root Nodes ...49 
2.2.5.3  Organization Tree in the Sample Application ..49 
2.2.5.4  Node Level ...50 
2.2.5.5  Ordering the Siblings..51 

3  The SQL Language..53 
3.1  SQL Syntax ..53 

3.1.1  Lexical Structure ...53 
3.1.2  Identifiers and Key Words...54 
3.1.3  Constants ...55 

3.1.3.1  String Constants..55 
3.1.3.2  Numeric Constants ...55 
3.1.3.3  Constants of Other Types ...56 

3.1.4  Comments..56 
3.2  Data Types..57 

3.2.1  Numeric Types ..57 
3.2.1.1  Integer Type..58 
3.2.1.2  Arbitrary Precision Numbers..58 
3.2.1.3  Floating-Point Types ..59 

3.2.2  Character Types...59 

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

4

3.2.3  Binary Data..60 
3.2.4  Date/Time Types ...61 

3.2.4.1  Date/Time Input..62 
3.2.4.1.1  Dates ..62 
3.2.4.1.2  Times ...62 
3.2.4.1.3  Time Stamps..63 

3.2.4.2  Date/Time Output ...63 
3.2.4.3  Internals ..63 

3.2.5  Boolean Type...63 
3.3  SQL Commands ...64 

3.3.1  ALTER INDEX...65 
3.3.2  ALTER ROLE...66 
3.3.3  ALTER SEQUENCE ..68 
3.3.4  ALTER SESSION ...70 
3.3.5  ALTER TABLE ..72 
3.3.6  ALTER TABLESPACE..76 
3.3.7  ALTER USER...77 
3.3.8  COMMENT...78 
3.3.9  COMMIT...80 
3.3.10  CREATE DATABASE ...82 
3.3.11  CREATE DATABASE LINK...83 
3.3.12  CREATE DIRECTORY..87 
3.3.13  CREATE FUNCTION ..89 
3.3.14  CREATE INDEX ..93 
3.3.15  CREATE PACKAGE..96 
3.3.16  CREATE PACKAGE BODY ...99 
3.3.17  CREATE PROCEDURE...102 
3.3.18  CREATE PUBLIC SYNONYM ...106 
3.3.19  CREATE ROLE ..108 
3.3.20  CREATE SCHEMA..110 
3.3.21  CREATE SEQUENCE..112 
3.3.22  CREATE TABLE..115 
3.3.23  CREATE TABLE AS..123 
3.3.24  CREATE TRIGGER ...125 
3.3.25  CREATE TYPE...128 
3.3.26  CREATE USER ..130 
3.3.27  CREATE VIEW ..132 
3.3.28  DELETE..134 
3.3.29  DROP DATABASE LINK..137 
3.3.30  DROP FUNCTION ...138 
3.3.31  DROP INDEX ...139 
3.3.32  DROP PACKAGE ..140 
3.3.33  DROP PROCEDURE..141 
3.3.34  DROP PUBLIC SYNONYM ..142 
3.3.35  DROP ROLE...143 
3.3.36  DROP SEQUENCE...145 
3.3.37  DROP TABLE...146 
3.3.38  DROP TABLESPACE ..147 
3.3.39  DROP TRIGGER ..148 
3.3.40  DROP TYPE ...149 
3.3.41  DROP USER ...150 
3.3.42  DROP VIEW ...152 
3.3.43  GRANT ...153 
3.3.44  GRANT on Database Objects ...155 
3.3.45  GRANT on Roles ..157 
3.3.46  INSERT ...160 

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

5

3.3.47  LOCK ..164 
3.3.48  REVOKE...167 
3.3.49  ROLLBACK..171 
3.3.50  ROLLBACK TO SAVEPOINT..173 
3.3.51  SAVEPOINT...175 
3.3.52  SELECT ..177 

3.3.52.1  FROM Clause...179 
3.3.52.2  WHERE Clause ..181 
3.3.52.3  GROUP BY Clause ..181 
3.3.52.4  HAVING Clause ..181 
3.3.52.5  SELECT List ..182 
3.3.52.6  UNION Clause ...182 
3.3.52.7  INTERSECT Clause...182 
3.3.52.8  MINUS Clause ...183 
3.3.52.9  CONNECT BY Clause...183 
3.3.52.10  ORDER BY Clause ..184 
3.3.52.11  DISTINCT Clause ..185 
3.3.52.12  FOR UPDATE Clause..185 

3.3.53  SET CONSTRAINTS ...188 
3.3.54  SET ROLE...189 
3.3.55  SET TRANSACTION...191 
3.3.56  TRUNCATE..192 
3.3.57  UPDATE ...193 

3.4  Optimizer Hints ..196 
3.4.1  Default Optimization Modes ...198 
3.4.2  Access Method Hints...199 
3.4.3  Joining Relations Hints..203 
3.4.4  Global Hints...205 
3.4.5  Conflicting Hints ...208 

3.5  Functions and Operators...209 
3.5.1  Logical Operators ..209 
3.5.2  Comparison Operators...209 
3.5.3  Mathematical Functions and Operators...210 
3.5.4  String Functions and Operators ...212 
3.5.5  Pattern Matching Using the LIKE Operator..214 
3.5.6  Data Type Formatting Functions...215 
3.5.7  Date/Time Functions and Operators..219 

3.5.7.1  ADD_MONTHS...221 
3.5.7.2  EXTRACT..221 
3.5.7.3  MONTHS_BETWEEN ..223 
3.5.7.4  NEXT_DAY...223 
3.5.7.5  NEW_TIME ...224 
3.5.7.6  ROUND..225 
3.5.7.7  TRUNC...229 
3.5.7.8  CURRENT DATE/TIME...232 

3.5.8  Sequence Manipulation Functions ..233 
3.5.9  Conditional Expressions..234 

3.5.9.1  CASE..234 
3.5.9.2  COALESCE ...235 
3.5.9.3  NULLIF..236 
3.5.9.4  GREATEST and LEAST ...236 

3.5.10  Aggregate Functions..236 
3.5.11  Subquery Expressions ...238 

3.5.11.1  EXISTS...238 
3.5.11.2  IN..239 
3.5.11.3  NOT IN...239 

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

6

3.5.11.4  ANY/SOME ...240 
3.5.11.5  ALL ..240 

4  Stored Procedure Language...241 
4.1  Basic SPL Elements ...241 

4.1.1  Character Set ...241 
4.1.2  Case Sensitivity ...242 
4.1.3  Identifiers...242 
4.1.4  Qualifiers ...242 
4.1.5  Constants ...243 

4.2  SPL Programs...244 
4.2.1  SPL Block Structure ..244 
4.2.2  Anonymous Blocks ...246 
4.2.3  Procedures Overview...246 

4.2.3.1  Creating a Procedure ..247 
4.2.3.2  Calling a Procedure ..247 
4.2.3.3  Deleting a Procedure ..248 

4.2.4  Functions Overview...248 
4.2.4.1  Creating a Function ..248 
4.2.4.2  Calling a Function ..249 
4.2.4.3  Deleting a Function ..250 

4.2.5  Procedure and Function Parameters ..251 
4.2.5.1  Parameter Modes ..252 

4.2.6  Program Security ...254 
4.2.6.1  EXECUTE Privilege ..254 
4.2.6.2  Database Object Name Resolution...255 
4.2.6.3  Database Object Privileges...256 
4.2.6.4  Definer’s vs. Invokers Rights ...256 
4.2.6.5  Security Example..257 

4.3  Variable Declarations ...263 
4.3.1  Declaring a Variable..264 
4.3.2  Using %TYPE in Variable Declarations ...264 
4.3.3  Using %ROWTYPE in Record Declarations ..267 
4.3.4  User-Defined Record Types and Record Variables ..268 

4.4  Basic Statements...270 
4.4.1  NULL ..270 
4.4.2  Assignment ..270 
4.4.3  SELECT INTO..271 
4.4.4  INSERT ...273 
4.4.5  UPDATE ...274 
4.4.6  DELETE..275 
4.4.7  Using the RETURNING INTO Clause ...276 
4.4.8  Obtaining the Result Status ...279 

4.5  Control Structures...279 
4.5.1  IF Statement...279 

4.5.1.1  IF-THEN...280 
4.5.1.2  IF-THEN-ELSE..280 
4.5.1.3  IF-THEN-ELSE IF ...281 
4.5.1.4  IF-THEN-ELSIF-ELSE..283 

4.5.2  CASE Expression ..284 
4.5.2.1  Selector CASE Expression ...284 
4.5.2.2  Searched CASE Expression ...286 

4.5.3  CASE Statement..287 
4.5.3.1  Selector CASE Statement...287 
4.5.3.2  Searched CASE statement..289 

4.5.4  Loops ...290 
4.5.4.1  LOOP..290 

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

7

4.5.4.2  EXIT ...290 
4.5.4.3  CONTINUE..291 
4.5.4.4  WHILE ...292 
4.5.4.5  FOR (integer variant) ...293 

4.5.5  Exception Handling ...294 
4.5.6  Raise Application Error...295 

4.6  Transaction Control ..296 
4.6.1  COMMIT...297 
4.6.2  ROLLBACK..298 

4.7  Dynamic SQL...301 
4.8  Static Cursors..303 

4.8.1  Declaring a Cursor...303 
4.8.2  Opening a Cursor...304 
4.8.3  Fetching Rows From a Cursor...304 
4.8.4  Closing a Cursor ..305 
4.8.5  Using %ROWTYPE With Cursors ...306 
4.8.6  Cursor Attributes ...307 

4.8.6.1  %ISOPEN...307 
4.8.6.2  %FOUND ...308 
4.8.6.3  %NOTFOUND...309 
4.8.6.4  %ROWCOUNT..310 
4.8.6.5  Summary of Cursor States and Attributes ..311 

4.8.7  Cursor FOR Loop ..311 
4.8.8  Parameterized Cursors...312 

4.9  REF CURSORs and Cursor Variables ...313 
4.9.1  REF CURSOR Overview ..313 
4.9.2  Declaring a Cursor Variable ..314 

4.9.2.1  Declaring a SYS_REFCURSOR Cursor Variable ...314 
4.9.2.2  Declaring a User Defined REF CURSOR Type Variable..314 

4.9.3  Opening a Cursor Variable ..315 
4.9.4  Fetching Rows From a Cursor Variable ..315 
4.9.5  Closing a Cursor Variable ...316 
4.9.6  Usage Restrictions ...316 
4.9.7  Examples ...317 

4.9.7.1  Returning a REF CURSOR From a Function ..317 
4.9.7.2  Modularizing Cursor Operations..318 

4.9.8  Dynamic Queries With REF CURSORs ...321 
4.10  Collections..323 

4.10.1  Associative Arrays...323 
4.10.2  Nested Tables ..326 
4.10.3  Collection Methods ...329 

4.10.3.1  COUNT ..329 
4.10.3.2  FIRST ...330 
4.10.3.3  LAST ..330 

4.10.4  Using the FORALL Statement ..331 
4.10.5  Using the BULK COLLECT Clause...333 

4.10.5.1  SELECT BULK COLLECT...333 
4.10.5.2  FETCH BULK COLLECT...335 
4.10.5.3  RETURNING BULK COLLECT ..336 

4.11  Errors and Messages...338 
5  Triggers..340 

5.1  Overview ..340 
5.2  Types of Triggers ...340 
5.3  Creating Triggers..341 
5.4  Trigger Variables..341 
5.5  Transactions and Exceptions ..343 

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

8

5.6  Trigger Examples ...343 
5.6.1  Before Statement-Level Trigger..343 
5.6.2  After Statement-Level Trigger ..344 
5.6.3  Before Row-Level Trigger ..345 
5.6.4  After Row-Level Trigger...345 

6  Packages ..348 
6.1  Package Components..348 

6.1.1  Package Specification Syntax..349 
6.1.2  Package Body Syntax ..350 

6.2  Creating Packages ..352 
6.2.1  Creating the Package Specification ...352 
6.2.2  Creating the Package Body ...353 

6.3  Referencing a Package ...354 
6.4  Using Packages With User Defined Types ..354 
6.5  Dropping a Package..358 

7  Built-In Packages...359 
7.1  DBMS_ALERT..360 

7.1.1  REGISTER..361 
7.1.2  REMOVE ..362 
7.1.3  REMOVEALL ..363 
7.1.4  SIGNAL ..364 
7.1.5  WAITANY ..365 
7.1.6  WAITONE ..367 
7.1.7  Comprehensive Example...369 

7.2  DBMS_OUTPUT...371 
7.2.1  CHARARR..372 
7.2.2  DISABLE ..373 
7.2.3  ENABLE ...374 
7.2.4  GET_LINE ..376 
7.2.5  GET_LINES..378 
7.2.6  NEW_LINE...381 
7.2.7  PUT..382 
7.2.8  PUT_LINE ..384 
7.2.9  SERVEROUTPUT..385 

7.3  DBMS_PIPE ..386 
7.3.1  CREATE_PIPE ...388 
7.3.2  NEXT_ITEM_TYPE...389 
7.3.3  PACK_MESSAGE..392 
7.3.4  PURGE..393 
7.3.5  RECEIVE_MESSAGE..395 
7.3.6  REMOVE_PIPE ..396 
7.3.7  RESET_BUFFER..398 
7.3.8  SEND_MESSAGE..399 
7.3.9  UNIQUE_SESSION_NAME..400 
7.3.10  UNPACK_MESSAGE..401 
7.3.11  Comprehensive Example...402 

7.4  UTL_FILE..405 
7.4.1  FCLOSE ..407 
7.4.2  FCLOSE_ALL ..408 
7.4.3  FCOPY ..409 
7.4.4  FFLUSH ..411 
7.4.5  FOPEN ..412 
7.4.6  FREMOVE..413 
7.4.7  FRENAME..414 
7.4.8  GET_LINE ..416 
7.4.9  IS_OPEN ...418 

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

9

7.4.10  NEW_LINE...419 
7.4.11  PUT..421 
7.4.12  PUT_LINE ..423 
7.4.13  PUTF ...425 

7.5  DBMS_SQL ...427 
7.5.1  BIND_VARIABLE ...429 
7.5.2  BIND_VARIABLE_CHAR..431 
7.5.3  BIND VARIABLE RAW..432 
7.5.4  CLOSE_CURSOR ..433 
7.5.5  COLUMN_VALUE ..434 
7.5.6  COLUMN_VALUE_CHAR ...436 
7.5.7  COLUMN VALUE RAW...437 
7.5.8  DEFINE_COLUMN..438 
7.5.9  DEFINE_COLUMN_CHAR ..440 
7.5.10  DEFINE COLUMN RAW ..441 
7.5.11  EXECUTE...442 
7.5.12  EXECUTE_AND_FETCH..443 
7.5.13  FETCH_ROWS...445 
7.5.14  IS_OPEN ...447 
7.5.15  LAST_ROW_COUNT..448 
7.5.16  OPEN_CURSOR...450 
7.5.17  PARSE...451 

7.6  DBMS_JOB..452 
7.6.1  BROKEN...453 
7.6.2  CHANGE ..454 
7.6.3  INTERVAL ...455 
7.6.4  NEXT_DATE..456 
7.6.5  REMOVE ..456 
7.6.6  RUN...457 
7.6.7  SUBMIT..457 
7.6.8  WHAT ...458 

7.7  DBMS_LOB...460 
7.7.1  APPEND..461 
7.7.2  CLOSE ..462 
7.7.3  COMPARE..462 
7.7.4  CONVERTTOBLOB ..463 
7.7.5  CONVERTTOCLOB ..464 
7.7.6  COPY ..465 
7.7.7  ERASE ..466 
7.7.8  GET_STORAGE_LIMIT..467 
7.7.9  GETLENGTH ...467 
7.7.10  INSTR..468 
7.7.11  ISOPEN ...468 
7.7.12  OPEN...469 
7.7.13  READ ..469 
7.7.14  SUBSTR..470 
7.7.15  TRIM ...470 
7.7.16  WRITE ..471 
7.7.17  WRITEAPPEND...471 

7.8  DBMS_UTILITY ...473 
7.8.1  LNAME_ARRAY...474 
7.8.2  UNCL_ARRAY ..474 
7.8.3  ANALYZE_DATABASE, ANALYZE SCHEMA and ANALYZE PART_OBJECT..........474 
7.8.4  CANONICALIZE ...476 
7.8.5  COMMA_TO_TABLE ...478 
7.8.6  DB_VERSION ..479 

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

10

7.8.7  EXEC_DDL_STATEMENT...479 
7.8.8  GET_CPU_TIME..480 
7.8.9  GET_DEPENDENCY...480 
7.8.10  GET_HASH_VALUE...481 
7.8.11  GET_PARAMETER_VALUE..482 
7.8.12  GET_TIME..483 
7.8.13  NAME_TOKENIZE..484 
7.8.14  TABLE_TO_COMMA ...486 

7.9  UTL_MAIL ..488 
7.9.1  SEND...488 
7.9.2  SEND_ATTACH_RAW ...489 
7.9.3  SEND_ATTACH_VARCHAR2...491 

7.10  UTL_SMTP..493 
7.10.1  CONNECTION ...494 
7.10.2  REPLY/REPLIES..494 
7.10.3  CLOSE_DATA ...494 
7.10.4  COMMAND..494 
7.10.5  COMMAND_REPLIES ..495 
7.10.6  DATA ..496 
7.10.7  EHLO ..496 
7.10.8  HELO ..496 
7.10.9  HELP ...497 
7.10.10  MAIL...497 
7.10.11  NOOP ..498 
7.10.12  OPEN_CONNECTION...498 
7.10.13  OPEN_DATA..499 
7.10.14  QUIT..499 
7.10.15  RCPT ...499 
7.10.16  RSET ...500 
7.10.17  VRFY ..500 
7.10.18  WRITE_DATA ...500 
7.10.19  Comprehensive Example...501 

8  Object Types and Objects..503 
8.1  Object Type Components ...504 

8.1.1  Object Type Specification Syntax ...504 
8.2  Creating Object Types..504 
8.3  Creating Object Instances...504 
8.4  Referencing an Object ..506 
8.5  Dropping an Object Type ...507 

9  Open Client Library...508 
9.1  Comparison with Oracle Call Interface ..508 
9.2  OCL Reference...509 

10  Oracle Catalog Views..515 
10.1  ALL_ALL_TABLES ...515 
10.2  ALL_CONS_COLUMNS ..515 
10.3  ALL_CONSTRAINTS...515 
10.4  ALL_DB_LINKS...516 
10.5  ALL_IND_COLUMNS..516 
10.6  ALL_INDEXES ...517 
10.7  ALL_OBJECTS ...517 
10.8  ALL_SOURCE...518 
10.9  ALL_SYNONYMS..518 
10.10  ALL_TAB_COLUMNS...518 
10.11  ALL_TABLES ...519 
10.12  ALL_TRIGGERS...519 
10.13  ALL_TYPES ..520 

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

11

10.14  ALL_USERS..520 
10.15  ALL_VIEW_COLUMNS ..520 
10.16  ALL_VIEWS..521 
10.17  DBA_ALL_TABLES...521 
10.18  DBA_CONS_COLUMNS ...521 
10.19  DBA_CONSTRAINTS ..522 
10.20  DBA_DB_LINKS ..522 
10.21  DBA_IND_COLUMNS...523 
10.22  DBA_INDEXES...523 
10.23  DBA_JOBS ..524 
10.24  DBA_OBJECTS...524 
10.25  DBA_ROLE_PRIVS..525 
10.26  DBA_ROLES...525 
10.27  DBA_SOURCE..525 
10.28  DBA_SYNONYMS ...526 
10.29  DBA_TABLES...526 
10.30  DBA_TRIGGERS ..526 
10.31  DBA_TYPES ...527 
10.32  DBA_USERS ...527 
10.33  DBA_VIEWS...528 
10.34  USER_ALL_TABLES...528 
10.35  USER_CONS_COLUMNS..528 
10.36  USER_CONSTRAINTS ..529 
10.37  USER_DB_LINKS...529 
10.38  USER_IND_COLUMNS ...530 
10.39  USER_INDEXES...530 
10.40  USER_JOBS ..531 
10.41  USER_OBJECTS...531 
10.42  USER_SOURCE ..532 
10.43  USER_SYNONYMS ...532 
10.44  USER_TAB_COLUMNS ..532 
10.45  USER_TABLES...533 
10.46  USER_TRIGGERS ..533 
10.47  USER_TYPES..534 
10.48  USER_USERS ...534 
10.49  USER_VIEW_COLUMNS..534 
10.50  USER_VIEWS ...535 

11  Utilities ..536 
11.1  EDB*Plus ...536 

11.1.1  Starting EDB*Plus...536 
11.1.2  Command Summary..539 

11.1.2.1  ACCEPT...539 
11.1.2.2  APPEND...539 
11.1.2.3  CHANGE ...539 
11.1.2.4  CLEAR...540 
11.1.2.5  COLUMN...540 
11.1.2.6  CONNECT ...543 
11.1.2.7  DEFINE..544 
11.1.2.8  DEL ..545 
11.1.2.9  DESCRIBE...546 
11.1.2.10  DISCONNECT...546 
11.1.2.11  EDIT ...546 
11.1.2.12  EXIT ...546 
11.1.2.13  GET ..547 
11.1.2.14  HELP ..547 
11.1.2.15  HOST..548 

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

12

11.1.2.16  INPUT ..548 
11.2  EDB*Loader...549 

11.2.1  Invoking EDB*Loader ..549 
11.2.2  The EDB*Loader Control File ..551 
11.2.3  Notes..552 

11.3  EDB*Wrap ...553 
11.3.1  Using EDB*Wrap to Obfuscate Source Code...554 

11.4  Dynamic Runtime Instrumentation Tools Architecture (DRITA) ...558 
11.4.1  Initialization Parameters ..558 
11.4.2  Setting up and Using DRITA ..558 
11.4.3  DRITA Functions ..559 

11.4.3.1  get_snaps()..559 
11.4.3.2  sys_rpt() ..559 
11.4.3.3  sess_rpt()...560 
11.4.3.4  sessid_rpt() ...561 
11.4.3.5  sesshist_rpt()...562 
11.4.3.6  truncsnap() ..563 
11.4.3.7  purgesnap() ...563 

11.5  Simulating Statspack AWR Reports ..565 
11.5.1.1  edbreport() ..565 
11.5.1.2  stat_db_rpt() ...570 
11.5.1.3  stat_tables_rpt() ..570 
11.5.1.4  statio_tables_rpt() ...572 
11.5.1.5  stat_indexes_rpt() ...573 
11.5.1.6  statio_indexes_rpt() ..574 

11.6  Performance Tuning Recommendations ..576 
11.7  Event Descriptions..577 
11.8  Catalog Views ..579 

11.8.1  edb$system_waits..579 
11.8.2  edb$session_waits ...579 
11.8.3  edb$session_wait_history..580 

12  Acknowledgements ...582 

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

13

1 Introduction
This guide describes the Oracle compatibility features of Postgres Plus Advanced Server.
Oracle compatibility means that an application runs in an Oracle environment as well as
in a Postgres Plus Advanced Server environment with minimal or no changes to the
application code.

Postgres Plus Advanced Server contains a rich set of features that enables development of
database applications for PostgreSQL or Oracle. This guide focuses solely on the features
that are compatible with Oracle. To learn about all of the features of Postgres Plus
Advanced Server, consult the Postgres Plus documentation set.

Developing an Oracle compatible application in Postgres Plus Advanced Server requires
special attention to which features are used in the construction of the application. For
example, developing an Oracle compatible application means choosing:

• Oracle compatible data types to define the application’s database tables
• SQL statements that are compatible with Oracle SQL
• Oracle compatible system and built-in functions for use in SQL statements and

procedural logic
• Stored Procedure Language (SPL) to create database server-side application logic

for stored procedures, functions, triggers, and packages
• System catalog views that are compatible with Oracle’s Data Dictionary

Postgres Plus Advanced Server provides these features.

In addition, for applications written using the Oracle Call Interface (OCI),
EnterpriseDB’s Open Client Library (OCL) provides interoperability with these
applications.

The remainder of this guide explains each of these areas in more detail.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

14

1.1 What’s New

This section lists the Oracle compatibility features that have been added to Postgres Plus
Advanced Server 8.3 (R1) to form Postgres Plus Advanced Server 8.3 (R2).

• The COMMIT and ROLLBACK commands are now supported in SPL programs.
See Section 4.6 for information on explicit transaction control in SPL.

• The CREATE_TYPE and DROP_TYPE commands are now supported to create
and delete user-defined types.

• Nested tables are now supported as a collection type in addition to associative
arrays. See Section 4.10.2 for information on nested tables.

• The NEW_TIME function is now supported. See Section 3.5.7.5 for more
information.

• Support for the object type specification and object type attributes have been
added to SPL. See Chapter 8.

• Support for DBMS_SQL built-in package (Oracle compatible dynamic SQL).
See Section 7.5.

• Support for DBMS_JOB built-in package (Oracle compatible job management).
See Section 7.6.

• Support for DBMS_LOB built-in package (Oracle compatible large object
management). See Section 7.7.

• Support for DBMS_UTILITY built-in package (Oracle compatible utilities). See
Section 7.8.

• Support for UTL_MAIL built-in package (Oracle compatible email management).
See Section 7.9.

• Support for UTL_SMTP built-in package (Oracle compatible SMTP
implementation). See Section 7.10.

• Support for five new Oracle views: ALL_TYPES, DBA_TYPES, USER_TYPES,
DBA_JOBS and USER_JOBS.

• Source code obfuscation is now supported with the EDB*Wrap utility. See
section 11.3.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

15

1.2 Typographical Conventions Used in this Guide

Certain typographical conventions are used in this manual to clarify the meaning and
usage of various commands, statements, programs, examples, etc. This section provides a
summary of these conventions.

In the following descriptions a term refers to any word or group of words which may be
language keywords, user-supplied values, literals, etc. A term’s exact meaning depends
upon the context in which it is used.

• Italic font introduces a new term, typically, in the sentence that defines it for the
first time.

• Fixed-width (mono-spaced) font is used for terms that must be given
literally such as SQL commands, specific table and column names used in the
examples, programming language keywords, etc. For example, SELECT * FROM
emp;

• Italic fixed-width font is used for terms for which the user must
substitute values in actual usage. For example, DELETE FROM table_name;

• A vertical pipe | denotes a choice between the terms on either side of the pipe. A
vertical pipe is used to separate two or more alternative terms within square
brackets (optional choices) or braces (one mandatory choice).

• Square brackets [] denote that one or none of the enclosed term(s) may be
substituted. For example, [a | b], means choose one of “a” or “b” or neither
of the two.

• Braces {} denote that exactly one of the enclosed alternatives must be specified.
For example, { a | b }, means exactly one of “a” or “b” must be specified.

• Ellipses ... denote that the proceeding term may be repeated. For example, [a |
b] ... means that you may have the sequence, “b a a b a”.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

16

1.3 Oracle Compatible Configuration Parameters

Postgres Plus Advanced Server supports the development and execution of PostgreSQL
and Oracle applications. There are a number of system behaviors that can be altered to act
in a more PostgreSQL or in a more Oracle compliant manner. These are controlled by
configuration parameters that can be found in the postgresql.conf file in the database
cluster data directory. Changing the parameters in the postgresql.conf file changes
the behavior over all databases in the cluster. More fine-grained adjustment of these
parameters can be done by database, by user or group, or by session. These parameters
are the following:

• edb_redwood_date – Controls whether or not a time component is stored in
DATE columns. For Oracle compatible behavior, set edb_redwood_date to
“true”.

• edb_redwood_strings – Equates null to an empty string for purposes of string
concatenation operations. For Oracle compatible behavior, set
edb_redwood_strings to “true”.

• edb_stmt_level_tx – Isolates automatic rollback of an aborted SQL command
to statement level rollback only – the entire, current transaction is not
automatically rolled back as is the case for default PostgreSQL behavior. For
Oracle compatible behavior, set edb_stmt_level_tx to “true”; however, use
only when absolutely necessary. See Section 1.3.3.

• oracle_home – Point Postgres Plus Advanced Server to the correct Oracle
installation directory. See Section 1.3.4.

1.3.1 edb_redwood_date

When DATE appears as the data type of a column in the commands,

 CREATE TABLE or

ALTER TABLE, it is translated to TIMESTAMP(0) at the time the table definition is
stored in the data base if the configuration parameter edb_redwood_date is set to
“true”. Thus, a time component will also be stored in the column along with the date.
This is consistent with Oracle’s DATE data type.

If edb_redwood_date is set to “false” the column’s data type in a CREATE TABLE or
ALTER TABLE command remains as a native PostgreSQL DATE data type and is stored as
such in the database. The PostgreSQL DATE data type stores only the date without a time
component in the column.

Regardless of the setting of edb_redwood_date, when DATE appears as a data type in
any other context such as the data type of a variable in an SPL declaration section, or the

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

17

data type of a formal parameter in an SPL procedure or SPL function, or the return type
of an SPL function, it is always internally translated to a TIMESTAMP(0) and thus, can
handle a time component if present.

See Section 3.2.4 for more information on date/time data types.

1.3.2 edb_redwood_strings

In Oracle, when a string is concatenated with a null variable or null column, the result is
the original string; however, in PostgreSQL concatenation of a string with a null variable
or null column gives a null result. If the edb_redwood_strings parameter is set to
“true”, the aforementioned concatenation operation results in the original string as done
by Oracle. If edb_redwood_strings is set to “false”, the native PostgreSQL behavior
is maintained.

The following example illustrates the difference.

The sample application introduced in the next chapter contains a table of employees. This
table has a column named comm that is null for most employees. The following query is
run with edb_redwood_string set to “false”. The concatenation of a null column with
non-empty strings produces a final result of null, so only employees that have a
commission appear in the query result. The output line for all other employees is null.

SET edb_redwood_strings TO off;

SELECT RPAD(ename,10) || ' ' || TO_CHAR(sal,'99,999.99') || ' ' ||
TO_CHAR(comm,'99,999.99') "EMPLOYEE COMPENSATION" FROM emp;

 EMPLOYEE COMPENSATION

 ALLEN 1,600.00 300.00
 WARD 1,250.00 500.00

 MARTIN 1,250.00 1,400.00

 TURNER 1,500.00 .00

(14 rows)

The following is the same query executed when edb_redwood_strings is set to
“true”. Here, the value of a null column is treated as an empty string. The concatenation
of an empty string with a non-empty string produces the non-empty string. This result is
consistent with the results produced by Oracle for the same query.

SET edb_redwood_strings TO on;

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

18

SELECT RPAD(ename,10) || ' ' || TO_CHAR(sal,'99,999.99') || ' ' ||
TO_CHAR(comm,'99,999.99') "EMPLOYEE COMPENSATION" FROM emp;

 EMPLOYEE COMPENSATION

 SMITH 800.00
 ALLEN 1,600.00 300.00
 WARD 1,250.00 500.00
 JONES 2,975.00
 MARTIN 1,250.00 1,400.00
 BLAKE 2,850.00
 CLARK 2,450.00
 SCOTT 3,000.00
 KING 5,000.00
 TURNER 1,500.00 .00
 ADAMS 1,100.00
 JAMES 950.00
 FORD 3,000.00
 MILLER 1,300.00
(14 rows)

1.3.3 edb_stmt_level_tx

In Oracle, when a runtime error occurs in a SQL command, all the updates on the
database caused by that single command are rolled back. This is called statement level
transaction isolation. For example, if a single UPDATE command successfully updates
five rows, but an attempt to update a sixth row results in an exception, the updates to all
six rows made by this UPDATE command are rolled back. The effects of prior SQL
commands that have not yet been committed or rolled back are pending until a COMMIT
or ROLLBACK command is executed.

In PostgreSQL, if an exception occurs while executing a SQL command, all the updates
on the database since the start of the transaction are rolled back. In addition, the
transaction is left in an aborted state and either a COMMIT or ROLLBACK command must
be issued before another transaction can be started.

If edb_stmt_level_tx is set to “true”, then an exception will not automatically roll
back prior uncommitted database updates, emulating the Oracle behavior. If
edb_stmt_level_tx is set to “false”, then an exception will roll back uncommitted
database updates.

Note: Use edb_stmt_level_tx set to “true” only when absolutely necessary as this
may cause a negative performance impact.

The following example run in PSQL shows that when edb_stmt_level_tx is “false”,
the abort of the second INSERT command also rolls back the first INSERT command.
Note that in PSQL, the command \set AUTOCOMMIT off must be issued, otherwise
every statement commits automatically defeating the purpose of this demonstration of the
effect of edb_stmt_level_tx.

\set AUTOCOMMIT off

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

19

SET edb_stmt_level_tx TO off;

INSERT INTO emp (empno,ename,deptno) VALUES (9001, 'JONES', 40);
INSERT INTO emp (empno,ename,deptno) VALUES (9002, 'JONES', 00);
ERROR: insert or update on table "emp" violates foreign key constraint
"emp_ref_dept_fk"
DETAIL: Key (deptno)=(0) is not present in table "dept".

COMMIT;
SELECT empno, ename, deptno FROM emp WHERE empno > 9000;

empno | ename | deptno
-------+-------+--------
(0 rows)

In the following example, with edb_stmt_level_tx set to “true”, the first INSERT
command has not been rolled back after the error on the second INSERT command. At
this point, the first INSERT command can either be committed or rolled back.

\set AUTOCOMMIT off
SET edb_stmt_level_tx TO on;

INSERT INTO emp (empno,ename,deptno) VALUES (9001, 'JONES', 40);
INSERT INTO emp (empno,ename,deptno) VALUES (9002, 'JONES', 00);
ERROR: insert or update on table "emp" violates foreign key constraint
"emp_ref_dept_fk"
DETAIL: Key (deptno)=(0) is not present in table "dept".

SELECT empno, ename, deptno FROM emp WHERE empno > 9000;

empno | ename | deptno
-------+-------+--------
 9001 | JONES | 40
(1 row)

COMMIT;

A ROLLBACK command could have been issued instead of the COMMIT command in
which case the insert of employee number 9001 would have been rolled back as well.

1.3.4 oracle_home

The configuration parameter, oracle_home directs Postgres Plus Advanced Server to
the correct Oracle Home directory in the file system. This parameter can only be set by a
superuser and can be set at any level both on and off-line.; thereby allowing a single EDB
server to use multiple Oracle client installs and access both older and newer versions of
Oracle at the same time. By implementation, if set, the oracle_home configuration
parameter will override the default ORACLE_HOME environment variable.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

20

1.4 About the Examples Used in this Guide

The examples shown in this guide are illustrated using the PSQL program. The prompt
that normally appears when using PSQL is omitted in these examples to provide extra
clarity for the point being demonstrated.

Examples and output from examples are shown in fixed-width, blue font on a
light blue background.

Also note the following points:

• During installation of Postgres Plus Advanced Server the selection for Oracle
compatible configuration and defaults must be chosen in order to reproduce the
same results as the examples shown in this guide. A default Oracle compatible
configuration can be verified by issuing the following commands in PSQL and
obtaining the same results as shown below.

SHOW edb_redwood_date;

 edb_redwood_date

 on

SHOW datestyle;

 DateStyle

 Redwood, DMY

SHOW edb_redwood_strings;

edb_redwood_strings

 on

• The examples use the sample tables, dept, emp, and jobhist, created and
loaded when Postgres Plus Advanced Server is installed. The emp table is
installed with triggers that must be disabled in order to reproduce the same results
as shown in this guide. Log on to Postgres Plus Advanced Server as the
enterprisedb superuser and disable the triggers by issuing the following
command.

ALTER TABLE emp DISABLE TRIGGER USER;

The triggers on the emp table can later be re-activated with the following
command.

ALTER TABLE emp ENABLE TRIGGER USER;

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

21

2 SQL Tutorial
This chapter is an introduction to the SQL language for those new to relational database
management systems. Basic operations such as creating, populating, querying, and
updating tables are discussed along with examples.

More advanced concepts such as view, foreign keys, and transactions are discussed as
well.

2.1 Getting Started

Postgres Plus Advanced Server is a relational database management system (RDBMS).
That means it is a system for managing data stored in relations. A relation is essentially a
mathematical term for a table. The notion of storing data in tables is so commonplace
today that it might seem inherently obvious, but there are a number of other ways of
organizing databases. Files and directories on Unix-like operating systems form an
example of a hierarchical database. A more modern development is the object-oriented
database.

Each table is a named collection of rows. Each row of a given table has the same set of
named columns, and each column is of a specific data type. Whereas columns have a
fixed order in each row, it is important to remember that SQL does not guarantee the
order of the rows within the table in any way (although they can be explicitly sorted for
display).

Tables are grouped into databases, and a collection of databases managed by a single
Postgres Plus Advanced Server server instance constitutes a database cluster.

2.1.1 Sample Database

Throughout this documentation we will be working with a sample database to help
explain some basic to advanced level database concepts.

2.1.1.1 Sample Database Installation

When Postgres Plus Advanced Server is installed a sample database named, edb, is
automatically created. This sample database contains the tables and programs used
throughout this document.

The tables and programs in the sample database can be re-created at any time by
executing the script, edb-sample.sql, located in the samples subdirectory of the
Postgres Plus Advanced Server home directory.

This script does the following:

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

22

• Creates the sample tables and programs in the currently connected database
• Grants all permissions on the tables to the PUBLIC group

The tables and programs will be created in the first schema of the search path in which
the current user has permission to create tables and procedures. You can display the
search path by issuing the command:

SHOW SEARCH_PATH;

Altering the search path can be done using commands in PSQL.

2.1.1.2 Sample Database Description

The sample database represents employees in an organization.

It contains three types of records: employees, departments, and historical records of
employees.

Each employee has an identification number, name, hire date, salary, and manager. Some
employees earn a commission in addition to their salary. All employee-related
information is stored in the emp table.

The sample company is regionally diverse, so the database keeps track of the location of
the departments. Each company employee is assigned to a department. Each department
is identified by a unique department number and a short name. Each department is
associated with one location. All department-related information is stored in the dept
table.

The company also tracks information about jobs held by the employees. Some employees
have been with the company for a long time and have held different positions, received
raises, switched departments, etc. When a change in employee status occurs, the company
records the end date of the former position. A new job record is added with the start date
and the new job title, department, salary, and the reason for the status change. All
employee history is maintained in the jobhist table.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

23

The following is an entity relationship diagram of the sample database tables.

Figure 1 Sample Database Tables

deptno

dname
loc

empno

ename
job
mgr
hiredate
sal
comm
deptno

empno
startdate

enddate
job
sal
comm
deptno
chgdesc

emp

dept

jobhist

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

24

The following is the edb-sample.sql script.

--
-- Script that creates the 'sample' tables, views, procedures,
-- functions, triggers, etc.
--
-- Start new transaction - commit all or nothing
--
BEGIN;
/
--
-- Create and load tables used in the documentation examples.
--
-- Create the 'dept' table
--
CREATE TABLE dept (
 deptno NUMBER(2) NOT NULL CONSTRAINT dept_pk PRIMARY KEY,
 dname VARCHAR2(14) CONSTRAINT dept_dname_uq UNIQUE,
 loc VARCHAR2(13)
);
--
-- Create the 'emp' table
--
CREATE TABLE emp (
 empno NUMBER(4) NOT NULL CONSTRAINT emp_pk PRIMARY KEY,
 ename VARCHAR2(10),
 job VARCHAR2(9),
 mgr NUMBER(4),
 hiredate DATE,
 sal NUMBER(7,2) CONSTRAINT emp_sal_ck CHECK (sal > 0),
 comm NUMBER(7,2),
 deptno NUMBER(2) CONSTRAINT emp_ref_dept_fk
 REFERENCES dept(deptno)
);
--
-- Create the 'jobhist' table
--
CREATE TABLE jobhist (
 empno NUMBER(4) NOT NULL,
 startdate DATE NOT NULL,
 enddate DATE,
 job VARCHAR2(9),
 sal NUMBER(7,2),
 comm NUMBER(7,2),
 deptno NUMBER(2),
 chgdesc VARCHAR2(80),
 CONSTRAINT jobhist_pk PRIMARY KEY (empno, startdate),
 CONSTRAINT jobhist_ref_emp_fk FOREIGN KEY (empno)
 REFERENCES emp(empno) ON DELETE CASCADE,
 CONSTRAINT jobhist_ref_dept_fk FOREIGN KEY (deptno)
 REFERENCES dept (deptno) ON DELETE SET NULL,
 CONSTRAINT jobhist_date_chk CHECK (startdate <= enddate)
);
--
-- Create the 'salesemp' view
--
CREATE OR REPLACE VIEW salesemp AS
 SELECT empno, ename, hiredate, sal, comm FROM emp WHERE job = 'SALESMAN';
--
-- Sequence to generate values for function 'new_empno'.
--
CREATE SEQUENCE next_empno START WITH 8000 INCREMENT BY 1;

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

25

--
-- Issue PUBLIC grants
--
GRANT ALL ON emp TO PUBLIC;
GRANT ALL ON dept TO PUBLIC;
GRANT ALL ON jobhist TO PUBLIC;
GRANT ALL ON salesemp TO PUBLIC;
GRANT ALL ON next_empno TO PUBLIC;
--
-- Load the 'dept' table
--
INSERT INTO dept VALUES (10,'ACCOUNTING','NEW YORK');
INSERT INTO dept VALUES (20,'RESEARCH','DALLAS');
INSERT INTO dept VALUES (30,'SALES','CHICAGO');
INSERT INTO dept VALUES (40,'OPERATIONS','BOSTON');
--
-- Load the 'emp' table
--
INSERT INTO emp VALUES (7369,'SMITH','CLERK',7902,'17-DEC-80',800,NULL,20);
INSERT INTO emp VALUES (7499,'ALLEN','SALESMAN',7698,'20-FEB-
81',1600,300,30);
INSERT INTO emp VALUES (7521,'WARD','SALESMAN',7698,'22-FEB-81',1250,500,30);
INSERT INTO emp VALUES (7566,'JONES','MANAGER',7839,'02-APR-
81',2975,NULL,20);
INSERT INTO emp VALUES (7654,'MARTIN','SALESMAN',7698,'28-SEP-
81',1250,1400,30);
INSERT INTO emp VALUES (7698,'BLAKE','MANAGER',7839,'01-MAY-
81',2850,NULL,30);
INSERT INTO emp VALUES (7782,'CLARK','MANAGER',7839,'09-JUN-
81',2450,NULL,10);
INSERT INTO emp VALUES (7788,'SCOTT','ANALYST',7566,'19-APR-
87',3000,NULL,20);
INSERT INTO emp VALUES (7839,'KING','PRESIDENT',NULL,'17-NOV-
81',5000,NULL,10);
INSERT INTO emp VALUES (7844,'TURNER','SALESMAN',7698,'08-SEP-81',1500,0,30);
INSERT INTO emp VALUES (7876,'ADAMS','CLERK',7788,'23-MAY-87',1100,NULL,20);
INSERT INTO emp VALUES (7900,'JAMES','CLERK',7698,'03-DEC-81',950,NULL,30);
INSERT INTO emp VALUES (7902,'FORD','ANALYST',7566,'03-DEC-81',3000,NULL,20);
INSERT INTO emp VALUES (7934,'MILLER','CLERK',7782,'23-JAN-82',1300,NULL,10);
--
-- Load the 'jobhist' table
--
INSERT INTO jobhist VALUES (7369,'17-DEC-80',NULL,'CLERK',800,NULL,20,'New
Hire');
INSERT INTO jobhist VALUES (7499,'20-FEB-81',NULL,'SALESMAN',1600,300,30,'New
Hire');
INSERT INTO jobhist VALUES (7521,'22-FEB-81',NULL,'SALESMAN',1250,500,30,'New
Hire');
INSERT INTO jobhist VALUES (7566,'02-APR-81',NULL,'MANAGER',2975,NULL,20,'New
Hire');
INSERT INTO jobhist VALUES (7654,'28-SEP-
81',NULL,'SALESMAN',1250,1400,30,'New Hire');
INSERT INTO jobhist VALUES (7698,'01-MAY-81',NULL,'MANAGER',2850,NULL,30,'New
Hire');
INSERT INTO jobhist VALUES (7782,'09-JUN-81',NULL,'MANAGER',2450,NULL,10,'New
Hire');
INSERT INTO jobhist VALUES (7788,'19-APR-87','12-APR-
88','CLERK',1000,NULL,20,'New Hire');
INSERT INTO jobhist VALUES (7788,'13-APR-88','04-MAY-
89','CLERK',1040,NULL,20,'Raise');
INSERT INTO jobhist VALUES (7788,'05-MAY-
90',NULL,'ANALYST',3000,NULL,20,'Promoted to Analyst');

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

26

INSERT INTO jobhist VALUES (7839,'17-NOV-
81',NULL,'PRESIDENT',5000,NULL,10,'New Hire');
INSERT INTO jobhist VALUES (7844,'08-SEP-81',NULL,'SALESMAN',1500,0,30,'New
Hire');
INSERT INTO jobhist VALUES (7876,'23-MAY-87',NULL,'CLERK',1100,NULL,20,'New
Hire');
INSERT INTO jobhist VALUES (7900,'03-DEC-81','14-JAN-
83','CLERK',950,NULL,10,'New Hire');
INSERT INTO jobhist VALUES (7900,'15-JAN-
83',NULL,'CLERK',950,NULL,30,'Changed to Dept 30');
INSERT INTO jobhist VALUES (7902,'03-DEC-81',NULL,'ANALYST',3000,NULL,20,'New
Hire');
INSERT INTO jobhist VALUES (7934,'23-JAN-82',NULL,'CLERK',1300,NULL,10,'New
Hire');
--
-- Populate statistics table and view (pg_statistic/pg_stats)
--
ANALYZE dept;
ANALYZE emp;
ANALYZE jobhist;
--
-- Procedure that lists all employees' numbers and names
-- from the 'emp' table using a cursor.
--
CREATE OR REPLACE PROCEDURE list_emp
IS
 v_empno NUMBER(4);
 v_ename VARCHAR2(10);
 CURSOR emp_cur IS
 SELECT empno, ename FROM emp ORDER BY empno;
BEGIN
 OPEN emp_cur;
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME');
 DBMS_OUTPUT.PUT_LINE('----- -------');
 LOOP
 FETCH emp_cur INTO v_empno, v_ename;
 EXIT WHEN emp_cur%NOTFOUND;
 DBMS_OUTPUT.PUT_LINE(v_empno || ' ' || v_ename);
 END LOOP;
 CLOSE emp_cur;
END;
/
--
-- Procedure that selects an employee row given the employee
-- number and displays certain columns.
--
CREATE OR REPLACE PROCEDURE select_emp (
 p_empno IN NUMBER
)
IS
 v_ename emp.ename%TYPE;
 v_hiredate emp.hiredate%TYPE;
 v_sal emp.sal%TYPE;
 v_comm emp.comm%TYPE;
 v_dname dept.dname%TYPE;
 v_disp_date VARCHAR2(10);
BEGIN
 SELECT ename, hiredate, sal, NVL(comm, 0), dname
 INTO v_ename, v_hiredate, v_sal, v_comm, v_dname
 FROM emp e, dept d
 WHERE empno = p_empno
 AND e.deptno = d.deptno;
 v_disp_date := TO_CHAR(v_hiredate, 'MM/DD/YYYY');

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

27

 DBMS_OUTPUT.PUT_LINE('Number : ' || p_empno);
 DBMS_OUTPUT.PUT_LINE('Name : ' || v_ename);
 DBMS_OUTPUT.PUT_LINE('Hire Date : ' || v_disp_date);
 DBMS_OUTPUT.PUT_LINE('Salary : ' || v_sal);
 DBMS_OUTPUT.PUT_LINE('Commission: ' || v_comm);
 DBMS_OUTPUT.PUT_LINE('Department: ' || v_dname);
EXCEPTION
 WHEN NO_DATA_FOUND THEN
 DBMS_OUTPUT.PUT_LINE('Employee ' || p_empno || ' not found');
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE('The following is SQLERRM:');
 DBMS_OUTPUT.PUT_LINE(SQLERRM);
 DBMS_OUTPUT.PUT_LINE('The following is SQLCODE:');
 DBMS_OUTPUT.PUT_LINE(SQLCODE);
END;
/
--
-- Procedure that queries the 'emp' table based on
-- department number and employee number or name. Returns
-- employee number and name as IN OUT parameters and job,
-- hire date, and salary as OUT parameters.
--
CREATE OR REPLACE PROCEDURE emp_query (
 p_deptno IN NUMBER,
 p_empno IN OUT NUMBER,
 p_ename IN OUT VARCHAR2,
 p_job OUT VARCHAR2,
 p_hiredate OUT DATE,
 p_sal OUT NUMBER
)
IS
BEGIN
 SELECT empno, ename, job, hiredate, sal
 INTO p_empno, p_ename, p_job, p_hiredate, p_sal
 FROM emp
 WHERE deptno = p_deptno
 AND (empno = p_empno
 OR ename = UPPER(p_ename));
END;
/
--
-- Procedure to call 'emp_query_caller' with IN and IN OUT
-- parameters. Displays the results received from IN OUT and
-- OUT parameters.
--
CREATE OR REPLACE PROCEDURE emp_query_caller
IS
 v_deptno NUMBER(2);
 v_empno NUMBER(4);
 v_ename VARCHAR2(10);
 v_job VARCHAR2(9);
 v_hiredate DATE;
 v_sal NUMBER;
BEGIN
 v_deptno := 30;
 v_empno := 0;
 v_ename := 'Martin';
 emp_query(v_deptno, v_empno, v_ename, v_job, v_hiredate, v_sal);
 DBMS_OUTPUT.PUT_LINE('Department : ' || v_deptno);
 DBMS_OUTPUT.PUT_LINE('Employee No: ' || v_empno);
 DBMS_OUTPUT.PUT_LINE('Name : ' || v_ename);
 DBMS_OUTPUT.PUT_LINE('Job : ' || v_job);
 DBMS_OUTPUT.PUT_LINE('Hire Date : ' || v_hiredate);

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

28

 DBMS_OUTPUT.PUT_LINE('Salary : ' || v_sal);
EXCEPTION
 WHEN TOO_MANY_ROWS THEN
 DBMS_OUTPUT.PUT_LINE('More than one employee was selected');
 WHEN NO_DATA_FOUND THEN
 DBMS_OUTPUT.PUT_LINE('No employees were selected');
END;
/
--
-- Function to compute yearly compensation based on semimonthly
-- salary.
--
CREATE OR REPLACE FUNCTION emp_comp (
 p_sal NUMBER,
 p_comm NUMBER
) RETURN NUMBER
IS
BEGIN
 RETURN (p_sal + NVL(p_comm, 0)) * 24;
END;
/
--
-- Function that gets the next number from sequence, 'next_empno',
-- and ensures it is not already in use as an employee number.
--
CREATE OR REPLACE FUNCTION new_empno RETURN NUMBER
IS
 v_cnt INTEGER := 1;
 v_new_empno NUMBER;
BEGIN
 WHILE v_cnt > 0 LOOP
 SELECT next_empno.nextval INTO v_new_empno FROM dual;
 SELECT COUNT(*) INTO v_cnt FROM emp WHERE empno = v_new_empno;
 END LOOP;
 RETURN v_new_empno;
END;
/
--
-- EDB-SPL function that adds a new clerk to table 'emp'. This function
-- uses package 'emp_admin'.
--
CREATE OR REPLACE FUNCTION hire_clerk (
 p_ename VARCHAR2,
 p_deptno NUMBER
) RETURN NUMBER
IS
 v_empno NUMBER(4);
 v_ename VARCHAR2(10);
 v_job VARCHAR2(9);
 v_mgr NUMBER(4);
 v_hiredate DATE;
 v_sal NUMBER(7,2);
 v_comm NUMBER(7,2);
 v_deptno NUMBER(2);
BEGIN
 v_empno := new_empno;
 INSERT INTO emp VALUES (v_empno, p_ename, 'CLERK', 7782,
 TRUNC(SYSDATE), 950.00, NULL, p_deptno);
 SELECT empno, ename, job, mgr, hiredate, sal, comm, deptno INTO
 v_empno, v_ename, v_job, v_mgr, v_hiredate, v_sal, v_comm, v_deptno
 FROM emp WHERE empno = v_empno;
 DBMS_OUTPUT.PUT_LINE('Department : ' || v_deptno);
 DBMS_OUTPUT.PUT_LINE('Employee No: ' || v_empno);

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

29

 DBMS_OUTPUT.PUT_LINE('Name : ' || v_ename);
 DBMS_OUTPUT.PUT_LINE('Job : ' || v_job);
 DBMS_OUTPUT.PUT_LINE('Manager : ' || v_mgr);
 DBMS_OUTPUT.PUT_LINE('Hire Date : ' || v_hiredate);
 DBMS_OUTPUT.PUT_LINE('Salary : ' || v_sal);
 DBMS_OUTPUT.PUT_LINE('Commission : ' || v_comm);
 RETURN v_empno;
EXCEPTION
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE('The following is SQLERRM:');
 DBMS_OUTPUT.PUT_LINE(SQLERRM);
 DBMS_OUTPUT.PUT_LINE('The following is SQLCODE:');
 DBMS_OUTPUT.PUT_LINE(SQLCODE);
 RETURN -1;
END;
/
--
-- PostgreSQL PL/pgSQL function that adds a new salesman
-- to table 'emp'.
--
CREATE OR REPLACE FUNCTION hire_salesman (
 p_ename VARCHAR,
 p_sal NUMERIC,
 p_comm NUMERIC
) RETURNS NUMERIC
AS $$
DECLARE
 v_empno NUMERIC(4);
 v_ename VARCHAR(10);
 v_job VARCHAR(9);
 v_mgr NUMERIC(4);
 v_hiredate DATE;
 v_sal NUMERIC(7,2);
 v_comm NUMERIC(7,2);
 v_deptno NUMERIC(2);
BEGIN
 v_empno := new_empno();
 INSERT INTO emp VALUES (v_empno, p_ename, 'SALESMAN', 7698,
 CURRENT_DATE, p_sal, p_comm, 30);
 SELECT INTO
 v_empno, v_ename, v_job, v_mgr, v_hiredate, v_sal, v_comm, v_deptno
 empno, ename, job, mgr, hiredate, sal, comm, deptno
 FROM emp WHERE empno = v_empno;
 RAISE INFO 'Department : %', v_deptno;
 RAISE INFO 'Employee No: %', v_empno;
 RAISE INFO 'Name : %', v_ename;
 RAISE INFO 'Job : %', v_job;
 RAISE INFO 'Manager : %', v_mgr;
 RAISE INFO 'Hire Date : %', v_hiredate;
 RAISE INFO 'Salary : %', v_sal;
 RAISE INFO 'Commission : %', v_comm;
 RETURN v_empno;
EXCEPTION
 WHEN OTHERS THEN
 RAISE INFO 'The following is SQLERRM:';
 RAISE INFO '%', SQLERRM;
 RAISE INFO 'The following is SQLSTATE:';
 RAISE INFO '%', SQLSTATE;
 RETURN -1;
END;
$$ LANGUAGE 'plpgsql';
/
--

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

30

-- Rule to INSERT into view 'salesemp'
--
CREATE OR REPLACE RULE salesemp_i AS ON INSERT TO salesemp
DO INSTEAD
 INSERT INTO emp VALUES (NEW.empno, NEW.ename, 'SALESMAN', 7698,
 NEW.hiredate, NEW.sal, NEW.comm, 30);
--
-- Rule to UPDATE view 'salesemp'
--
CREATE OR REPLACE RULE salesemp_u AS ON UPDATE TO salesemp
DO INSTEAD
 UPDATE emp SET empno = NEW.empno,
 ename = NEW.ename,
 hiredate = NEW.hiredate,
 sal = NEW.sal,
 comm = NEW.comm
 WHERE empno = OLD.empno;
--
-- Rule to DELETE from view 'salesemp'
--
CREATE OR REPLACE RULE salesemp_d AS ON DELETE TO salesemp
DO INSTEAD
 DELETE FROM emp WHERE empno = OLD.empno;
--
-- After statement-level trigger that displays a message after
-- an insert, update, or deletion to the 'emp' table. One message
-- per SQL command is displayed.
--
CREATE OR REPLACE TRIGGER user_audit_trig
 AFTER INSERT OR UPDATE OR DELETE ON emp
DECLARE
 v_action VARCHAR2(24);
BEGIN
 IF INSERTING THEN
 v_action := ' added employee(s) on ';
 ELSIF UPDATING THEN
 v_action := ' updated employee(s) on ';
 ELSIF DELETING THEN
 v_action := ' deleted employee(s) on ';
 END IF;
 DBMS_OUTPUT.PUT_LINE('User ' || USER || v_action ||
TO_CHAR(SYSDATE,'YYYY-MM-DD'));
END;
/
--
-- Before row-level trigger that displays employee number and
-- salary of an employee that is about to be added, updated,
-- or deleted in the 'emp' table.
--
CREATE OR REPLACE TRIGGER emp_sal_trig
 BEFORE DELETE OR INSERT OR UPDATE ON emp
 FOR EACH ROW
DECLARE
 sal_diff NUMBER;
BEGIN
 IF INSERTING THEN
 DBMS_OUTPUT.PUT_LINE('Inserting employee ' || :NEW.empno);
 DBMS_OUTPUT.PUT_LINE('..New salary: ' || :NEW.sal);
 END IF;
 IF UPDATING THEN
 sal_diff := :NEW.sal - :OLD.sal;
 DBMS_OUTPUT.PUT_LINE('Updating employee ' || :OLD.empno);
 DBMS_OUTPUT.PUT_LINE('..Old salary: ' || :OLD.sal);

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

31

 DBMS_OUTPUT.PUT_LINE('..New salary: ' || :NEW.sal);
 DBMS_OUTPUT.PUT_LINE('..Raise : ' || sal_diff);
 END IF;
 IF DELETING THEN
 DBMS_OUTPUT.PUT_LINE('Deleting employee ' || :OLD.empno);
 DBMS_OUTPUT.PUT_LINE('..Old salary: ' || :OLD.sal);
 END IF;
END;
/
--
-- Package specification for the 'emp_admin' package.
--
CREATE OR REPLACE PACKAGE emp_admin
IS
 FUNCTION get_dept_name (
 p_deptno NUMBER
) RETURN VARCHAR2;
 FUNCTION update_emp_sal (
 p_empno NUMBER,
 p_raise NUMBER
) RETURN NUMBER;
 PROCEDURE hire_emp (
 p_empno NUMBER,
 p_ename VARCHAR2,
 p_job VARCHAR2,
 p_sal NUMBER,
 p_hiredate DATE,
 p_comm NUMBER,
 p_mgr NUMBER,
 p_deptno NUMBER
);
 PROCEDURE fire_emp (
 p_empno NUMBER
);
END emp_admin;
/
--
-- Package body for the 'emp_admin' package.
--
CREATE OR REPLACE PACKAGE BODY emp_admin
IS
 --
 -- Function that queries the 'dept' table based on the department
 -- number and returns the corresponding department name.
 --
 FUNCTION get_dept_name (
 p_deptno IN NUMBER
) RETURN VARCHAR2
 IS
 v_dname VARCHAR2(14);
 BEGIN
 SELECT dname INTO v_dname FROM dept WHERE deptno = p_deptno;
 RETURN v_dname;
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 DBMS_OUTPUT.PUT_LINE('Invalid department number ' || p_deptno);
 RETURN '';
 END;
 --
 -- Function that updates an employee's salary based on the
 -- employee number and salary increment/decrement passed
 -- as IN parameters. Upon successful completion the function
 -- returns the new updated salary.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

32

 --
 FUNCTION update_emp_sal (
 p_empno IN NUMBER,
 p_raise IN NUMBER
) RETURN NUMBER
 IS
 v_sal NUMBER := 0;
 BEGIN
 SELECT sal INTO v_sal FROM emp WHERE empno = p_empno;
 v_sal := v_sal + p_raise;
 UPDATE emp SET sal = v_sal WHERE empno = p_empno;
 RETURN v_sal;
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 DBMS_OUTPUT.PUT_LINE('Employee ' || p_empno || ' not found');
 RETURN -1;
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE('The following is SQLERRM:');
 DBMS_OUTPUT.PUT_LINE(SQLERRM);
 DBMS_OUTPUT.PUT_LINE('The following is SQLCODE:');
 DBMS_OUTPUT.PUT_LINE(SQLCODE);
 RETURN -1;
 END;
 --
 -- Procedure that inserts a new employee record into the 'emp' table.
 --
 PROCEDURE hire_emp (
 p_empno NUMBER,
 p_ename VARCHAR2,
 p_job VARCHAR2,
 p_sal NUMBER,
 p_hiredate DATE,
 p_comm NUMBER,
 p_mgr NUMBER,
 p_deptno NUMBER
)
 AS
 BEGIN
 INSERT INTO emp(empno, ename, job, sal, hiredate, comm, mgr, deptno)
 VALUES(p_empno, p_ename, p_job, p_sal,
 p_hiredate, p_comm, p_mgr, p_deptno);
 END;
 --
 -- Procedure that deletes an employee record from the 'emp' table based
 -- on the employee number.
 --
 PROCEDURE fire_emp (
 p_empno NUMBER
)
 AS
 BEGIN
 DELETE FROM emp WHERE empno = p_empno;
 END;
END;
/
COMMIT;

The following sections begin the discussion of basic SQL commands.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

33

2.1.2 Creating a New Table

A new table is created by specifying the table name, along with all column names and
their types. The following is a simplified version of the emp sample table with just the
minimal information needed to define a table.

CREATE TABLE emp (
 empno NUMBER(4),
 ename VARCHAR2(10),
 job VARCHAR2(9),
 mgr NUMBER(4),
 hiredate DATE,
 sal NUMBER(7,2),
 comm NUMBER(7,2),
 deptno NUMBER(2)
);

You can enter this into PSQL with line breaks. PSQL will recognize that the command is
not terminated until the semicolon.

White space (i.e., spaces, tabs, and newlines) may be used freely in SQL commands. That
means you can type the command aligned differently than the above, or even all on one
line. Two dashes ("--") introduce comments. Whatever follows them is ignored up to the
end of the line. SQL is case insensitive about key words and identifiers, except when
identifiers are double-quoted to preserve the case (not done above).

VARCHAR2(10) specifies a data type that can store arbitrary character strings up to 10
characters in length. NUMBER(7,2) is a fixed point number with precision 7 and scale 2.
NUMBER(4) is an integer number with precision 4 and scale 0.

Postgres Plus Advanced Server supports the usual SQL data types INTEGER, SMALLINT,
NUMBER, REAL, DOUBLE PRECISION, CHAR, VARCHAR2, DATE, and TIMESTAMP as well
as various synonyms for these types.

If you don’t need a table any longer or want to recreate it differently you can remove it
using the following command:

DROP TABLE tablename;

2.1.3 Populating a Table With Rows

The INSERT statement is used to populate a table with rows:

INSERT INTO emp VALUES (7369,'SMITH','CLERK',7902,'17-DEC-80',800,NULL,20);

Note that all data types use rather obvious input formats. Constants that are not simple
numeric values usually must be surrounded by single quotes ('), as in the example. The
DATE type is actually quite flexible in what it accepts, but for this tutorial we will stick to
the unambiguous format shown here.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

34

The syntax used so far requires you to remember the order of the columns. An alternative
syntax allows you to list the columns explicitly:

INSERT INTO emp(empno,ename,job,mgr,hiredate,sal,comm,deptno)
 VALUES (7499,'ALLEN','SALESMAN',7698,'20-FEB-81',1600,300,30);

You can list the columns in a different order if you wish or even omit some columns, e.g.,
if the commission is unknown:

INSERT INTO emp(empno,ename,job,mgr,hiredate,sal,deptno)
 VALUES (7369,'SMITH','CLERK',7902,'17-DEC-80',800,20);

Many developers consider explicitly listing the columns better style than relying on the
order implicitly.

2.1.4 Querying a Table

To retrieve data from a table, the table is queried. An SQL SELECT statement is used to
do this. The statement is divided into a select list (the part that lists the columns to be
returned), a table list (the part that lists the tables from which to retrieve the data), and an
optional qualification (the part that specifies any restrictions). The following query lists
all columns of all employees in the table in no particular order.

SELECT * FROM emp;

Here, “*” in the select list means all columns. The following is the output from this
query.

 empno | ename | job | mgr | hiredate | sal | comm | deptno
-------+--------+-----------+------+--------------------+---------+---------+--------
 7369 | SMITH | CLERK | 7902 | 17-DEC-80 00:00:00 | 800.00 | | 20
 7499 | ALLEN | SALESMAN | 7698 | 20-FEB-81 00:00:00 | 1600.00 | 300.00 | 30
 7521 | WARD | SALESMAN | 7698 | 22-FEB-81 00:00:00 | 1250.00 | 500.00 | 30
 7566 | JONES | MANAGER | 7839 | 02-APR-81 00:00:00 | 2975.00 | | 20
 7654 | MARTIN | SALESMAN | 7698 | 28-SEP-81 00:00:00 | 1250.00 | 1400.00 | 30
 7698 | BLAKE | MANAGER | 7839 | 01-MAY-81 00:00:00 | 2850.00 | | 30
 7782 | CLARK | MANAGER | 7839 | 09-JUN-81 00:00:00 | 2450.00 | | 10
 7788 | SCOTT | ANALYST | 7566 | 19-APR-87 00:00:00 | 3000.00 | | 20
 7839 | KING | PRESIDENT | | 17-NOV-81 00:00:00 | 5000.00 | | 10
 7844 | TURNER | SALESMAN | 7698 | 08-SEP-81 00:00:00 | 1500.00 | 0.00 | 30
 7876 | ADAMS | CLERK | 7788 | 23-MAY-87 00:00:00 | 1100.00 | | 20
 7900 | JAMES | CLERK | 7698 | 03-DEC-81 00:00:00 | 950.00 | | 30
 7902 | FORD | ANALYST | 7566 | 03-DEC-81 00:00:00 | 3000.00 | | 20
 7934 | MILLER | CLERK | 7782 | 23-JAN-82 00:00:00 | 1300.00 | | 10
(14 rows)

You may specify any arbitrary expression in the select list. For example, you can do:

SELECT ename, sal, sal * 24 AS yearly_salary, deptno FROM emp;

 ename | sal | yearly_salary | deptno
--------+---------+---------------+--------
 SMITH | 800.00 | 19200.00 | 20
 ALLEN | 1600.00 | 38400.00 | 30
 WARD | 1250.00 | 30000.00 | 30

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

35

 JONES | 2975.00 | 71400.00 | 20
 MARTIN | 1250.00 | 30000.00 | 30
 BLAKE | 2850.00 | 68400.00 | 30
 CLARK | 2450.00 | 58800.00 | 10
 SCOTT | 3000.00 | 72000.00 | 20
 KING | 5000.00 | 120000.00 | 10
 TURNER | 1500.00 | 36000.00 | 30
 ADAMS | 1100.00 | 26400.00 | 20
 JAMES | 950.00 | 22800.00 | 30
 FORD | 3000.00 | 72000.00 | 20
 MILLER | 1300.00 | 31200.00 | 10
(14 rows)

Notice how the AS clause is used to relabel the output column. (The AS clause is
optional.)

A query can be qualified by adding a WHERE clause that specifies which rows are wanted.
The WHERE clause contains a Boolean (truth value) expression, and only rows for which
the Boolean expression is true are returned. The usual Boolean operators (AND, OR, and
NOT) are allowed in the qualification. For example, the following retrieves the employees
in department 20 with salaries over $1000.00:

SELECT ename, sal, deptno FROM emp WHERE deptno = 20 AND sal > 1000;

 ename | sal | deptno
-------+---------+--------
 JONES | 2975.00 | 20
 SCOTT | 3000.00 | 20
 ADAMS | 1100.00 | 20
 FORD | 3000.00 | 20
(4 rows)

You can request that the results of a query be returned in sorted order:

SELECT ename, sal, deptno FROM emp ORDER BY ename;

 ename | sal | deptno
--------+---------+--------
 ADAMS | 1100.00 | 20
 ALLEN | 1600.00 | 30
 BLAKE | 2850.00 | 30
 CLARK | 2450.00 | 10
 FORD | 3000.00 | 20
 JAMES | 950.00 | 30
 JONES | 2975.00 | 20
 KING | 5000.00 | 10
 MARTIN | 1250.00 | 30
 MILLER | 1300.00 | 10
 SCOTT | 3000.00 | 20
 SMITH | 800.00 | 20
 TURNER | 1500.00 | 30
 WARD | 1250.00 | 30
(14 rows)

You can request that duplicate rows be removed from the result of a query:

SELECT DISTINCT job FROM emp;

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

36

 job

 ANALYST
 CLERK
 MANAGER
 PRESIDENT
 SALESMAN
(5 rows)

The following section shows how to obtain rows from more than one table in a single
query.

2.1.5 Joins Between Tables

Thus far, our queries have only accessed one table at a time. Queries can access multiple
tables at once, or access the same table in such a way that multiple rows of the table are
being processed at the same time. A query that accesses multiple rows of the same or
different tables at one time is called a join query. For example, say you wish to list all the
employee records together with the name and location of the associated department. To
do that, we need to compare the deptno column of each row of the emp table with the
deptno column of all rows in the dept table, and select the pairs of rows where these
values match. This would be accomplished by the following query:

SELECT emp.ename, emp.sal, dept.deptno, dept.dname, dept.loc FROM emp, dept
WHERE emp.deptno = dept.deptno;

 ename | sal | deptno | dname | loc
--------+---------+--------+------------+----------
 MILLER | 1300.00 | 10 | ACCOUNTING | NEW YORK
 CLARK | 2450.00 | 10 | ACCOUNTING | NEW YORK
 KING | 5000.00 | 10 | ACCOUNTING | NEW YORK
 SCOTT | 3000.00 | 20 | RESEARCH | DALLAS
 JONES | 2975.00 | 20 | RESEARCH | DALLAS
 SMITH | 800.00 | 20 | RESEARCH | DALLAS
 ADAMS | 1100.00 | 20 | RESEARCH | DALLAS
 FORD | 3000.00 | 20 | RESEARCH | DALLAS
 WARD | 1250.00 | 30 | SALES | CHICAGO
 TURNER | 1500.00 | 30 | SALES | CHICAGO
 ALLEN | 1600.00 | 30 | SALES | CHICAGO
 BLAKE | 2850.00 | 30 | SALES | CHICAGO
 MARTIN | 1250.00 | 30 | SALES | CHICAGO
 JAMES | 950.00 | 30 | SALES | CHICAGO
(14 rows)

Observe two things about the result set:

 There is no result row for department 40. This is because there is no matching
entry in the emp table for department 40, so the join ignores the unmatched rows
in the dept table. Shortly we will see how this can be fixed.

 It is more desirable to list the output columns qualified by table name rather than
using * or leaving out the qualification as follows:

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

37

SELECT ename, sal, dept.deptno, dname, loc FROM emp, dept WHERE emp.deptno =
dept.deptno;

Since all the columns had different names (except for deptno which therefore must be
qualified), the parser automatically found out which table they belong to, but it is good
style to fully qualify column names in join queries:

Join queries of the kind seen thus far can also be written in this alternative form:

SELECT emp.ename, emp.sal, dept.deptno, dept.dname, dept.loc FROM emp INNER
JOIN dept ON emp.deptno = dept.deptno;

This syntax is not as commonly used as the one above, but we show it here to help you
understand the following topics.

You will notice that in all the above results for joins no employees were returned that
belonged to department 40 and as a consequence, the record for department 40 never
appears. Now we will figure out how we can get the department 40 record in the results
despite the fact that there are no matching employees. What we want the query to do is to
scan the dept table and for each row to find the matching emp row. If no matching row
is found we want some “empty” values to be substituted for the emp table’s columns.
This kind of query is called an outer join. (The joins we have seen so far are inner joins.)
The command looks like this:

SELECT emp.ename, emp.sal, dept.deptno, dept.dname, dept.loc FROM dept LEFT
OUTER JOIN emp ON emp.deptno = dept.deptno;

 ename | sal | deptno | dname | loc
--------+---------+--------+------------+----------
 MILLER | 1300.00 | 10 | ACCOUNTING | NEW YORK
 CLARK | 2450.00 | 10 | ACCOUNTING | NEW YORK
 KING | 5000.00 | 10 | ACCOUNTING | NEW YORK
 SCOTT | 3000.00 | 20 | RESEARCH | DALLAS
 JONES | 2975.00 | 20 | RESEARCH | DALLAS
 SMITH | 800.00 | 20 | RESEARCH | DALLAS
 ADAMS | 1100.00 | 20 | RESEARCH | DALLAS
 FORD | 3000.00 | 20 | RESEARCH | DALLAS
 WARD | 1250.00 | 30 | SALES | CHICAGO
 TURNER | 1500.00 | 30 | SALES | CHICAGO
 ALLEN | 1600.00 | 30 | SALES | CHICAGO
 BLAKE | 2850.00 | 30 | SALES | CHICAGO
 MARTIN | 1250.00 | 30 | SALES | CHICAGO
 JAMES | 950.00 | 30 | SALES | CHICAGO
 | | 40 | OPERATIONS | BOSTON
(15 rows)

This query is called a left outer join because the table mentioned on the left of the join
operator will have each of its rows in the output at least once, whereas the table on the
right will only have those rows output that match some row of the left table. When a left-
table row is selected for which there is no right-table match, empty (null) values are
substituted for the right-table columns.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

38

An alternative syntax for an outer join is to use the outer join operator, “(+)”, in the join
condition within the WHERE clause. The outer join operator is placed after the column
name of the table for which null values should be substituted for unmatched rows. So for
all the rows in the dept table that have no matching rows in the emp table, Postgres Plus
Advanced Server returns null for any select list expressions containing columns of emp.
Hence the above example could be rewritten as:

SELECT emp.ename, emp.sal, dept.deptno, dept.dname, dept.loc FROM dept, emp
WHERE emp.deptno(+) = dept.deptno;

 ename | sal | deptno | dname | loc
--------+---------+--------+------------+----------
 MILLER | 1300.00 | 10 | ACCOUNTING | NEW YORK
 CLARK | 2450.00 | 10 | ACCOUNTING | NEW YORK
 KING | 5000.00 | 10 | ACCOUNTING | NEW YORK
 SCOTT | 3000.00 | 20 | RESEARCH | DALLAS
 JONES | 2975.00 | 20 | RESEARCH | DALLAS
 SMITH | 800.00 | 20 | RESEARCH | DALLAS
 ADAMS | 1100.00 | 20 | RESEARCH | DALLAS
 FORD | 3000.00 | 20 | RESEARCH | DALLAS
 WARD | 1250.00 | 30 | SALES | CHICAGO
 TURNER | 1500.00 | 30 | SALES | CHICAGO
 ALLEN | 1600.00 | 30 | SALES | CHICAGO
 BLAKE | 2850.00 | 30 | SALES | CHICAGO
 MARTIN | 1250.00 | 30 | SALES | CHICAGO
 JAMES | 950.00 | 30 | SALES | CHICAGO
 | | 40 | OPERATIONS | BOSTON
(15 rows)

We can also join a table against itself. This is called a self join. As an example, suppose
we wish to find the name of each employee along with the name of that employee’s
manager. So we need to compare the mgr column of each emp row to the empno column
of all other emp rows.

SELECT e1.ename || ' works for ' || e2.ename AS "Employees and their
Managers" FROM emp e1, emp e2 WHERE e1.mgr = e2.empno;

 Employees and their Managers

 FORD works for JONES
 SCOTT works for JONES
 WARD works for BLAKE
 TURNER works for BLAKE
 MARTIN works for BLAKE
 JAMES works for BLAKE
 ALLEN works for BLAKE
 MILLER works for CLARK
 ADAMS works for SCOTT
 CLARK works for KING
 BLAKE works for KING
 JONES works for KING
 SMITH works for FORD
(13 rows)

Here, the emp table has been re-labeled as e1 to represent the employee row in the select
list and in the join condition, and also as e2 to represent the matching employee row

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

39

acting as manager in the select list and in the join condition. These kinds of aliases can be
used in other queries to save some typing, for example:

SELECT e.ename, e.mgr, d.deptno, d.dname, d.loc FROM emp e, dept d WHERE
e.deptno = d.deptno;

 ename | mgr | deptno | dname | loc
--------+------+--------+------------+----------
 MILLER | 7782 | 10 | ACCOUNTING | NEW YORK
 CLARK | 7839 | 10 | ACCOUNTING | NEW YORK
 KING | | 10 | ACCOUNTING | NEW YORK
 SCOTT | 7566 | 20 | RESEARCH | DALLAS
 JONES | 7839 | 20 | RESEARCH | DALLAS
 SMITH | 7902 | 20 | RESEARCH | DALLAS
 ADAMS | 7788 | 20 | RESEARCH | DALLAS
 FORD | 7566 | 20 | RESEARCH | DALLAS
 WARD | 7698 | 30 | SALES | CHICAGO
 TURNER | 7698 | 30 | SALES | CHICAGO
 ALLEN | 7698 | 30 | SALES | CHICAGO
 BLAKE | 7839 | 30 | SALES | CHICAGO
 MARTIN | 7698 | 30 | SALES | CHICAGO
 JAMES | 7698 | 30 | SALES | CHICAGO
(14 rows)

This style of abbreviating will be encountered quite frequently.

2.1.6 Aggregate Functions

Like most other relational database products, Postgres Plus Advanced Server supports
aggregate functions. An aggregate function computes a single result from multiple input
rows. For example, there are aggregates to compute the COUNT, SUM, AVG (average), MAX
(maximum), and MIN (minimum) over a set of rows.

As an example, the highest and lowest salaries can be found with the following query:

SELECT MAX(sal) highest_salary, MIN(sal) lowest_salary FROM emp;

 highest_salary | lowest_salary
----------------+---------------
 5000.00 | 800.00
(1 row)

If we wanted to find the employee with the largest salary, we may be tempted to try:

SELECT ename FROM emp WHERE sal = MAX(sal);

ERROR: aggregates not allowed in WHERE clause

This does not work because the aggregate function, MAX, cannot be used in the WHERE
clause. This restriction exists because the WHERE clause determines the rows that will go
into the aggregation stage so it has to be evaluated before aggregate functions are
computed. However, the query can be restated to accomplish the intended result by using
a subquery:

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

40

SELECT ename FROM emp WHERE sal = (SELECT MAX(sal) FROM emp);

 ename

 KING
(1 row)

The subquery is an independent computation that obtains its own result separately from
the outer query.

Aggregates are also very useful in combination with the GROUP BY clause. For example,
the following query gets the highest salary in each department.

SELECT deptno, MAX(sal) FROM emp GROUP BY deptno;

 deptno | max
--------+---------
 10 | 5000.00
 20 | 3000.00
 30 | 2850.00
(3 rows)

This query produces one output row per department. Each aggregate result is computed
over the rows matching that department. These grouped rows can be filtered using the
HAVING clause.

SELECT deptno, MAX(sal) FROM emp GROUP BY deptno HAVING AVG(sal) > 2000;

 deptno | max
--------+---------
 10 | 5000.00
 20 | 3000.00
(2 rows)

This query gives the same results for only those departments that have an average salary
greater than 2000.

Finally, the following query takes into account only the highest paid employees who are
analysts in each department.

SELECT deptno, MAX(sal) FROM emp WHERE job = 'ANALYST' GROUP BY deptno HAVING
AVG(sal) > 2000;

 deptno | max
--------+---------
 20 | 3000.00
(1 row)

There is a subtle distinction between the WHERE and HAVING clauses. The WHERE clause
filters out rows before grouping occurs and aggregate functions are applied. The HAVING
clause applies filters on the results after rows have been grouped and aggregate functions
have been computed for each group.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

41

So in the previous example, only employees who are analysts are considered. From this
subset, the employees are grouped by department and only those groups where the
average salary of analysts in the group is greater than 2000 are in the final result. This is
true of only the group for department 20 and the maximum analyst salary in department
20 is 3000.00.

2.1.7 Updates

The column values of existing rows can be changed using the UPDATE command. For
example, the following sequence of commands shows the before and after results of
giving everyone who is a manager a 10% raise:

SELECT ename, sal FROM emp WHERE job = 'MANAGER';

 ename | sal
-------+---------
 JONES | 2975.00
 BLAKE | 2850.00
 CLARK | 2450.00
(3 rows)

UPDATE emp SET sal = sal * 1.1 WHERE job = 'MANAGER';

SELECT ename, sal FROM emp WHERE job = 'MANAGER';

 ename | sal
-------+---------
 JONES | 3272.50
 BLAKE | 3135.00
 CLARK | 2695.00
(3 rows)

2.1.8 Deletions

Rows can be removed from a table using the DELETE command. For example, the
following sequence of commands shows the before and after results of deleting all
employees in department 20.

SELECT ename, deptno FROM emp;

 ename | deptno
--------+--------
 SMITH | 20
 ALLEN | 30
 WARD | 30
 JONES | 20
 MARTIN | 30
 BLAKE | 30
 CLARK | 10
 SCOTT | 20
 KING | 10
 TURNER | 30
 ADAMS | 20
 JAMES | 30
 FORD | 20
 MILLER | 10

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

42

(14 rows)

DELETE FROM emp WHERE deptno = 20;

SELECT ename, deptno FROM emp;
 ename | deptno
--------+--------
 ALLEN | 30
 WARD | 30
 MARTIN | 30
 BLAKE | 30
 CLARK | 10
 KING | 10
 TURNER | 30
 JAMES | 30
 MILLER | 10
(9 rows)

Be extremely careful of giving a DELETE command without a WHERE clause such as the
following:

DELETE FROM tablename;

This statement will remove all rows from the given table, leaving it completely empty.
The system will not request confirmation before doing this.

2.2 Advanced Concepts

In the previous chapter the basics of using SQL to store and access your data in Postgres
Plus Advanced Server was covered. This section discusses more advanced SQL features
that simplify management and prevent loss or corruption of your data.

2.2.1 Views

Consider the following SELECT command.

SELECT ename, sal, sal * 24 AS yearly_salary, deptno FROM emp;

 ename | sal | yearly_salary | deptno
--------+---------+---------------+--------
 SMITH | 800.00 | 19200.00 | 20
 ALLEN | 1600.00 | 38400.00 | 30
 WARD | 1250.00 | 30000.00 | 30
 JONES | 2975.00 | 71400.00 | 20
 MARTIN | 1250.00 | 30000.00 | 30
 BLAKE | 2850.00 | 68400.00 | 30
 CLARK | 2450.00 | 58800.00 | 10
 SCOTT | 3000.00 | 72000.00 | 20
 KING | 5000.00 | 120000.00 | 10
 TURNER | 1500.00 | 36000.00 | 30
 ADAMS | 1100.00 | 26400.00 | 20
 JAMES | 950.00 | 22800.00 | 30
 FORD | 3000.00 | 72000.00 | 20
 MILLER | 1300.00 | 31200.00 | 10
(14 rows)

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

43

If this is a query that is used repeatedly, a shorthand method of reusing this query without
re-typing the entire SELECT command each time is to create a view as shown below.

CREATE VIEW employee_pay AS SELECT ename, sal, sal * 24 AS yearly_salary,
deptno FROM emp;

The view name, employee_pay, can now be used like an ordinary table name to
perform the query.

SELECT * FROM employee_pay;

 ename | sal | yearly_salary | deptno
--------+---------+---------------+--------
 SMITH | 800.00 | 19200.00 | 20
 ALLEN | 1600.00 | 38400.00 | 30
 WARD | 1250.00 | 30000.00 | 30
 JONES | 2975.00 | 71400.00 | 20
 MARTIN | 1250.00 | 30000.00 | 30
 BLAKE | 2850.00 | 68400.00 | 30
 CLARK | 2450.00 | 58800.00 | 10
 SCOTT | 3000.00 | 72000.00 | 20
 KING | 5000.00 | 120000.00 | 10
 TURNER | 1500.00 | 36000.00 | 30
 ADAMS | 1100.00 | 26400.00 | 20
 JAMES | 950.00 | 22800.00 | 30
 FORD | 3000.00 | 72000.00 | 20
 MILLER | 1300.00 | 31200.00 | 10
(14 rows)

Making liberal use of views is a key aspect of good SQL database design. Views provide
a consistent interface that encapsulate details of the structure of your tables which may
change as your application evolves.

Views can be used in almost any place a real table can be used. Building views upon
other views is not uncommon.

2.2.2 Foreign Keys

Suppose you want to make sure all employees belong to a valid department. This is called
maintaining the referential integrity of your data. In simplistic database systems this
would be implemented (if at all) by first looking at the dept table to check if a matching
record exists, and then inserting or rejecting the new employee record. This approach has
a number of problems and is very inconvenient. Postgres Plus Advanced Server can make
it easier for you.

A modified version of the emp table presented in Section 2.1.2 is shown in this section
with the addition of a foreign key constraint. The modified emp table looks like the
following:

CREATE TABLE emp (
 empno NUMBER(4) NOT NULL CONSTRAINT emp_pk PRIMARY KEY,
 ename VARCHAR2(10),
 job VARCHAR2(9),

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

44

 mgr NUMBER(4),
 hiredate DATE,
 sal NUMBER(7,2),
 comm NUMBER(7,2),
 deptno NUMBER(2) CONSTRAINT emp_ref_dept_fk
 REFERENCES dept(deptno)
);

If an attempt is made to issue the following INSERT command in the sample emp table,
the foreign key constraint, emp_ref_dept_fk, ensures that department 50 exists in the
dept table. Since it does not, the command is rejected.

INSERT INTO emp VALUES (8000,'JONES','CLERK',7902,'17-AUG-07',1200,NULL,50);

ERROR: insert or update on table "emp" violates foreign key constraint
"emp_ref_dept_fk"
DETAIL: Key (deptno)=(50) is not present in table "dept".

The behavior of foreign keys can be finely tuned to your application. Making correct use
of foreign keys will definitely improve the quality of your database applications, so you
are strongly encouraged to learn more about them.

2.2.3 The ROWNUM Pseudo-Column

ROWNUM is a pseudo-column that is assigned an incremental, unique integer value for
each row based on the order the rows were retrieved from a query. Therefore, the first
row retrieved will have ROWNUM of 1; the second row will have ROWNUM of 2 and so on.

This feature can be used to limit the number of rows retrieved by a query. This is
demonstrated in the following example:

SELECT empno, ename, job FROM emp WHERE ROWNUM < 5;

 empno | ename | job
-------+-------+----------
 7369 | SMITH | CLERK
 7499 | ALLEN | SALESMAN
 7521 | WARD | SALESMAN
 7566 | JONES | MANAGER
(4 rows)

The ROWNUM value is assigned to each row before any sorting of the result set takes place.
Thus, the result set is returned in the order given by the ORDER BY clause, but the
ROWNUM values may not necessarily be in ascending order as shown in the following
example:

SELECT ROWNUM, empno, ename, job FROM emp WHERE ROWNUM < 5 ORDER BY ename;

 rownum | empno | ename | job
--------+-------+-------+----------
 2 | 7499 | ALLEN | SALESMAN
 4 | 7566 | JONES | MANAGER
 1 | 7369 | SMITH | CLERK

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

45

 3 | 7521 | WARD | SALESMAN
(4 rows)

The following example shows how a sequence number can be added to every row in the
jobhist table. First a new column named, seqno, is added to the table and then seqno
is set to ROWNUM in the UPDATE command.

ALTER TABLE jobhist ADD seqno NUMBER(3);
UPDATE jobhist SET seqno = ROWNUM;

The following SELECT command shows the new seqno values.

SELECT seqno, empno, TO_CHAR(startdate,'DD-MON-YY') AS start, job FROM
jobhist;

 seqno | empno | start | job
-------+-------+-----------+-----------
 1 | 7369 | 17-DEC-80 | CLERK
 2 | 7499 | 20-FEB-81 | SALESMAN
 3 | 7521 | 22-FEB-81 | SALESMAN
 4 | 7566 | 02-APR-81 | MANAGER
 5 | 7654 | 28-SEP-81 | SALESMAN
 6 | 7698 | 01-MAY-81 | MANAGER
 7 | 7782 | 09-JUN-81 | MANAGER
 8 | 7788 | 19-APR-87 | CLERK
 9 | 7788 | 13-APR-88 | CLERK
 10 | 7788 | 05-MAY-90 | ANALYST
 11 | 7839 | 17-NOV-81 | PRESIDENT
 12 | 7844 | 08-SEP-81 | SALESMAN
 13 | 7876 | 23-MAY-87 | CLERK
 14 | 7900 | 03-DEC-81 | CLERK
 15 | 7900 | 15-JAN-83 | CLERK
 16 | 7902 | 03-DEC-81 | ANALYST
 17 | 7934 | 23-JAN-82 | CLERK
(17 rows)

2.2.4 Synonyms

A synonym is an identifier that can be used to reference another database object in a SQL
statement. The types of database objects for which a synonym may be created are a table,
view, sequence, or another synonym.

There are two types of synonyms - public synonyms and private synonyms. A public
synonym is a synonym that is globally available in a database and can be referenced by
any user in the database cluster. A public synonym does not belong to any schema. A
private synonym is one that does belong to a specific schema. Postgres Plus Advanced
Server currently supports only public synonyms.

2.2.4.1 Creating a Public Synonym

The command, CREATE PUBLIC SYNONYM, is used to create a public synonym. The
public synonym must be assigned an identifier that is not already used for an existing
public synonym. For example:

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

46

CREATE PUBLIC SYNONYM personnel FOR enterprisedb.emp;

Now, the emp table in the enterprisedb schema can be referenced in any SQL
statement, both DDL and DML, by using the synonym, personnel:

INSERT INTO personnel VALUES (8142,'ANDERSON','CLERK',7902,'17-DEC-06',1300,NULL,20);

SELECT * FROM personnel;

 empno | ename | job | mgr | hiredate | sal | comm | deptno
-------+----------+-----------+------+--------------------+---------+---------+--------
 7369 | SMITH | CLERK | 7902 | 17-DEC-80 00:00:00 | 800.00 | | 20
 7499 | ALLEN | SALESMAN | 7698 | 20-FEB-81 00:00:00 | 1600.00 | 300.00 | 30
 7521 | WARD | SALESMAN | 7698 | 22-FEB-81 00:00:00 | 1250.00 | 500.00 | 30
 7566 | JONES | MANAGER | 7839 | 02-APR-81 00:00:00 | 2975.00 | | 20
 7654 | MARTIN | SALESMAN | 7698 | 28-SEP-81 00:00:00 | 1250.00 | 1400.00 | 30
 7698 | BLAKE | MANAGER | 7839 | 01-MAY-81 00:00:00 | 2850.00 | | 30
 7782 | CLARK | MANAGER | 7839 | 09-JUN-81 00:00:00 | 2450.00 | | 10
 7788 | SCOTT | ANALYST | 7566 | 19-APR-87 00:00:00 | 3000.00 | | 20
 7839 | KING | PRESIDENT | | 17-NOV-81 00:00:00 | 5000.00 | | 10
 7844 | TURNER | SALESMAN | 7698 | 08-SEP-81 00:00:00 | 1500.00 | 0.00 | 30
 7876 | ADAMS | CLERK | 7788 | 23-MAY-87 00:00:00 | 1100.00 | | 20
 7900 | JAMES | CLERK | 7698 | 03-DEC-81 00:00:00 | 950.00 | | 30
 7902 | FORD | ANALYST | 7566 | 03-DEC-81 00:00:00 | 3000.00 | | 20
 7934 | MILLER | CLERK | 7782 | 23-JAN-82 00:00:00 | 1300.00 | | 10
 8142 | ANDERSON | CLERK | 7902 | 17-DEC-06 00:00:00 | 1300.00 | | 20
(15 rows)

See the

 CREATE PUBLIC SYNONYM command additional information.

2.2.4.2 Deleting a Public Synonym

To delete a public synonym, use the command, DROP PUBLIC SYNONYM. In the
following example, the synonym, personnel, created in the previous example is
dropped.

DROP PUBLIC SYNONYM personnel;

See the DROP PUBLIC SYNONYM command for additional information.

2.2.4.3 Public Synonym Namespace

The name given to a public synonym can be any valid identifier as long as there is no
other public synonym in the same database with the same name. This means, that a public
synonym can have the same name as an existing schema, table, view, or any other
database object.

Thus, it is important to choose public synonym names carefully as unexpected results
may occur if the same name is used by other objects in the search path as explained in the
next section.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

47

2.2.4.4 Public Synonym Name Resolution and the Search Path

Name resolution is the process of determining exactly which particular object is to be
acted upon in a SQL command. If an object is fully-qualified by its schema name, there is
no ambiguity. The desired object is the one belonging to the named schema. However, if
an object is not qualified by its schema name, then there is a series of steps to determine
where the desired object resides.

If an unqualified name appears in a SQL command, and only if that name does not appear
in any schema to which the user has access in the current search path, the public
synonyms in the database are examined to see if this name is a public synonym. If so,
then the name resolves to the object underlying the public synonym.

As a consequence, if there is a public synonym defined which is intended for use in a
SQL command, but the current search path happens to contain another identically named
object in a schema accessible by the user, the name will resolve to the object in the search
path and not to the public synonym.

2.2.4.5 Public Synonyms and Privileges

Any user can create a public synonym. There are no special privileges for public
synonym creation. Any user can reference a public synonym in a SQL command.
However, when the SQL command is executed, the privileges of the current user are
checked against the synonym’s underlying database object and if the user does not have
the proper permissions for that object, the SQL command will fail.

2.2.5 Hierarchical Queries

A hierarchical query is a type of query that returns the rows of the result set in a
hierarchical order based upon data forming a parent-child relationship. A hierarchy is
typically represented by an inverted tree structure. The tree is comprised of
interconnected nodes. Each node may be connected to none, one, or multiple child nodes.
Each node is connected to one parent node except for the top node which has no parent.
This node is the root node. Each tree has exactly one root node. Nodes that don’t have
any children are called leaf nodes. A tree always has at least one leaf node - e.g., the
trivial case where the tree is comprised of a single node. In this case it is both the root and
the leaf.

In a hierarchical query the rows of the result set represent the nodes of one or more trees.

Note: It is possible that a single, given row may appear in more than one tree and thus
appear more than once in the result set.

The hierarchical relationship in a query is described by the CONNECT BY clause which
forms the basis of the order in which rows are returned in the result set. The context of

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

48

where the CONNECT BY clause and its associated optional clauses appear in the SELECT
command is shown below.

SELECT select_list FROM table_expression [WHERE ...]
 [START WITH start_expression]
 CONNECT BY { PRIOR parent_expr = child_expr |
 child_expr = PRIOR parent_expr }
 [ORDER SIBLINGS BY column1 [ASC | DESC]
 [, column2 [ASC | DESC]] ...
 [GROUP BY ...]
 [HAVING ...]
 [other ...]

select_list is one or more expressions that comprise the fields of the result set.
table_expression is one or more tables or views from which the rows of the result set
originate. other is any additional legal SELECT command clauses. The clauses pertinent
to hierarchical queries, START WITH, CONNECT BY, and ORDER SIBLINGS BY are
described in the following sections.

2.2.5.1 Defining the Parent/Child Relationship

For any given row, its parent and its children are determined by the CONNECT BY clause.
The CONNECT BY clause must consist of two expressions compared with the equals (=)
operator. In addition, one of these two expressions must be preceded by the keyword,
PRIOR.

For any given row, to determine its children:

1. Evaluate parent_expr on the given row
2. Evaluate child_expr on any other row resulting from the evaluation of

table_expression
3. If parent_expr = child_expr, then this row is a child node of the given

parent row
4. Repeat the process for all remaining rows in table_expression. All rows

that satisfy the equation in step 3 are the children nodes of the given parent row.

Note: The evaluation process to determine if a row is a child node occurs on every row
returned by table_expression before the WHERE clause is applied to
table_expression.

By iteratively repeating this process treating each child node found in the prior steps as a
parent, an inverted tree of nodes is constructed. The process is complete when the final
set of child nodes has no children of their own - these are the leaf nodes.

A SELECT command that includes a CONNECT BY clause typically includes the START
WITH clause. The START WITH clause determines the rows that are to be the root nodes -

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

49

i.e., the rows that are the initial parent nodes upon which the algorithm described
previously is to be applied. This is further explained in the following section.

2.2.5.2 Selecting the Root Nodes

The START WITH clause is used to determine the row(s) selected by
table_expression that are to be used as the root nodes. All rows selected by
table_expression where start_expression evaluates to “true” become a root
node of a tree. Thus, the number of potential trees in the result set is equal to the number
of root nodes. As a consequence, if the START WITH clause is omitted, then every row
returned by table_expression is a root of its own tree.

2.2.5.3 Organization Tree in the Sample Application

Consider the emp table of the sample application. The rows of the emp table form a
hierarchy based upon the mgr column which contains the employee number of the
employee’s manager. Each employee has at most, one manager. KING is the president of
the company so he has no manager, therefore KING’s mgr column is null. Also, it is
possible for an employee to act as a manager for more than one employee. This
relationship forms a typical, tree-structured, hierarchical organization chart as illustrated
below.

Figure 2 Employee Organization Hierarchy

To form a hierarchical query based upon this relationship, the SELECT command includes
the clause, CONNECT BY PRIOR empno = mgr. For example, given the company
president, KING, with employee number 7839, any employee whose mgr column is 7839
is a direct report of KING which is true for JONES, BLAKE, and CLARK (these are the

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

50

child nodes of KING). Similarly, for employee, JONES, any other employee with mgr
column equal to 7566 is a child node of JONES - these are SCOTT and FORD in this
example.

The top of the organization chart is KING so there is one root node in this tree. The
START WITH mgr IS NULL clause selects only KING as the initial root node.

The complete SELECT command is shown below.

SELECT ename, empno, mgr
FROM emp
START WITH mgr IS NULL
CONNECT BY PRIOR empno = mgr;

The rows in the query output traverse each branch from the root to leaf moving in a top-
to-bottom, left-to-right order. Below is the output from this query.

ename | empno | mgr
--------+-------+------
 KING | 7839 |
 JONES | 7566 | 7839
 SCOTT | 7788 | 7566
 ADAMS | 7876 | 7788
 FORD | 7902 | 7566
 SMITH | 7369 | 7902
 BLAKE | 7698 | 7839
 ALLEN | 7499 | 7698
 WARD | 7521 | 7698
 MARTIN | 7654 | 7698
 TURNER | 7844 | 7698
 JAMES | 7900 | 7698
 CLARK | 7782 | 7839
 MILLER | 7934 | 7782
(14 rows)

2.2.5.4 Node Level

LEVEL is a pseudo-column that can be used wherever a column can appear in the SELECT
command. For each row in the result set, LEVEL returns a non-zero integer value
designating the depth in the hierarchy of the node represented by this row. The LEVEL for
root nodes is 1. The LEVEL for direct children of root nodes is 2, and so on.

The following query is a modification of the previous query with the addition of the
LEVEL pseudo-column. In addition, using the LEVEL value, the employee names are
indented to further emphasize the depth in the hierarchy of each row.

SELECT LEVEL, LPAD (' ', 2 * (LEVEL - 1)) || ename "employee", empno, mgr
FROM emp START WITH mgr IS NULL
CONNECT BY PRIOR empno = mgr;

The output from this query follows.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

51

level | employee | empno | mgr
-------+-------------+-------+------
 1 | KING | 7839 |
 2 | JONES | 7566 | 7839
 3 | SCOTT | 7788 | 7566
 4 | ADAMS | 7876 | 7788
 3 | FORD | 7902 | 7566
 4 | SMITH | 7369 | 7902
 2 | BLAKE | 7698 | 7839
 3 | ALLEN | 7499 | 7698
 3 | WARD | 7521 | 7698
 3 | MARTIN | 7654 | 7698
 3 | TURNER | 7844 | 7698
 3 | JAMES | 7900 | 7698
 2 | CLARK | 7782 | 7839
 3 | MILLER | 7934 | 7782
(14 rows)

2.2.5.5 Ordering the Siblings

Nodes that share a common parent and are at the same level are called siblings. For
example in the above output, employees ALLEN, WARD, MARTIN, TURNER, and
JAMES are siblings since they are all at level three with parent, BLAKE. JONES,
BLAKE, and CLARK are siblings since they are at level two and KING is their common
parent.

The result set can be ordered so the siblings appear in ascending or descending order by
selected column value(s) using the ORDER SIBLINGS BY clause. This is a special case
of the ORDER BY clause that can be used only with hierarchical queries.

The previous query is further modified with the addition of ORDER SIBLINGS BY
ename ASC.

SELECT LEVEL, LPAD (' ', 2 * (LEVEL - 1)) || ename "employee", empno, mgr
FROM emp START WITH mgr IS NULL
CONNECT BY PRIOR empno = mgr
ORDER SIBLINGS BY ename ASC;

The output from the prior query is now modified so the siblings appear in ascending
order by name. Siblings BLAKE, CLARK, and JONES are now alphabetically arranged
under KING. Siblings ALLEN, JAMES, MARTIN, TURNER, and WARD are
alphabetically arranged under BLAKE, and so on.

level | employee | empno | mgr
-------+-------------+-------+------
 1 | KING | 7839 |
 2 | BLAKE | 7698 | 7839
 3 | ALLEN | 7499 | 7698
 3 | JAMES | 7900 | 7698
 3 | MARTIN | 7654 | 7698
 3 | TURNER | 7844 | 7698
 3 | WARD | 7521 | 7698
 2 | CLARK | 7782 | 7839
 3 | MILLER | 7934 | 7782
 2 | JONES | 7566 | 7839

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

52

 3 | FORD | 7902 | 7566
 4 | SMITH | 7369 | 7902
 3 | SCOTT | 7788 | 7566
 4 | ADAMS | 7876 | 7788
(14 rows)

This final example adds the WHERE clause and starts with three root nodes. After the node
tree is constructed, the WHERE clause filters out rows in the tree to form the result set.

SELECT LEVEL, LPAD (' ', 2 * (LEVEL - 1)) || ename "employee", empno, mgr
FROM emp WHERE mgr IN (7839, 7782, 7902, 7788)
START WITH ename IN ('BLAKE','CLARK','JONES')
CONNECT BY PRIOR empno = mgr
ORDER SIBLINGS BY ename ASC;

The output from the query shows three root nodes (level one) - BLAKE, CLARK, and
JONES. In addition, rows that do not satisfy the WHERE clause have been eliminated from
the output.

level | employee | empno | mgr
-------+-----------+-------+------
 1 | BLAKE | 7698 | 7839
 1 | CLARK | 7782 | 7839
 2 | MILLER | 7934 | 7782
 1 | JONES | 7566 | 7839
 3 | SMITH | 7369 | 7902
 3 | ADAMS | 7876 | 7788
(6 rows)

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

53

3 The SQL Language
This chapter describes the subset of the Postgres Plus Advanced Server SQL language
that is Oracle compatible. The SQL syntax, commands, data types, functions, etc.
described in this chapter work in both Postgres Plus Advanced Server and in Oracle.

Other aspects of the Postgres Plus Advanced Server SQL language that are not Oracle
compatible can be found in the Postgres Plus documentation set. The Postgres Plus
documentation set includes syntax and commands for extended functionality not included
in this guide.

This chapter is organized into the following sections:

• General discussion of Postgres Plus Advanced Server SQL syntax and language
elements

• Data types
• Summary of SQL commands
• Built-in functions

3.1 SQL Syntax

This section describes the general syntax of SQL. It forms the foundation for
understanding the following chapters that include detail about how the SQL commands
are applied to define and modify data.

3.1.1 Lexical Structure

SQL input consists of a sequence of commands. A command is composed of a sequence
of tokens, terminated by a semicolon (;). The end of the input stream also terminates a
command. Which tokens are valid depends on the syntax of the particular command.

A token can be a key word, an identifier, a quoted identifier, a literal (or constant), or a
special character symbol. Tokens are normally separated by whitespace (space, tab, new
line), but need not be if there is no ambiguity (which is generally only the case if a
special character is adjacent to some other token type).

Additionally, comments can occur in SQL input. They are not tokens - they are
effectively equivalent to whitespace.

For example, the following is (syntactically) valid SQL input:

SELECT * FROM MY_TABLE;
UPDATE MY_TABLE SET A = 5;
INSERT INTO MY_TABLE VALUES (3, 'hi there');

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

54

This is a sequence of three commands, one per line (although this is not required; more
than one command can be on a line, and commands can usually be split across lines).

The SQL syntax is not very consistent regarding what tokens identify commands and
which are operands or parameters. The first few tokens are generally the command name,
so in the above example we would usually speak of a SELECT, an UPDATE, and an
INSERT command. But for instance the UPDATE command always requires a SET token
to appear in a certain position, and this particular variation of INSERT also requires a
VALUES token in order to be complete. The precise syntax rules for each command are
described in Section 3.3.

3.1.2 Identifiers and Key Words

Tokens such as SELECT, UPDATE, or VALUES in the example above are examples of key
words, that is, words that have a fixed meaning in the SQL language. The tokens
MY_TABLE and A are examples of identifiers. They identify names of tables, columns, or
other database objects, depending on the command they are used in. Therefore they are
sometimes simply called, “names”. Key words and identifiers have the same lexical
structure, meaning that one cannot know whether a token is an identifier or a key word
without knowing the language.

SQL identifiers and key words must begin with a letter (a-z or A-Z). Subsequent
characters in an identifier or key word can be letters, underscores, digits (0-9), dollar
signs ($), or number signs (#).

Identifier and key word names are case insensitive. Therefore

UPDATE MY_TABLE SET A = 5;

can equivalently be written as:

uPDaTE my_TabLE SeT a = 5;

A convention often used is to write key words in upper case and names in lower case,
e.g.,

UPDATE my_table SET a = 5;

There is a second kind of identifier: the delimited identifier or quoted identifier. It is
formed by enclosing an arbitrary sequence of characters in double-quotes ("). A
delimited identifier is always an identifier, never a key word. So "select" could be
used to refer to a column or table named "select", whereas an unquoted select would
be taken as a key word and would therefore provoke a parse error when used where a
table or column name is expected. The example can be written with quoted identifiers
like this:

UPDATE "my_table" SET "a" = 5;

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

55

Quoted identifiers can contain any character, except the character with code zero. (To
include a double quote, write two double quotes.) This allows constructing table or
column names that would otherwise not be possible, such as ones containing spaces or
ampersands. The length limitation still applies.

Quoting an identifier also makes it case-sensitive, whereas unquoted names are always
folded to lower case. For example, the identifiers FOO, foo, and "foo" are considered
the same by Postgres Plus Advanced Server, but "Foo" and "FOO" are different from
these three and each other. (The folding of unquoted names to lower case in Postgres Plus
Advanced Server is an area of Oracle-incompatibility. In Oracle unquoted names are
folded to upper case. Thus, foo is equivalent to "FOO" not "foo" in Oracle. If you want
to write portable applications you are advised to always quote a particular name or never
quote it.)

3.1.3 Constants

The kinds of implicitly-typed constants in Postgres Plus Advanced Server are strings and
numbers. Constants can also be specified with explicit types, which can enable more
accurate representation and more efficient handling by the system. These alternatives are
discussed in the following subsections.

3.1.3.1 String Constants

A string constant in SQL is an arbitrary sequence of characters bounded by single quotes
('), for example 'This is a string'. To include a single-quote character within a
string constant, write two adjacent single quotes, e.g. 'Dianne''s horse'. Note that
this is not the same as a double-quote character (").

3.1.3.2 Numeric Constants

Numeric constants are accepted in these general forms:

digits
digits.[digits][e[+-]digits]
[digits].digits[e[+-]digits]
digitse[+-]digits

where digits is one or more decimal digits (0 through 9). At least one digit must be
before or after the decimal point, if one is used. At least one digit must follow the
exponent marker (e), if one is present. There may not be any spaces or other characters
embedded in the constant. Note that any leading plus or minus sign is not actually
considered part of the constant; it is an operator applied to the constant.

These are some examples of valid numeric constants:

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

56

42
3.5
4.
.001
5e2
1.925e-3

A numeric constant that contains neither a decimal point nor an exponent is initially
presumed to be type INTEGER if its value fits in type INTEGER (32 bits); otherwise it is
presumed to be type BIGINT if its value fits in type BIGINT (64 bits); otherwise it is
taken to be type NUMBER. Constants that contain decimal points and/or exponents are
always initially presumed to be type NUMBER.

The initially assigned data type of a numeric constant is just a starting point for the type
resolution algorithms. In most cases the constant will be automatically coerced to the
most appropriate type depending on context. When necessary, you can force a numeric
value to be interpreted as a specific data type by casting it as described in the following
section.

3.1.3.3 Constants of Other Types

A constant of an arbitrary type can be entered using the following notation:

CAST('string' AS type)

The string constant’s text is passed to the input conversion routine for the type called
type. The result is a constant of the indicated type. The explicit type cast may be omitted
if there is no ambiguity as to the type the constant must be (for example, when it is
assigned directly to a table column), in which case it is automatically coerced.

CAST can also be used to specify runtime type conversions of arbitrary expressions.

3.1.4 Comments

A comment is an arbitrary sequence of characters beginning with double dashes and
extending to the end of the line, e.g.:

-- This is a standard SQL comment

Alternatively, C-style block comments can be used:

/* multiline comment
 * block
 */

where the comment begins with /* and extends to the matching occurrence of */.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

57

A comment is removed from the input stream before further syntax analysis and is
effectively replaced by whitespace.

3.2 Data Types

The following table shows the built-in general-purpose data types.

Table 3-1 Data Types

Name Alias Description
BLOB LONG RAW, RAW(n) Binary data
BOOLEAN Logical Boolean (true/false)

CHAR [(n)] CHARACTER [(n)] Fixed-length character string of n
characters

CLOB LONG, LONG VARCHAR Long character string
DATE TIMESTAMP(0) Date and time to the second

DOUBLE PRECISION FLOAT,
FLOAT(25) – FLOAT(53) Double precision floating-point number

INTEGER INT, BINARY_INTEGER Signed four-byte integer

NUMBER DEC, DECIMAL, NUMERIC Exact numeric with optional decimal
places

NUMBER(p [, s])
DEC(p [, s]),
DECIMAL(p [, s]),
NUMERIC(p [, s])

Exact numeric of maximum precision,
p, and optional scale, s

REAL FLOAT(1) – FLOAT(24) Single precision floating-point number

TIMESTAMP [(p)] Date and time with optional, fractional
second precision, p

VARCHAR2(n)
CHAR VARYING(n), CHARACTER
VARYING(n), VARCHAR(n)

Variable-length character string with a
maximum length of n characters

The following sections describe each data type in more detail.

3.2.1 Numeric Types

Numeric types consist of four-byte integers, four-byte and eight-byte floating-point
numbers, and fixed-precision decimals. The following table lists the available types.

Table 3-2 Numeric Types

Name Storage
Size Description Range

INTEGER 4 bytes Usual choice for integer -2,147,483,648 to
+2,147,483,647

NUMBER Variable User-specified precision, exact Up to 1000 digits of
precision

NUMBER(p [, s]) Variable Exact numeric of maximum precision, p,
and optional scale, s

Up to 1000 digits of
precision

REAL 4 bytes Variable-precision, inexact 6 decimal digits
precision

DOUBLE PRECISION 8 bytes Variable-precision, inexact 15 decimal digits

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

58

Name Storage
Size Description Range

precision

The following sections describe the types in detail.

3.2.1.1 Integer Type

The type, INTEGER, stores whole numbers, that is, numbers without fractional
components, of various ranges. Attempts to store values outside of the allowed range will
result in an error.

3.2.1.2 Arbitrary Precision Numbers

The type, NUMBER, can store practically an unlimited number of digits of precision and
perform calculations exactly. It is especially recommended for storing monetary amounts
and other quantities where exactness is required. However, the NUMBER type is very slow
compared to the floating-point types described in the next section.

In what follows we use these terms: The scale of a NUMBER is the count of decimal digits
in the fractional part, to the right of the decimal point. The precision of a NUMBER is the
total count of significant digits in the whole number, that is, the number of digits to both
sides of the decimal point. So the number 23.5141 has a precision of 6 and a scale of 4.
Integers can be considered to have a scale of zero.

Both the precision and the scale of the NUMBER type can be configured. To declare a
column of type NUMBER use the syntax

NUMBER(precision, scale)

The precision must be positive, the scale zero or positive. Alternatively,

NUMBER(precision)

selects a scale of 0. Specifying

NUMBER

without any precision or scale creates a column in which numeric values of any precision
and scale can be stored, up to the implementation limit on precision. A column of this
kind will not coerce input values to any particular scale, whereas NUMBER columns with a
declared scale will coerce input values to that scale. (The SQL standard requires a default
scale of 0, i.e., coercion to integer precision. For maximum portability, it is best to
specify the precision and scale explicitly.)

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

59

If the precision or scale of a value is greater than the declared precision or scale of a
column, the system will attempt to round the value. If the value cannot be rounded so as
to satisfy the declared limits, an error is raised.

3.2.1.3 Floating-Point Types

The data types REAL and DOUBLE PRECISION are inexact, variable-precision numeric
types. In practice, these types are usually implementations of IEEE Standard 754 for
Binary Floating-Point Arithmetic (single and double precision, respectively), to the extent
that the underlying processor, operating system, and compiler support it.

Inexact means that some values cannot be converted exactly to the internal format and are
stored as approximations, so that storing and printing back out a value may show slight
discrepancies. Managing these errors and how they propagate through calculations is the
subject of an entire branch of mathematics and computer science and will not be
discussed further here, except for the following points:

If you require exact storage and calculations (such as for monetary amounts), use the
NUMBER type instead.

If you want to do complicated calculations with these types for anything important,
especially if you rely on certain behavior in boundary cases (infinity, underflow), you
should evaluate the implementation carefully.

Comparing two floating-point values for equality may or may not work as expected.

On most platforms, the REAL type has a range of at least 1E-37 to 1E+37 with a precision
of at least 6 decimal digits. The DOUBLE PRECISION type typically has a range of
around 1E-307 to 1E+308 with a precision of at least 15 digits. Values that are too large
or too small will cause an error. Rounding may take place if the precision of an input
number is too high. Numbers too close to zero that are not representable as distinct from
zero will cause an underflow error.

Postgres Plus Advanced Server also supports the SQL standard notations FLOAT and
FLOAT(p) for specifying inexact numeric types. Here, p specifies the minimum
acceptable precision in binary digits. Postgres Plus Advanced Server accepts FLOAT(1)
to FLOAT(24) as selecting the REAL type, while FLOAT(25) to FLOAT(53) as selecting
DOUBLE PRECISION. Values of p outside the allowed range draw an error. FLOAT with
no precision specified is taken to mean DOUBLE PRECISION.

3.2.2 Character Types

The following table shows the general-purpose character types available in Postgres Plus
Advanced Server.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

60

Table 3-3 Character Types

Name Description
CHAR [(n)] Fixed-length, blank-padded
CLOB Large variable-length up to 1 GB
VARCHAR2(n) Variable-length with limit

The two primary character types are CHAR(n) and VARCHAR2(n), where n is a positive
integer. Both of these types can store strings up to n characters in length. In the case of
type CHAR, n defaults to 1 if omitted. An attempt to store a longer string into a column of
these types will result in an error, unless the excess characters are all spaces, in which
case the string will be truncated to the maximum length. If the string to be stored is
shorter than the declared length, values of type CHAR will be space-padded; values of type
VARCHAR2 will simply store the shorter string.

If one explicitly casts a value to VARCHAR2(n) or CHAR(n), then an over-length value
will be truncated to n characters without raising an error. (This too is required by the
SQL standard.)

Values of type CHAR are physically padded with spaces to the specified width n, and are
stored and displayed that way. However, the padding spaces are treated as semantically
insignificant. Trailing spaces are disregarded when comparing two values of type CHAR,
and they will be removed when converting a CHAR value to one of the other string types.
Note that trailing spaces are semantically significant in VARCHAR2 values.

A third character type used for storing large character strings is the CLOB data type. CLOB
is semantically equivalent to VARCHAR2 except no length limit is specified. Generally,
use CLOB over VARCHAR2 if the maximum string length is not known.

The longest possible character string that can be stored in a CLOB type is about 1 GB.

The storage requirement for data of these three types is the actual string plus 1 byte if the
string is less than 127 bytes, or 4 bytes if the string is 127 bytes or greater. In the case of
CHAR, the padding also requires storage. Long strings are compressed by the system
automatically, so the physical requirement on disk may be less. Long values are also
stored in background tables so they do not interfere with rapid access to the shorter
column values.

The database character set determines the character set used to store textual values.

3.2.3 Binary Data

The BLOB data type allows storage of binary strings.

Table 3-4 Binary Large Object

Name Storage Size Description

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

61

Name Storage Size Description

BLOB
The actual binary string plus 1 byte if the
binary string is less than 127 bytes, or 4 bytes
if the binary string is 127 bytes or greater.

Variable-length binary string

A binary string is a sequence of octets (or bytes). Binary strings are distinguished from
characters strings by two characteristics: First, binary strings specifically allow storing
octets of value zero and other "non-printable" octets (defined as octets outside the range
32 to 126). Second, operations on binary strings process the actual bytes, whereas the
encoding and processing of character strings depends on locale settings.

3.2.4 Date/Time Types

The following discussion of the date/time types assumes that the configuration parameter,
edb_redwood_date, has been set to true whenever a table is created or altered.

Postgres Plus Advanced Server supports the date/time types shown in the following table.

Table 3-5 Date/Time Types

Name Storage
Size Description Low Value High Value Resolution

DATE 8 bytes Date and time 4713 BC 5874897 AD 1 second
TIMESTAMP [(p)] 8 bytes Date and time 4713 BC 5874897 AD 1 microsecond

When DATE appears as the data type of a column in the data definition language (DDL)
commands, CREATE TABLE or ALTER TABLE, it is translated to TIMESTAMP(0) at the
time the table definition is stored in the database. Thus, a time component will also be
stored in the column along with the date.

When DATE appears as a data type of a variable in an SPL declaration section, or the data
type of a formal parameter in an SPL procedure or an SPL function, or the return type of
an SPL function, it is always translated to TIMESTAMP(0) and thus can handle a time
component if present.

TIMESTAMP accepts an optional precision value p which specifies the number of
fractional digits retained in the seconds field. The allowed range of p is from 0 to 6 with
the default being 6.

When TIMESTAMP values are stored as double precision floating-point numbers
(currently the default), the effective limit of precision may be less than 6. TIMESTAMP
values are stored as seconds before or after midnight 2000-01-01. Microsecond precision
is achieved for dates within a few years of 2000-01-01, but the precision degrades for
dates further away. When TIMESTAMP values are stored as eight-byte integers (a
compile-time option), microsecond precision is available over the full range of values.
However eight-byte integer timestamps have a more limited range of dates than shown
above: from 4713 BC up to 294276 AD.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

62

3.2.4.1 Date/Time Input

Date and time input is accepted in ISO 8601 SQL-compatible format, the Oracle default
dd-MON-yy format, as well as a number of other formats provided that there is no
ambiguity as to which component is the year, month, and day. However, use of the
TO_DATE function is strongly recommended to avoid ambiguities. See Section 3.5.6.

Any date or time literal input needs to be enclosed in single quotes, like text strings. The
following SQL standard syntax is also accepted:

type 'value'

type is either DATE or TIMESTAMP. value is a date/time text string.

3.2.4.1.1 Dates

The following table shows some possible input formats for dates, all of which equate to
January 8, 1999.

Table 3-6 Date Input

Example
January 8, 1999
1999-01-08
1999-Jan-08
Jan-08-1999
08-Jan-1999
08-Jan-99
Jan-08-99
19990108
990108

The date values can be assigned to a DATE or TIMESTAMP column or variable. The hour,
minute, and seconds fields will be set to zero if the date value is not appended with a time
value.

3.2.4.1.2 Times

Some examples of the time component of a date or time stamp are shown in the following
table.

Table 3-7 Time Input

Example Description
04:05:06.789 ISO 8601
04:05:06 ISO 8601
04:05 ISO 8601
040506 ISO 8601
04:05 AM Same as 04:05; AM does not affect value

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

63

Example Description
04:05 PM Same as 16:05; input hour must be <= 12

3.2.4.1.3 Time Stamps

Valid input for time stamps consists of a concatenation of a date and a time. The date
portion of the time stamp can be formatted according to any of the examples shown in
Table 3-6 Date Input. The time portion of the time stamp can be formatted according to
any of examples shown in Table 3-7 Time Input.

The following is an example of a time stamp which follows the Oracle default format.

08-JAN-99 04:05:06

The following is an example of a time stamp which follows the ISO 8601 standard.

1999-01-08 04:05:06

3.2.4.2 Date/Time Output

The default output format of the date/time types will be either the Oracle compatible style
(dd-MON-yy) referred to as the Redwood date style, or the ISO 8601 format (yyyy-mm-
dd) depending upon the application interface to the database. Applications that use JDBC
such as SQL Interactive always present the date in ISO 8601 form. Other applications
such as PSQL present the date in Redwood form.

The following table shows examples of the output formats for the two styles, Redwood
and ISO 8601.

Table 3-8 Date/Time Output Styles

Description Example
Redwood style 31-DEC-05 07:37:16

ISO 8601/SQL standard 1997-12-17 07:37:16

3.2.4.3 Internals

Postgres Plus Advanced Server uses Julian dates for all date/time calculations. Julian
dates correctly predict or calculate any date after 4713 BC based on the assumption that
the length of the year is 365.2425 days.

3.2.5 Boolean Type

Postgres Plus Advanced Server provides the standard SQL type BOOLEAN. BOOLEAN can
have one of only two states: “true” or “false”. A third state, “unknown”, is represented by
the SQL NULL value.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

64

Table 3-9 Boolean Type

Name Storage Size Description
BOOLEAN 1 byte Logical Boolean (true/false)

The valid literal value for representing the “true” state is TRUE. The valid literal for
representing the “false” state is FALSE.

Note: The BOOLEAN data type can only be used for a variable declaration in an SPL
program - it cannot be used to define a column data type in a table.

3.3 SQL Commands

This section provides a summary of the Oracle compatible SQL commands supported by
Postgres Plus Advanced Server. The SQL commands in this section will work on both an
Oracle database and a Postgres Plus Advanced Server database.

Note the following points:

• Postgres Plus Advanced Server supports other commands that are not listed here.
These commands may have no Oracle equivalent or they may provide the similar
or same functionality as an Oracle SQL command, but with different syntax.

• The SQL commands in this section do not necessarily represent the full syntax,
options, and functionality available in the command. Syntax, options, and
functionality that are not Oracle compatible have been omitted from the command
description and syntax.

• The Postgres Plus documentation set contains aspects of the command that may
not be Oracle compatible.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

65

3.3.1 ALTER INDEX

Name

ALTER INDEX -- change the definition of an index

Synopsis

ALTER INDEX name RENAME TO new_name

Description

ALTER INDEX changes the definition of an existing index. RENAME changes the name of
the index. There is no effect on the stored data.

Parameters

name

The name (possibly schema-qualified) of an existing index to alter.

new_name

New name for the index.

Examples

To rename an existing index:

ALTER INDEX name_idx RENAME TO empname_idx;

See Also

 CREATE INDEX,

DROP INDEX

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

66

3.3.2 ALTER ROLE

Name

ALTER ROLE -- change a database role

Synopsis

ALTER ROLE name IDENTIFIED BY password

Description

ALTER ROLE changes the password of a role. Only superusers or users with the
CREATEROLE attribute can use this command. If the role to be altered has the
SUPERUSER attribute, then only a superuser can give this command. Note that unless the
role has the LOGIN attribute, the password serves no real purpose.

Parameters

name

The name of the role whose password is to be altered.

password

The role’s new password.

Notes

Use

GRANT and

REVOKE to change a role’s memberships.

Examples

Change a role’s password:

ALTER ROLE admins IDENTIFIED BY xyRP35z;

See Also

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

67

 CREATE ROLE, DROP ROLE,

GRANT,

REVOKE, SET ROLE

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

68

3.3.3 ALTER SEQUENCE

Name

ALTER SEQUENCE -- change the definition of a sequence generator

Synopsis

ALTER SEQUENCE name [INCREMENT BY increment]
 [MINVALUE minvalue] [MAXVALUE maxvalue]
 [CACHE cache | NOCACHE] [CYCLE]

Description

ALTER SEQUENCE changes the parameters of an existing sequence generator. Any
parameter not specifically set in the ALTER SEQUENCE command retains its prior setting.

Parameters

name

The name (optionally schema-qualified) of a sequence to be altered.

increment

The clause INCREMENT BY increment is optional. A positive value will make
an ascending sequence, a negative one a descending sequence. If unspecified, the
old increment value will be maintained.

minvalue

The optional clause MINVALUE minvalue determines the minimum value a
sequence can generate. If not specified, the current minimum value will be
maintained. Note that the key words, NO MINVALUE, may be used to set this
behavior back to the defaults of 1 and -263-1 for ascending and descending
sequences, respectively, however, this term is not Oracle compatible.

maxvalue

The optional clause MAXVALUE maxvalue determines the maximum value for
the sequence. If not specified, the current maximum value will be maintained.
Note that the key words, NO MAXVALUE, may be used to set this behavior back to
the defaults of 263-1 and -1 for ascending and descending sequences, respectively,
however, this term is not Oracle compatible.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

69

cache

The optional clause CACHE cache specifies how many sequence numbers are to
be preallocated and stored in memory for faster access. The minimum value is 1
(only one value can be generated at a time, i.e., NOCACHE). If unspecified, the old
cache value will be maintained.

CYCLE

The CYCLE option allows the sequence to wrap around when the maxvalue or
minvalue has been reached by an ascending or descending sequence
respectively. If the limit is reached, the next number generated will be the
minvalue or maxvalue, respectively. If not specified, the old cycle behavior
will be maintained. Note that the key words, NO CYCLE, may be used to alter the
sequence so that it does not recycle, however, this term is not Oracle compatible.

Notes

To avoid blocking of concurrent transactions that obtain numbers from the same
sequence, ALTER SEQUENCE is never rolled back; the changes take effect immediately
and are not reversible.

ALTER SEQUENCE will not immediately affect NEXTVAL results in backends, other than
the current one, that have pre-allocated (cached) sequence values. They will use up all
cached values prior to noticing the changed sequence parameters. The current backend
will be affected immediately.

Examples

Change the increment and cache value of sequence, serial.

ALTER SEQUENCE serial INCREMENT BY 2 CACHE 5;

See Also

CREATE SEQUENCE, DROP SEQUENCE

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

70

3.3.4 ALTER SESSION

Name

ALTER SESSION -- change a runtime parameter

Synopsis

ALTER SESSION SET name = value

Description

The ALTER SESSION command changes runtime configuration parameters. ALTER
SESSION only affects the value used by the current session. Some of these parameters are
provided solely for Oracle syntax compatibility and have no effect whatsoever on the
runtime behavior of Postgres Plus Advanced Server. Others will alter a corresponding
Postgres Plus Advanced Server database server runtime configuration parameter.

Parameters

name

Name of a settable runtime parameter. Available parameters are listed below.

value

New value of parameter.

Configuration Parameters

The following configuration parameters can be modified using the ALTER SESSION
command:

NLS_DATE_FORMAT (string)

Sets the display format for date and time values as well as the rules for
interpreting ambiguous date input values. Has the same effect as setting the
Postgres Plus Advanced Server datestyle runtime configuration parameter.

NLS_LANGUAGE (string)

Sets the language in which messages are displayed. Has the same effect as setting
the Postgres Plus Advanced Server lc_messages runtime configuration
parameter.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

71

NLS_LENGTH_SEMANTICS (string)

Valid values are BYTE and CHAR. The default is BYTE. This parameter is provided
for syntax compatibility only and has no effect in Postgres Plus Advanced Server.

OPTIMIZER_MODE (string)

Sets the default optimization mode for queries. Valid values are ALL_ROWS,
CHOOSE, FIRST_ROWS, FIRST_ROWS_10, FIRST_ROWS_100, and
FIRST_ROWS_1000. The default is CHOOSE. This parameter is implemented in
Postgres Plus Advanced Server. See Section 3.4 for more information.

QUERY_REWRITE_ENABLED (string)

Valid values are TRUE, FALSE, and FORCE. The default is FALSE. This parameter
is provided for syntax compatibility only and has no effect in Postgres Plus
Advanced Server.

QUERY_REWRITE_INTEGRITY (string)

Valid values are ENFORCED, TRUSTED, and STALE_TOLERATED. The default is
ENFORCED. This parameter is provided for syntax compatibility only and has no
effect in Postgres Plus Advanced Server.

Examples

Set the language to U.S. English in UTF-8 encoding. Note that in this example, the value,
en_US.UTF-8, is in the format that must be specified for Postgres Plus Advanced
Server. This form is not Oracle compatible.

ALTER SESSION SET NLS_LANGUAGE = 'en_US.UTF-8';

Set the date display format.

ALTER SESSION SET NLS_DATE_FORMAT = 'dd/mm/yyyy';

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

72

3.3.5 ALTER TABLE

Name

ALTER TABLE -- change the definition of a table

Synopsis

ALTER TABLE name
 action [, ...]
ALTER TABLE name
 RENAME COLUMN column TO new_column
ALTER TABLE name
 RENAME TO new_name

where action is one of:

 ADD column type [column_constraint [...]]
 DROP COLUMN column
 ADD table_constraint
 DROP CONSTRAINT constraint_name [CASCADE]

Description

ALTER TABLE changes the definition of an existing table. There are several subforms:

ADD column type

This form adds a new column to the table using the same syntax as

 CREATE TABLE.

DROP COLUMN

This form drops a column from a table. Indexes and table constraints involving
the column will be automatically dropped as well.

ADD table_constraint

This form adds a new constraint to a table using the same syntax as

 CREATE TABLE.

DROP CONSTRAINT

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

73

This form drops constraints on a table. Currently, constraints on tables are not
required to have unique names, so there may be more than one constraint
matching the specified name. All matching constraints will be dropped.

RENAME

The RENAME forms change the name of a table (or an index, sequence, or view) or
the name of an individual column in a table. There is no effect on the stored data.

You must own the table to use ALTER TABLE.

Parameters

name

The name (possibly schema-qualified) of an existing table to alter.

column

Name of a new or existing column.

new_column

New name for an existing column.

new_name

New name for the table.

type

Data type of the new column.

table_constraint

New table constraint for the table.

constraint_name

Name of an existing constraint to drop.

CASCADE

Automatically drop objects that depend on the dropped constraint.

Notes

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

74

When a column is added with ADD COLUMN, all existing rows in the table are initialized
with the column’s default value (null if no DEFAULT clause is specified).

Adding a column with a non-null default will require the entire table to be rewritten. This
may take a significant amount of time for a large table; and it will temporarily require
double the disk space.

Adding a CHECK or NOT NULL constraint requires scanning the table to verify that
existing rows meet the constraint.

The DROP COLUMN form does not physically remove the column, but simply makes it
invisible to SQL operations. Subsequent insert and update operations in the table will
store a null value for the column. Thus, dropping a column is quick but it will not
immediately reduce the on-disk size of your table, as the space occupied by the dropped
column is not reclaimed. The space will be reclaimed over time as existing rows are
updated.

Changing any part of a system catalog table is not permitted.

Refer to

 CREATE TABLE for a further description of valid parameters.

Examples

To add a column of type VARCHAR2 to a table:

ALTER TABLE emp ADD address VARCHAR2(30);

To drop a column from a table:

ALTER TABLE emp DROP COLUMN address;

To rename an existing column:

ALTER TABLE emp RENAME COLUMN address TO city;

To rename an existing table:

ALTER TABLE emp RENAME TO employee;

To add a check constraint to a table:

ALTER TABLE emp ADD CONSTRAINT sal_chk CHECK (sal > 500);

To remove a check constraint from a table:

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

75

ALTER TABLE emp DROP CONSTRAINT sal_chk;

See Also

 CREATE TABLE, DROP TABLE

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

76

3.3.6 ALTER TABLESPACE

Name

ALTER TABLESPACE -- change the definition of a tablespace

Synopsis

ALTER TABLESPACE name RENAME TO newname

Description

ALTER TABLESPACE changes the definition of a tablespace.

Parameters

name

The name of an existing tablespace.

newname

The new name of the tablespace. The new name cannot begin with pg_, as such
names are reserved for system tablespaces.

Examples

Rename tablespace empspace to employee_space:

ALTER TABLESPACE empspace RENAME TO employee_space;

See Also

 DROP TABLESPACE

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

77

3.3.7 ALTER USER

Name

ALTER USER -- change a database user account

Synopsis

ALTER USER name IDENTIFIED BY password

Description

ALTER USER is used to change the password of a Postgres Plus Advanced Server user
account. A database superuser or a user with the CREATEROLE privilege can use this
command. Ordinary users can also use this command to change their own password.

Parameters

name

The name of the user whose attributes are to be altered.

password

The new password to be used for this account.

Examples

Change a user password:

ALTER USER john IDENTIFIED BY xyz;

See Also

 CREATE USER,

DROP USER

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

78

3.3.8 COMMENT

Name

COMMENT -- define or change the comment of an object

Synopsis

COMMENT ON
{
 TABLE table_name |
 COLUMN table_name.column_name
} IS 'text'

Description

COMMENT stores a comment about a database object. To modify a comment, issue a new
COMMENT command for the same object. Only one comment string is stored for each
object. To remove a comment, specify the empty string (two consecutive single quotes
with no intervening space) for text. Comments are automatically dropped when the
object is dropped.

Parameters

table_name

The name of the table to be commented. The table name may be schema-
qualified.

table_name.column_name

The name of a column within table_name to be commented. The table name
may be schema-qualified.

text

The new comment.

Notes

There is presently no security mechanism for comments: any user connected to a
database can see all the comments for objects in that database (although only superusers
can change comments for objects that they don’t own). Therefore, don’t put security-
critical information in comments.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

79

Examples

Attach a comment to the table emp:

COMMENT ON TABLE emp IS 'Current employee information';

Attach a comment to the empno column of the emp table:

COMMENT ON COLUMN emp.empno IS 'Employee identification number';

Remove theses comments:

COMMENT ON TABLE emp IS '';
COMMENT ON COLUMN emp.empno IS '';

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

80

3.3.9 COMMIT

Name

COMMIT -- commit the current transaction

Synopsis

COMMIT [WORK]

Description

COMMIT commits the current transaction. All changes made by the transaction become
visible to others and are guaranteed to be durable if a crash occurs.

Parameters

WORK

Optional key word - has no effect.

Notes

Use

ROLLBACK to abort a transaction.

Issuing COMMIT when not inside a transaction does no harm.

Examples

To commit the current transaction and make all changes permanent:

COMMIT;

See Also

ROLLBACK,

ROLLBACK TO SAVEPOINT,

SAVEPOINT

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

81

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

82

3.3.10 CREATE DATABASE

Name

CREATE DATABASE -- create a new database

Synopsis

CREATE DATABASE name

Description

CREATE DATABASE creates a new database.

To create a database, you must be a superuser or have the special CREATEDB privilege.
Normally, the creator becomes the owner of the new database. Non-superusers with
CREATEDB privilege can only create databases owned by them.

The new database will be created by cloning the standard system database template1.

Parameters

name

The name of the database to be created.

Notes

CREATE DATABASE cannot be executed inside a transaction block.

Errors along the line of “could not initialize database directory” are most likely related to
insufficient permissions on the data directory, a full disk, or other file system problems.

Examples

To create a new database:

CREATE DATABASE employees;

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

83

3.3.11 CREATE DATABASE LINK

Name

CREATE DATABASE LINK -- create a new database link

Synopsis

CREATE [PUBLIC] DATABASE LINK name
 CONNECT TO username IDENTIFIED BY ‘password’
 USING { libpq ‘host=hostname port=portnum dbname=database’ |
 [oci] ‘//hostname[:portnum]/database’ }

Description

CREATE DATABASE LINK creates a new database link. A database link is an object that
allows a reference to a table or view in a remote database within a DELETE,

INSERT,

SELECT, or UPDATE command. A database link is referenced by appending @dblink
to the table or view name referenced in the SQL command where dblink is the name of
the database link.

Database links can be public or private. A public database link is one that can be used by
any user. A private database link can be used only by the database link’s owner.
Specification of the PUBLIC option creates a public database link. If omitted, a private
database link is created.

When the CREATE DATABASE LINK command is given, the database link name and the
given connection attributes are stored in the Postgres Plus Advanced Server system table
named, pg_catalog.edb_dblink. When using a given database link, the database
containing the edb_dblink entry defining this database link is called the local database.
The server and database whose connection attributes are defined within the edb_dblink
entry is called the remote database.

A SQL command containing a reference to a database link must be issued while
connected to the local database. When the SQL command is executed, the appropriate
authentication and connection is made to the remote database to access the table or view
to which the @dblink reference is appended.

Parameters

PUBLIC

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

84

Create a public database link that can be used by any user. If omitted, then the
database link is private and can only be used by the database link’s owner.

name

The name of the database link to be created.

username

The username to be used for connecting to the remote database.

password

The password for username.

libpq

Specify connection to a remote Postgres Plus Advanced Server database.

oci

Specify connection to a remote Oracle database. This is the default if omitted.

hostname

Name or IP address of the server hosting the remote database.

portnum

Port number accepting connections to the remote database server.

database

The remote database name.

Notes

If a SQL command is to be executed that references a database link to a remote Oracle
database, the server needs some way to know where the correct Oracle installation resides
on disk. There are two ways to point Postgres Plus Advanced Server to the correct
Oracle installation home directory upon start up:

• The environment variable, ORACLE_HOME, may be set to the correct directory.
This is the default Oracle configuration.

• The postgresql.conf configuration parameter oracle_home will also direct
Postgres Plus Advanced Server to the correct Oracle Home directory in the file
system. See Section 1.3.4 for information on oracle_home.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

85

Examples

The following examples assume that a copy of the Postgres Plus Advanced Server sample
application’s emp table has been created in an Oracle database and a second Postgres Plus
Advanced Server database cluster with the sample application is accepting connections at
port 5443.

Create a public database link named, oralink, to an Oracle database named, xe, located
at 127.0.0.1 on port 1521. Connect to the Oracle database with username, edb, and
password, password.

CREATE PUBLIC DATABASE LINK oralink CONNECT TO edb IDENTIFIED BY 'password'
USING '//127.0.0.1:1521/xe';

Issue a SELECT command on the emp table in the Oracle database using database link,
oralink.

SELECT * FROM emp@oralink;

empno | ename | job | mgr | hiredate | sal | comm | deptno
-------+--------+-----------+------+--------------------+------+------+--------
 7369 | SMITH | CLERK | 7902 | 17-DEC-80 00:00:00 | 800 | | 20
 7499 | ALLEN | SALESMAN | 7698 | 20-FEB-81 00:00:00 | 1600 | 300 | 30
 7521 | WARD | SALESMAN | 7698 | 22-FEB-81 00:00:00 | 1250 | 500 | 30
 7566 | JONES | MANAGER | 7839 | 02-APR-81 00:00:00 | 2975 | | 20
 7654 | MARTIN | SALESMAN | 7698 | 28-SEP-81 00:00:00 | 1250 | 1400 | 30
 7698 | BLAKE | MANAGER | 7839 | 01-MAY-81 00:00:00 | 2850 | | 30
 7782 | CLARK | MANAGER | 7839 | 09-JUN-81 00:00:00 | 2450 | | 10
 7788 | SCOTT | ANALYST | 7566 | 19-APR-87 00:00:00 | 3000 | | 20
 7839 | KING | PRESIDENT | | 17-NOV-81 00:00:00 | 5000 | | 10
 7844 | TURNER | SALESMAN | 7698 | 08-SEP-81 00:00:00 | 1500 | 0 | 30
 7876 | ADAMS | CLERK | 7788 | 23-MAY-87 00:00:00 | 1100 | | 20
 7900 | JAMES | CLERK | 7698 | 03-DEC-81 00:00:00 | 950 | | 30
 7902 | FORD | ANALYST | 7566 | 03-DEC-81 00:00:00 | 3000 | | 20
 7934 | MILLER | CLERK | 7782 | 23-JAN-82 00:00:00 | 1300 | | 10
(14 rows)

Create a private database link named, edblink, to a Postgres Plus Advanced Server
database named, edb, located on localhost, running on port 5443. Connect to the Postgres
Plus Advanced Server database with username, enterprisedb, and password,
password.

CREATE DATABASE LINK edblink CONNECT TO enterprisedb IDENTIFIED BY 'password'
USING libpq 'host=localhost port=5443 dbname=edb';

Display attributes of database links, oralink and edblink, from the local
edb_dblink system table:

SELECT lnkname, lnkuser, lnkconnstr FROM pg_catalog.edb_dblink;

 lnkname | lnkuser | lnkconnstr
---------+--------------+-------------------------------------
 oralink | edb | //127.0.0.1:1521/xe

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

86

 edblink | enterprisedb | host=localhost port=5443 dbname=edb
(2 rows)

Perform a join of the emp table from the Oracle database with the dept table from the
Postgres Plus Advanced Server database:

SELECT d.deptno, d.dname, e.empno, e.ename, e.job, e.sal, e.comm FROM
emp@oralink e, dept@edblink d WHERE e.deptno = d.deptno ORDER BY 1, 3;

deptno | dname | empno | ename | job | sal | comm
--------+------------+-------+--------+-----------+------+------
 10 | ACCOUNTING | 7782 | CLARK | MANAGER | 2450 |
 10 | ACCOUNTING | 7839 | KING | PRESIDENT | 5000 |
 10 | ACCOUNTING | 7934 | MILLER | CLERK | 1300 |
 20 | RESEARCH | 7369 | SMITH | CLERK | 800 |
 20 | RESEARCH | 7566 | JONES | MANAGER | 2975 |
 20 | RESEARCH | 7788 | SCOTT | ANALYST | 3000 |
 20 | RESEARCH | 7876 | ADAMS | CLERK | 1100 |
 20 | RESEARCH | 7902 | FORD | ANALYST | 3000 |
 30 | SALES | 7499 | ALLEN | SALESMAN | 1600 | 300
 30 | SALES | 7521 | WARD | SALESMAN | 1250 | 500
 30 | SALES | 7654 | MARTIN | SALESMAN | 1250 | 1400
 30 | SALES | 7698 | BLAKE | MANAGER | 2850 |
 30 | SALES | 7844 | TURNER | SALESMAN | 1500 | 0
 30 | SALES | 7900 | JAMES | CLERK | 950 |
(14 rows)

See Also

 DROP DATABASE LINK

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

87

3.3.12 CREATE DIRECTORY

Name

CREATE DIRECTORY -- create an alias for a file system directory path

Synopsis

CREATE DIRECTORY name AS ‘pathname’

Description

The CREATE DIRECTORY command creates an alias for a file system directory
pathname. When the alias is specified as the appropriate parameter to the programs of the
UTL_FILE package, the operating system files are created in, or accessed from the
directory corresponding to the given alias. See Section 0 for information on the
UTL_FILE package.

Parameters

name

The directory alias name.

pathname

The fully-qualified directory path represented by the alias name. The CREATE
DIRECTORY command does not create the operating system directory. The
physical directory must be created independently using the appropriate operating
system commands.

Notes

The operating system user id, enterprisedb, must have the appropriate read and/or
write privileges on the directory if the UTL_FILE package is to be used to create and/or
read files using the directory.

A directory alias must be deleted directly from the pg_catalog.edb_dir system
catalog table if it is desired to remove the directory alias. This operation must be
performed by a superuser. Note that edb_dir is not an Oracle compatible table.

When a directory alias is deleted, the corresponding physical file system directory is not
affected. The file system directory must be deleted using the appropriate operating
system commands.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

88

In a Linux system, the directory name separator is a forward slash (/).

In a Windows system, the directory name separator can be specified as a forward slash
(/) or two consecutive backslashes (\\).

Examples

Create an alias named, empdir, for directory, /tmp/empdir, on Linux:

CREATE DIRECTORY empdir AS '/tmp/empdir';

Create an alias named, empdir, for directory, C:\TEMP\EMPDIR, on Windows:

CREATE DIRECTORY empdir AS 'C:/TEMP/EMPDIR';

View all of the directory aliases:

SELECT * FROM pg_catalog.edb_dir;

 dirname | dirpath
---------+----------------
 empdir | C:/TEMP/EMPDIR
(1 row)

Remove directory, empdir:

DELETE FROM pg_catalog.edb_dir WHERE dirname = 'empdir';

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

89

3.3.13 CREATE FUNCTION

Name

CREATE FUNCTION -- define a new function

Synopsis

CREATE [OR REPLACE] FUNCTION name
 [(argname [IN | IN OUT | OUT] argtype [DEFAULT value]
 [, ...])]
 RETURN rettype
[AUTHID { DEFINER | CURRENT_USER }]
{ IS | AS }
 [declaration;] [, ...]
 BEGIN
 statement; [...]
[EXCEPTION
 { WHEN exception [OR exception] [...] THEN
 statement; [, ...] } [, ...]
]
 END [name]

Description

CREATE FUNCTION defines a new function. CREATE OR REPLACE FUNCTION will
either create a new function, or replace an existing definition.

If a schema name is included, then the function is created in the specified schema.
Otherwise it is created in the current schema. The name of the new function must not
match any existing function with the same argument types in the same schema. However,
functions of different argument types may share a name (this is called overloading).
(Overloading of functions is a Postgres Plus Advanced Server feature - overloading of
stored functions is not Oracle compatible.)

To update the definition of an existing function, use CREATE OR REPLACE FUNCTION.
It is not possible to change the name or argument types of a function this way (if you
tried, you would actually be creating a new, distinct function). Also, CREATE OR
REPLACE FUNCTION will not let you change the return type of an existing function. To
do that, you must drop and recreate the function.

The user that creates the function becomes the owner of the function.

See Section 4.2.4 for more information on functions.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

90

Parameters

name

The name (optionally schema-qualified) of the function to create.

argname

The name of an argument. The argument is referenced by this name within the
function body.

IN | IN OUT | OUT

The argument mode. IN declares the argument for input only. This is the default.
IN OUT allows the argument to receive a value as well as return a value. OUT
specifies the argument is for output only.

argtype

The data type(s) of the function’s arguments. The argument types may be a base
data type, a copy of the type of an existing column using %TYPE, or a user-defined
type such as a nested table or an object type. A length must not be specified for
any base type – for example, specify VARCHAR2, not VARCHAR2(10).

The type of a column is referenced by writing tablename.columnname%TYPE;
using this can sometimes help make a function independent from changes to the
definition of a table.

DEFAULT value

Supplies a default value for an input argument if one is not supplied in the
function call. DEFAULT may not be specified for arguments with modes IN OUT
or OUT.

rettype

The return data type, which may be any of the types listed for argtype. As for
argtype, a length must not be specified for rettype.

DEFINER | CURRENT_USER

Specifies whether the privileges of the function owner (DEFINER) or the
privileges of the current user executing the function (CURRENT_USER) are to be
used to determine whether or not access is allowed to database objects referenced
in the function. Also, under DEFINER, the search path of the function owner is
used to resolve references to unqualified database objects while under

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

91

CURRENT_USER, the search path of the current user executing the function is used
to resolve references to unqualified database objects. DEFINER is the default.

declaration

A variable, type, or REF CURSOR declaration.

statement

An SPL program statement. Note that a DECLARE - BEGIN - END block is
considered an SPL statement unto itself. Thus, the function body may contain
nested blocks.

exception

An exception condition name such as NO_DATA_FOUND, OTHERS, etc.

Notes

Postgres Plus Advanced Server allows function overloading; that is, the same name can
be used for several different functions so long as they have distinct argument types.

Examples

The function emp_comp takes two numbers as input and returns a computed value. The
SELECT command illustrates use of the function.

CREATE OR REPLACE FUNCTION emp_comp (
 p_sal NUMBER,
 p_comm NUMBER
) RETURN NUMBER
IS
BEGIN
 RETURN (p_sal + NVL(p_comm, 0)) * 24;
END;

SELECT ename "Name", sal "Salary", comm "Commission", emp_comp(sal, comm)
 "Total Compensation" FROM emp;

 Name | Salary | Commission | Total Compensation
--------+---------+------------+--------------------
 SMITH | 800.00 | | 19200.00
 ALLEN | 1600.00 | 300.00 | 45600.00
 WARD | 1250.00 | 500.00 | 42000.00
 JONES | 2975.00 | | 71400.00
 MARTIN | 1250.00 | 1400.00 | 63600.00
 BLAKE | 2850.00 | | 68400.00
 CLARK | 2450.00 | | 58800.00
 SCOTT | 3000.00 | | 72000.00
 KING | 5000.00 | | 120000.00
 TURNER | 1500.00 | 0.00 | 36000.00
 ADAMS | 1100.00 | | 26400.00
 JAMES | 950.00 | | 22800.00

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

92

 FORD | 3000.00 | | 72000.00
 MILLER | 1300.00 | | 31200.00
(14 rows)

Function sal_range returns a count of the number of employees whose salary falls in
the specified range. The following anonymous block calls the function a number of times
using the arguments’ default values for the first two calls.

CREATE OR REPLACE FUNCTION sal_range (
 p_sal_min NUMBER DEFAULT 0,
 p_sal_max NUMBER DEFAULT 10000
) RETURN INTEGER
IS
 v_count INTEGER;
BEGIN
 SELECT COUNT(*) INTO v_count FROM emp
 WHERE sal BETWEEN p_sal_min AND p_sal_max;
 RETURN v_count;
END;

BEGIN
 DBMS_OUTPUT.PUT_LINE('Number of employees with a salary: ' ||
 sal_range);
 DBMS_OUTPUT.PUT_LINE('Number of employees with a salary of at least '
 || '$2000.00: ' || sal_range(2000.00));
 DBMS_OUTPUT.PUT_LINE('Number of employees with a salary between '
 || '$2000.00 and $3000.00: ' || sal_range(2000.00, 3000.00));

END;

Number of employees with a salary: 14
Number of employees with a salary of at least $2000.00: 6
Number of employees with a salary between $2000.00 and $3000.00: 5

See Also

 DROP FUNCTION

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

93

3.3.14 CREATE INDEX

Name

CREATE INDEX -- define a new index

Synopsis

CREATE [UNIQUE] INDEX name ON table
 ({ column | (expression) })
 [TABLESPACE tablespace]

Description

CREATE INDEX constructs an index, name, on the specified table. Indexes are primarily
used to enhance database performance (though inappropriate use will result in slower
performance).

The key field(s) for the index are specified as column names, or alternatively as
expressions written in parentheses. Multiple fields can be specified to create multicolumn
indexes.

An index field can be an expression computed from the values of one or more columns of
the table row. This feature can be used to obtain fast access to data based on some
transformation of the basic data. For example, an index computed on UPPER(col)
would allow the clause WHERE UPPER(col) = 'JIM' to use an index.

Postgres Plus Advanced Server provides the B-tree index method. The B-tree index
method is an implementation of Lehman-Yao high-concurrency B-trees.

Indexes are not used for IS NULL clauses by default.

All functions and operators used in an index definition must be "immutable", that is, their
results must depend only on their arguments and never on any outside influence (such as
the contents of another table or the current time). This restriction ensures that the
behavior of the index is well-defined. To use a user-defined function in an index
expression remember to mark the function immutable when you create it.

Parameters

UNIQUE

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

94

Causes the system to check for duplicate values in the table when the index is
created (if data already exist) and each time data is added. Attempts to insert or
update data which would result in duplicate entries will generate an error.

name

The name of the index to be created. No schema name can be included here; the
index is always created in the same schema as its parent table.

table

The name (possibly schema-qualified) of the table to be indexed.

column

The name of a column in the table.

expression

An expression based on one or more columns of the table. The expression usually
must be written with surrounding parentheses, as shown in the syntax. However,
the parentheses may be omitted if the expression has the form of a function call.

tablespace

The tablespace in which to create the index. If not specified,
default_tablespace is used, or the database’s default tablespace if
default_tablespace is an empty string.

Notes

Up to 32 fields may be specified in a multicolumn index.

Examples

To create a B-tree index on the column, ename, in the table, emp:

CREATE INDEX name_idx ON emp (ename);

To create the same index as above, but have it reside in the index_tblspc tablespace:

CREATE INDEX name_idx ON emp (ename) TABLESPACE index_tblspc;

See Also

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

95

ALTER INDEX,

DROP INDEX

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

96

3.3.15 CREATE PACKAGE

Name

CREATE PACKAGE -- define a new package specification

Synopsis

CREATE [OR REPLACE] PACKAGE name
[AUTHID { DEFINER | CURRENT_USER }]
{ IS | AS }
 [declaration;] [, ...]
 [{ PROCEDURE proc_name
 [(argname [IN | IN OUT | OUT] argtype [DEFAULT value]
 [, ...])];
 |
 FUNCTION func_name
 [(argname [IN | IN OUT | OUT] argtype [DEFAULT value]
 [, ...])]
 RETURN rettype;
 }
] [, ...]
 END [name]

Description

CREATE PACKAGE defines a new package specification. CREATE OR REPLACE
PACKAGE will either create a new package specification, or replace an existing
specification.

If a schema name is included, then the package is created in the specified schema.
Otherwise it is created in the current schema. The name of the new package must not
match any existing package in the same schema unless the intent is to update the
definition of an existing package, in which case use CREATE OR REPLACE PACKAGE.

The user that creates the procedure becomes the owner of the package.

See Chapter 6 for more information on packages.

Parameters

name

The name (optionally schema-qualified) of the package to create.

DEFINER | CURRENT_USER

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

97

Specifies whether the privileges of the package owner (DEFINER) or the
privileges of the current user executing a program in the package
(CURRENT_USER) are to be used to determine whether or not access is allowed to
database objects referenced in the package. Also, under DEFINER, the search path
of the package owner is used to resolve references to unqualified database objects
while under CURRENT_USER, the search path of the current user executing a
program in the package is used to resolve references to unqualified database
objects. DEFINER is the default.

declaration

A public variable, type, cursor, or REF CURSOR declaration.

proc_name

The name of a public procedure.

argname

The name of an argument.

IN | IN OUT | OUT

The argument mode.

argtype

The data type(s) of the program’s arguments.

DEFAULT value

Default value of an input argument.

func_name

The name of a public function.

rettype

The return data type.

Examples

The package specification, empinfo, contains three public components - a public
variable, a public procedure, and a public function. See the CREATE PACKAGE BODY
command for the package body for this example.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

98

CREATE OR REPLACE PACKAGE empinfo
IS
 emp_name VARCHAR2(10);
 PROCEDURE get_name (
 p_empno NUMBER
);
 FUNCTION display_counter
 RETURN INTEGER;
END;

See Also

 CREATE PACKAGE BODY,

 DROP PACKAGE

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

99

3.3.16 CREATE PACKAGE BODY

Name

CREATE BODY PACKAGE -- define a new package body

Synopsis

CREATE [OR REPLACE] PACKAGE BODY name
{ IS | AS }
 [declaration;] [, ...]
 [{ PROCEDURE proc_name
 [(argname [IN | IN OUT | OUT] argtype [DEFAULT value]
 [, ...])]
 { IS | AS }
 program_body
 END [proc_name];
 |
 FUNCTION func_name
 [(argname [IN | IN OUT | OUT] argtype [DEFAULT value]
 [, ...])]
 RETURN rettype
 { IS | AS }
 program_body
 END [func_name];
 }
] [, ...]
 [BEGIN
 statement; [, ...]]
 END [name]

Description

CREATE PACKAGE BODY defines a new package body. CREATE OR REPLACE
PACKAGE BODY will either create a new package body, or replace an existing body.

If a schema name is included, then the package body is created in the specified schema.
Otherwise it is created in the current schema. The name of the new package body must
match an existing package specification in the same schema. The new package body
name must not match any existing package body in the same schema unless the intent is
to update the definition of an existing package body, in which case use CREATE OR
REPLACE PACKAGE BODY.

See Sections 6.1.2 and 6.2.2 for more information on the package body.

Parameters

name

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

100

The name (optionally schema-qualified) of the package body to create.

declaration

A private variable, type, cursor, or REF CURSOR declaration.

proc_name

The name of a public or private procedure. If proc_name exists in the package
specification with an identical signature, then it is public, otherwise it is private.

argname

The name of an argument.

IN | IN OUT | OUT

The argument mode.

argtype

The data type(s) of the program’s arguments.

DEFAULT value

Default value of an input argument.

program_body

The declarations and SPL statements that comprise the body of the function or
procedure.

func_name

The name of a public or private function. If func_name exists in the package
specification with an identical signature, then it is public, otherwise it is private.

rettype

The return data type.

statement

An SPL program statement. Statements in the package initialization section are
executed once per session the first time the package is referenced.

Examples

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

101

The following is the package body for the empinfo package.

CREATE OR REPLACE PACKAGE BODY empinfo
IS
 v_counter INTEGER;
 PROCEDURE get_name (
 p_empno NUMBER
)
 IS
 BEGIN
 SELECT ename INTO emp_name FROM emp WHERE empno = p_empno;
 v_counter := v_counter + 1;
 END;
 FUNCTION display_counter
 RETURN INTEGER
 IS
 BEGIN
 RETURN v_counter;
 END;
BEGIN
 v_counter := 0;
 DBMS_OUTPUT.PUT_LINE('Initialized counter');
END;

The following two anonymous blocks execute the procedure and function in the
empinfo package and display the public variable.

BEGIN
 empinfo.get_name(7369);
 DBMS_OUTPUT.PUT_LINE('Employee Name : ' || empinfo.emp_name);
 DBMS_OUTPUT.PUT_LINE('Number of queries: ' || empinfo.display_counter);
END;

Initialized counter
Employee Name : SMITH
Number of queries: 1

BEGIN
 empinfo.get_name(7900);
 DBMS_OUTPUT.PUT_LINE('Employee Name : ' || empinfo.emp_name);
 DBMS_OUTPUT.PUT_LINE('Number of queries: ' || empinfo.display_counter);
END;

Employee Name : JAMES
Number of queries: 2

See Also

 CREATE PACKAGE,

 DROP PACKAGE

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

102

3.3.17 CREATE PROCEDURE

Name

CREATE PROCEDURE -- define a new stored procedure

Synopsis

CREATE [OR REPLACE] PROCEDURE name
 [(argname [IN | IN OUT | OUT] argtype [DEFAULT value]
 [, ...])]
[AUTHID { DEFINER | CURRENT_USER }]
{ IS | AS }
 [declaration;] [, ...]
 BEGIN
 statement; [...]
[EXCEPTION
 { WHEN exception [OR exception] [...] THEN
 statement; [, ...] } [, ...]
]
 END [name]

Description

CREATE PROCEDURE defines a new stored procedure. CREATE OR REPLACE
PROCEDURE will either create a new procedure, or replace an existing definition.

If a schema name is included, then the procedure is created in the specified schema.
Otherwise it is created in the current schema. The name of the new procedure must not
match any existing procedure in the same schema unless the intent is to update the
definition of an existing procedure, in which case use CREATE OR REPLACE
PROCEDURE.

The user that creates the procedure becomes the owner of the procedure.

See Section 4.2.3 for more information on procedures.

Parameters

name

The name (optionally schema-qualified) of the procedure to create.

argname

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

103

The name of an argument. The argument is referenced by this name within the
procedure body.

IN | IN OUT | OUT

The argument mode. IN declares the argument for input only. This is the default.
IN OUT allows the argument to receive a value as well as return a value. OUT
specifies the argument is for output only.

argtype

The data type(s) of the procedure’s arguments. The argument types may be a base
data type, a copy of the type of an existing column using %TYPE, or a user-defined
type such as a nested table or an object type. A length must not be specified for
any base type - for example, specify VARCHAR2, not VARCHAR2(10).

The type of a column is referenced by writing tablename.columnname%TYPE;
using this can sometimes help make a procedure independent from changes to the
definition of a table.

DEFAULT value

Supplies a default value for an input argument if one is not supplied in the
procedure call. DEFAULT may not be specified for arguments with modes IN OUT
or OUT.

DEFINER | CURRENT_USER

Specifies whether the privileges of the procedure owner (DEFINER) or the
privileges of the current user executing the procedure (CURRENT_USER) are to be
used to determine whether or not access is allowed to database objects referenced
in the procedure. Also, under DEFINER, the search path of the procedure owner is
used to resolve references to unqualified database objects while under
CURRENT_USER, the search path of the current user executing the procedure is
used to resolve references to unqualified database objects. DEFINER is the default.

declaration

A variable, type, or REF CURSOR declaration.

statement

An SPL program statement. Note that a DECLARE - BEGIN - END block is
considered an SPL statement unto itself. Thus, the function body may contain
nested blocks.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

104

exception

An exception condition name such as NO_DATA_FOUND, OTHERS, etc.

Examples

The following procedure lists the employees in the emp table:

CREATE OR REPLACE PROCEDURE list_emp
IS
 v_empno NUMBER(4);
 v_ename VARCHAR2(10);
 CURSOR emp_cur IS
 SELECT empno, ename FROM emp ORDER BY empno;
BEGIN
 OPEN emp_cur;
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME');
 DBMS_OUTPUT.PUT_LINE('----- -------');
 LOOP
 FETCH emp_cur INTO v_empno, v_ename;
 EXIT WHEN emp_cur%NOTFOUND;
 DBMS_OUTPUT.PUT_LINE(v_empno || ' ' || v_ename);
 END LOOP;
 CLOSE emp_cur;
END;

EXEC list_emp;

EMPNO ENAME
----- -------
7369 SMITH
7499 ALLEN
7521 WARD
7566 JONES
7654 MARTIN
7698 BLAKE
7782 CLARK
7788 SCOTT
7839 KING
7844 TURNER
7876 ADAMS
7900 JAMES
7902 FORD
7934 MILLER

The following procedure uses IN OUT and OUT arguments to return an employee’s
number, name, and job based upon a search using first, the given employee number, and
if that is not found, then using the given name. An anonymous block calls the procedure.

CREATE OR REPLACE PROCEDURE emp_job (
 p_empno IN OUT emp.empno%TYPE,
 p_ename IN OUT emp.ename%TYPE,
 p_job OUT emp.job%TYPE
)
IS
 v_empno emp.empno%TYPE;
 v_ename emp.ename%TYPE;
 v_job emp.job%TYPE;

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

105

BEGIN
 SELECT ename, job INTO v_ename, v_job FROM emp WHERE empno = p_empno;
 p_ename := v_ename;
 p_job := v_job;
 DBMS_OUTPUT.PUT_LINE('Found employee # ' || p_empno);
EXCEPTION
 WHEN NO_DATA_FOUND THEN
 BEGIN
 SELECT empno, job INTO v_empno, v_job FROM emp
 WHERE ename = p_ename;
 p_empno := v_empno;
 p_job := v_job;
 DBMS_OUTPUT.PUT_LINE('Found employee ' || p_ename);
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 DBMS_OUTPUT.PUT_LINE('Could not find an employee with ' ||
 'number, ' || p_empno || ' nor name, ' || p_ename);
 p_empno := NULL;
 p_ename := NULL;
 p_job := NULL;
 END;
END;

DECLARE
 v_empno emp.empno%TYPE;
 v_ename emp.ename%TYPE;
 v_job emp.job%TYPE;
BEGIN
 v_empno := 0;
 v_ename := 'CLARK';
 emp_job(v_empno, v_ename, v_job);
 DBMS_OUTPUT.PUT_LINE('Employee No: ' || v_empno);
 DBMS_OUTPUT.PUT_LINE('Name : ' || v_ename);
 DBMS_OUTPUT.PUT_LINE('Job : ' || v_job);
END;

Found employee CLARK
Employee No: 7782
Name : CLARK
Job : MANAGER

See Also

 DROP PROCEDURE

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

106

3.3.18 CREATE PUBLIC SYNONYM

Name

CREATE PUBLIC SYNONYM -- define a new public synonym

Synopsis

CREATE [OR REPLACE] PUBLIC SYNONYM name FOR object

Description

CREATE PUBLIC SYNONYM defines a public synonym for certain types of database
objects. A synonym is an alternate name that can be used to refer to the object. A public
synonym is a synonym globally available in the database that can be referenced by any
user in the database cluster.

CREATE OR REPLACE PUBLIC SYNONYM is similar, but if a public synonym of the
same name already exists, it is replaced.

A synonym is useful in cases where a database object would normally require full
qualification by schema name in order to be properly referenced in a SQL statement. A
synonym defined for that object simplifies the reference to a single, unqualified name.

See Section 2.2.4 for additional information on public synonyms.

Parameters

name

The name of a public synonym to be created.

object

The name (optionally schema-qualified) of a database object for which a public
synonym is created. The database object may be a table, view, sequence, or
another synonym.

Notes

Any user can create a public synonym - no special permission is required.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

107

A public synonym can be referenced by any user in any SQL statement, however, the
statement will only be successfully executed if the user has the proper permissions on the
database object referenced by the synonym.

A public synonym is not a member of any schema, but is a database-wide name.

Public synonyms can be created for non-existent objects.

Access to the database object referenced by the public synonym is determined by the
permissions of the current user of the public synonym. Therefore the public synonym
user must have the appropriate permissions on the underlying database object.

Examples

Create a public synonym for the emp table in a schema named, enterprisedb:

CREATE PUBLIC SYNONYM personnel FOR enterprisedb.emp;

See Also

 DROP PUBLIC SYNONYM

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

108

3.3.19 CREATE ROLE

Name

CREATE ROLE -- define a new database role

Synopsis

CREATE ROLE name [IDENTIFIED BY password]

Description

CREATE ROLE adds a new role to a Postgres Plus Advanced Server database cluster. A
role is an entity that can own database objects and have database privileges; a role can be
considered a “user”, a “group”, or both depending on how it is used. The newly created
role does not have the LOGIN attribute, so it cannot be used to start a session. Use the

ALTER ROLE command to give the role LOGIN rights. You must have CREATEROLE
privilege or be a database superuser to use the CREATE ROLE command.

If the IDENTIFIED BY clause is specified, the CREATE ROLE command also creates a
schema owned by, and with the same name as the newly created role.

Note that roles are defined at the database cluster level, and so are valid in all databases
in the cluster.

Parameters

name

The name of the new role.

IDENTIFIED BY password

Sets the role’s password. (A password is only of use for roles having the LOGIN
attribute, but you can nonetheless define one for roles without it.) If you do not
plan to use password authentication you can omit this option.

Notes

Use

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

109

ALTER ROLE to change the attributes of a role, and DROP ROLE to remove a role.
The attributes specified by CREATE ROLE can be modified by later ALTER ROLE
commands.

Use

GRANT and

REVOKE to add and remove members of roles that are being used as groups.

The maximum length limit for role name and password is 63 characters.

Examples

Create a role (and a schema) named, admins, with a password:

CREATE ROLE admins IDENTIFIED BY Rt498zb;

See Also

ALTER ROLE, DROP ROLE,

GRANT,

REVOKE, SET ROLE

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

110

3.3.20 CREATE SCHEMA

Name

CREATE SCHEMA -- define a new schema

Synopsis

CREATE SCHEMA AUTHORIZATION username schema_element [...]

Description

This variation of the CREATE SCHEMA command creates a new schema owned by
username and populated with one or more objects. The creation of the schema and
objects occur within a single transaction so either all objects are created or none of them
including the schema. (Oracle compatibility note: In Oracle, no new schema is created –
username, and therefore the schema, must pre-exist.)

A schema is essentially a namespace: it contains named objects (tables, views, etc.)
whose names may duplicate those of other objects existing in other schemas. Named
objects are accessed either by “qualifying” their names with the schema name as a prefix,
or by setting a search path that includes the desired schema(s). Unqualified objects are
created in the current schema (the one at the front of the search path, which can be
determined with the function CURRENT_SCHEMA). (The search path concept and the
CURRENT_SCHEMA function are not Oracle compatible.)

CREATE SCHEMA includes subcommands to create objects within the schema. The
subcommands are treated essentially the same as separate commands issued after creating
the schema. All the created objects will be owned by the specified user.

Parameters

username

The name of the user who will own the new schema. The schema will be named
the same as username. Only superusers may create schemas owned by users
other than themselves. (Oracle compatibility note: In Postgres Plus Advanced
Server the role, username, must already exist, but the schema must not exist. In
Oracle, the user (equivalently, the schema) must exist.)

schema_element

An SQL statement defining an object to be created within the schema. CREATE
TABLE, CREATE VIEW, and GRANT are accepted as clauses within CREATE

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

111

SCHEMA. Other kinds of objects may be created in separate commands after the
schema is created.

Notes

To create a schema, the invoking user must have the CREATE privilege for the current
database. (Of course, superusers bypass this check.)

In Postgres Plus Advanced Server, there are other forms of the CREATE SCHEMA
command that are not Oracle compatible.

Examples

CREATE SCHEMA AUTHORIZATION enterprisedb
 CREATE TABLE empjobs (ename VARCHAR2(10), job VARCHAR2(9))
 CREATE VIEW managers AS SELECT ename FROM empjobs WHERE job = 'MANAGER'
 GRANT SELECT ON managers TO PUBLIC;

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

112

3.3.21 CREATE SEQUENCE

Name

CREATE SEQUENCE -- define a new sequence generator

Synopsis

CREATE SEQUENCE name [INCREMENT BY increment]
 [{ NOMINVALUE | MINVALUE minvalue }]
 [{ NOMAXVALUE | MAXVALUE maxvalue }]
 [START WITH start] [CACHE cache | NOCACHE] [CYCLE]

Description

CREATE SEQUENCE creates a new sequence number generator. This involves creating
and initializing a new special single-row table with the name, name. The generator will
be owned by the user issuing the command.

If a schema name is given then the sequence is created in the specified schema, otherwise
it is created in the current schema. The sequence name must be distinct from the name of
any other sequence, table, index, or view in the same schema.

After a sequence is created, use the functions NEXTVAL and CURRVAL to operate on the
sequence. These functions are documented in Section 3.5.8.

Parameters

name

The name (optionally schema-qualified) of the sequence to be created.

increment

The optional clause INCREMENT BY increment specifies the value to add to
the current sequence value to create a new value. A positive value will make an
ascending sequence, a negative one a descending sequence. The default value is 1.

NOMINVALUE | MINVALUE minvalue

The optional clause MINVALUE minvalue determines the minimum value a
sequence can generate. If this clause is not supplied, then defaults will be used.
The defaults are 1 and -263-1 for ascending and descending sequences,
respectively. Note that the key words, NOMINVALUE, may be used to set this
behavior to the default.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

113

NOMAXVALUE | MAXVALUE maxvalue

The optional clause MAXVALUE maxvalue determines the maximum value for
the sequence. If this clause is not supplied, then default values will be used. The
defaults are 263-1 and -1 for ascending and descending sequences, respectively.
Note that the key words, NOMAXVALUE, may be used to set this behavior to the
default.

start

The optional clause START WITH start allows the sequence to begin anywhere.
The default starting value is minvalue for ascending sequences and maxvalue
for descending ones.

cache

The optional clause CACHE cache specifies how many sequence numbers are to
be preallocated and stored in memory for faster access. The minimum value is 1
(only one value can be generated at a time, i.e., NOCACHE), and this is also the
default.

CYCLE

The CYCLE option allows the sequence to wrap around when the maxvalue or
minvalue has been reached by an ascending or descending sequence
respectively. If the limit is reached, the next number generated will be the
minvalue or maxvalue, respectively.

If CYCLE is omitted (the default), any calls to NEXTVAL after the sequence has
reached its maximum value will return an error. Note that the key words, NO
CYCLE, may be used to obtain the default behavior, however, this term is not
Oracle compatible.

Notes

Sequences are based on big integer arithmetic, so the range cannot exceed the range of an
eight-byte integer (-9223372036854775808 to 9223372036854775807). On some older
platforms, there may be no compiler support for eight-byte integers, in which case
sequences use regular INTEGER arithmetic (range -2147483648 to +2147483647).

Unexpected results may be obtained if a cache setting greater than one is used for a
sequence object that will be used concurrently by multiple sessions. Each session will
allocate and cache successive sequence values during one access to the sequence object
and increase the sequence object’s last value accordingly. Then, the next cache-1 uses of
NEXTVAL within that session simply return the preallocated values without touching the

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

114

sequence object. So, any numbers allocated but not used within a session will be lost
when that session ends, resulting in "holes" in the sequence.

Furthermore, although multiple sessions are guaranteed to allocate distinct sequence
values, the values may be generated out of sequence when all the sessions are considered.
For example, with a cache setting of 10, session A might reserve values 1..10 and return
NEXTVAL=1, then session B might reserve values 11..20 and return NEXTVAL=11 before
session A has generated NEXTVAL=2. Thus, with a cache setting of one it is safe to
assume that NEXTVAL values are generated sequentially; with a cache setting greater
than one you should only assume that the NEXTVAL values are all distinct, not that they
are generated purely sequentially. Also, the last value will reflect the latest value reserved
by any session, whether or not it has yet been returned by NEXTVAL.

Examples

Create an ascending sequence called serial, starting at 101:

CREATE SEQUENCE serial START WITH 101;

Select the next number from this sequence:

SELECT serial.NEXTVAL FROM DUAL;

 nextval

 101
(1 row)

Create a sequence called supplier_seq with the NOCACHE option:

CREATE SEQUENCE supplier_seq
 MINVALUE 1
 START WITH 1
 INCREMENT BY 1
 NOCACHE;

Select the next number from this sequence:

SELECT supplier_seq.NEXTVAL FROM DUAL;

 nextval

 1
(1 row)

See Also

ALTER SEQUENCE, DROP SEQUENCE

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

115

3.3.22 CREATE TABLE

Name

CREATE TABLE -- define a new table

Synopsis

CREATE [GLOBAL TEMPORARY] TABLE table_name (
 { column_name data_type [DEFAULT default_expr]
 [column_constraint [...]] | table_constraint } [, ...]
)
 [ON COMMIT { PRESERVE ROWS | DELETE ROWS }]
 [TABLESPACE tablespace]

where column_constraint is:

 [CONSTRAINT constraint_name]
 { NOT NULL |
 NULL |
 UNIQUE [USING INDEX TABLESPACE tablespace] |
 PRIMARY KEY [USING INDEX TABLESPACE tablespace] |
 CHECK (expression) |
 REFERENCES reftable [(refcolumn)]
 [ON DELETE action] }
 [DEFERRABLE | NOT DEFERRABLE] [INITIALLY DEFERRED |
 INITIALLY IMMEDIATE]

and table_constraint is:

 [CONSTRAINT constraint_name]
 { UNIQUE (column_name [, ...])
 [USING INDEX TABLESPACE tablespace] |
 PRIMARY KEY (column_name [, ...])
 [USING INDEX TABLESPACE tablespace] |
 CHECK (expression) |
 FOREIGN KEY (column_name [, ...])
 REFERENCES reftable [(refcolumn [, ...])]
 [ON DELETE action] }
 [DEFERRABLE | NOT DEFERRABLE]
 [INITIALLY DEFERRED | INITIALLY IMMEDIATE]

Description

CREATE TABLE will create a new, initially empty table in the current database. The table
will be owned by the user issuing the command.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

116

If a schema name is given (for example, CREATE TABLE myschema.mytable ...) then
the table is created in the specified schema. Otherwise it is created in the current schema.
Temporary tables exist in a special schema, so a schema name may not be given when
creating a temporary table. The table name must be distinct from the name of any other
table, sequence, index, or view in the same schema.

CREATE TABLE also automatically creates a data type that represents the composite type
corresponding to one row of the table. Therefore, tables cannot have the same name as
any existing data type in the same schema.

A table cannot have more than 1600 columns. (In practice, the effective limit is lower
because of tuple-length constraints).

The optional constraint clauses specify constraints (or tests) that new or updated rows
must satisfy for an insert or update operation to succeed. A constraint is an SQL object
that helps define the set of valid values in the table in various ways.

There are two ways to define constraints: table constraints and column constraints. A
column constraint is defined as part of a column definition. A table constraint definition
is not tied to a particular column, and it can encompass more than one column. Every
column constraint can also be written as a table constraint; a column constraint is only a
notational convenience if the constraint only affects one column.

Parameters

GLOBAL TEMPORARY

If specified, the table is created as a temporary table. Temporary tables are
automatically dropped at the end of a session, or optionally at the end of the
current transaction (see ON COMMIT below). Existing permanent tables with the
same name are not visible to the current session while the temporary table exists,
unless they are referenced with schema-qualified names. In addition, temporary
tables are not visible outside the session in which it was created. (This aspect of
global temporary tables is not Oracle compatible.) Any indexes created on a
temporary table are automatically temporary as well.

table_name

The name (optionally schema-qualified) of the table to be created.

column_name

The name of a column to be created in the new table.

data_type

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

117

The data type of the column. This may include array specifiers. For more
information on the data types included with Postgres Plus Advanced Server, refer
to Section 3.2.

DEFAULT default_expr

The DEFAULT clause assigns a default data value for the column whose column
definition it appears within. The value is any variable-free expression (subqueries
and cross-references to other columns in the current table are not allowed). The
data type of the default expression must match the data type of the column.

The default expression will be used in any insert operation that does not specify a
value for the column. If there is no default for a column, then the default is null.

CONSTRAINT constraint_name

An optional name for a column or table constraint. If not specified, the system
generates a name.

NOT NULL

The column is not allowed to contain null values.

NULL

The column is allowed to contain null values. This is the default.

This clause is only available for compatibility with non-standard SQL databases.
Its use is discouraged in new applications.

UNIQUE - column constraint
UNIQUE (column_name [, ...]) - table constraint

The UNIQUE constraint specifies that a group of one or more distinct columns of a
table may contain only unique values. The behavior of the unique table constraint
is the same as that for column constraints, with the additional capability to span
multiple columns.

For the purpose of a unique constraint, null values are not considered equal.

Each unique table constraint must name a set of columns that is different from the
set of columns named by any other unique or primary key constraint defined for
the table. (Otherwise it would just be the same constraint listed twice.)

PRIMARY KEY - column constraint
PRIMARY KEY (column_name [, ...]) - table constraint

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

118

The primary key constraint specifies that a column or columns of a table may
contain only unique (non-duplicate), non-null values. Technically, PRIMARY KEY
is merely a combination of UNIQUE and NOT NULL, but identifying a set of
columns as primary key also provides metadata about the design of the schema, as
a primary key implies that other tables may rely on this set of columns as a unique
identifier for rows.

Only one primary key can be specified for a table, whether as a column constraint
or a table constraint.

The primary key constraint should name a set of columns that is different from
other sets of columns named by any unique constraint defined for the same table.

CHECK (expression)

The CHECK clause specifies an expression producing a Boolean result which new
or updated rows must satisfy for an insert or update operation to succeed.
Expressions evaluating to “true” or “unknown” succeed. Should any row of an
insert or update operation produce a “false” result an error exception is raised and
the insert or update does not alter the database. A check constraint specified as a
column constraint should reference that column’s value only, while an expression
appearing in a table constraint may reference multiple columns.

Currently, CHECK expressions cannot contain subqueries nor refer to variables
other than columns of the current row.

REFERENCES reftable [(refcolumn)] [ON DELETE action] - column constraint
FOREIGN KEY (column [, ...]) REFERENCES reftable [(refcolumn [, ...])] [ON
DELETE action] - table constraint

These clauses specify a foreign key constraint, which requires that a group of one
or more columns of the new table must only contain values that match values in
the referenced column(s) of some row of the referenced table. If refcolumn is
omitted, the primary key of the reftable is used. The referenced columns must
be the columns of a unique or primary key constraint in the referenced table.

In addition, when the data in the referenced columns is changed, certain actions
are performed on the data in this table’s columns. The ON DELETE clause
specifies the action to perform when a referenced row in the referenced table is
being deleted. Referential actions cannot be deferred even if the constraint is
deferrable. Here are the following possible actions for each clause:

CASCADE

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

119

Delete any rows referencing the deleted row, or update the value of the
referencing column to the new value of the referenced column,
respectively.

SET NULL

Set the referencing column(s) to null.

If the referenced column(s) are changed frequently, it may be wise to add an
index to the foreign key column so that referential actions associated with the
foreign key column can be performed more efficiently.

DEFERRABLE
NOT DEFERRABLE

This controls whether the constraint can be deferred. A constraint that is not
deferrable will be checked immediately after every command. Checking of
constraints that are deferrable may be postponed until the end of the transaction
(using the SET CONSTRAINTS command). NOT DEFERRABLE is the default.
Only foreign key constraints currently accept this clause. All other constraint
types are not deferrable.

INITIALLY IMMEDIATE
INITIALLY DEFERRED

If a constraint is deferrable, this clause specifies the default time to check the
constraint. If the constraint is INITIALLY IMMEDIATE, it is checked after each
statement. This is the default. If the constraint is INITIALLY DEFERRED, it is
checked only at the end of the transaction. The constraint check time can be
altered with the SET CONSTRAINTS command.

ON COMMIT

The behavior of temporary tables at the end of a transaction block can be
controlled using ON COMMIT. The two options are:

PRESERVE ROWS

No special action is taken at the ends of transactions. This is the default
behavior. (Note that this aspect is not Oracle compatible. The Oracle
default is DELETE ROWS.)

DELETE ROWS

All rows in the temporary table will be deleted at the end of each
transaction block. Essentially, an automatic TRUNCATE is done at each
commit.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

120

TABLESPACE tablespace

The tablespace is the name of the tablespace in which the new table is to be
created. If not specified, default_tablespace is used, or the database’s default
tablespace if default_tablespace is an empty string.

USING INDEX TABLESPACE tablespace

This clause allows selection of the tablespace in which the index associated with a
UNIQUE or PRIMARY KEY constraint will be created. If not specified,
default_tablespace is used, or the database’s default tablespace if
default_tablespace is an empty string.

Notes

Postgres Plus Advanced Server automatically creates an index for each unique constraint
and primary key constraint to enforce the uniqueness. Thus, it is not necessary to create
an explicit index for primary key columns. (See

 CREATE INDEX for more information.)

Examples

Create table dept and table emp:

CREATE TABLE dept (
 deptno NUMBER(2) NOT NULL CONSTRAINT dept_pk PRIMARY KEY,
 dname VARCHAR2(14),
 loc VARCHAR2(13)
);
CREATE TABLE emp (
 empno NUMBER(4) NOT NULL CONSTRAINT emp_pk PRIMARY KEY,
 ename VARCHAR2(10),
 job VARCHAR2(9),
 mgr NUMBER(4),
 hiredate DATE,
 sal NUMBER(7,2),
 comm NUMBER(7,2),
 deptno NUMBER(2) CONSTRAINT emp_ref_dept_fk
 REFERENCES dept(deptno)
);

Define a unique table constraint for the table dept. Unique table constraints can be
defined on one or more columns of the table.

CREATE TABLE dept (
 deptno NUMBER(2) NOT NULL CONSTRAINT dept_pk PRIMARY KEY,
 dname VARCHAR2(14) CONSTRAINT dept_dname_uq UNIQUE,
 loc VARCHAR2(13)
);

Define a check column constraint:

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

121

CREATE TABLE emp (
 empno NUMBER(4) NOT NULL CONSTRAINT emp_pk PRIMARY KEY,
 ename VARCHAR2(10),
 job VARCHAR2(9),
 mgr NUMBER(4),
 hiredate DATE,
 sal NUMBER(7,2) CONSTRAINT emp_sal_ck CHECK (sal > 0),
 comm NUMBER(7,2),
 deptno NUMBER(2) CONSTRAINT emp_ref_dept_fk
 REFERENCES dept(deptno)
);

Define a check table constraint:

CREATE TABLE emp (
 empno NUMBER(4) NOT NULL CONSTRAINT emp_pk PRIMARY KEY,
 ename VARCHAR2(10),
 job VARCHAR2(9),
 mgr NUMBER(4),
 hiredate DATE,
 sal NUMBER(7,2),
 comm NUMBER(7,2),
 deptno NUMBER(2) CONSTRAINT emp_ref_dept_fk
 REFERENCES dept(deptno),
 CONSTRAINT new_emp_ck CHECK (ename IS NOT NULL AND empno > 7000)
);

Define a primary key table constraint for the table jobhist. Primary key table
constraints can be defined on one or more columns of the table.

CREATE TABLE jobhist (
 empno NUMBER(4) NOT NULL,
 startdate DATE NOT NULL,
 enddate DATE,
 job VARCHAR2(9),
 sal NUMBER(7,2),
 comm NUMBER(7,2),
 deptno NUMBER(2),
 chgdesc VARCHAR2(80),
 CONSTRAINT jobhist_pk PRIMARY KEY (empno, startdate)
);

This assigns a literal constant default value for the column, job and makes the default
value of hiredate be the date at which the row is inserted.

CREATE TABLE emp (
 empno NUMBER(4) NOT NULL CONSTRAINT emp_pk PRIMARY KEY,
 ename VARCHAR2(10),
 job VARCHAR2(9) DEFAULT 'SALESMAN',
 mgr NUMBER(4),
 hiredate DATE DEFAULT SYSDATE,
 sal NUMBER(7,2),
 comm NUMBER(7,2),
 deptno NUMBER(2) CONSTRAINT emp_ref_dept_fk
 REFERENCES dept(deptno)
);

Create table dept in tablespace diskvol1:

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

122

CREATE TABLE dept (
 deptno NUMBER(2) NOT NULL CONSTRAINT dept_pk PRIMARY KEY,
 dname VARCHAR2(14),
 loc VARCHAR2(13)
) TABLESPACE diskvol1;

See Also

ALTER TABLE, DROP TABLE

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

123

3.3.23 CREATE TABLE AS

Name

CREATE TABLE AS -- define a new table from the results of a query

Synopsis

CREATE [GLOBAL TEMPORARY] TABLE table_name
 [(column_name [, ...])]
 [ON COMMIT { PRESERVE ROWS | DELETE ROWS }]
 [TABLESPACE tablespace]
 AS query

Description

CREATE TABLE AS creates a table and fills it with data computed by a SELECT
command. The table columns have the names and data types associated with the output
columns of the SELECT (except that you can override the column names by giving an
explicit list of new column names).

CREATE TABLE AS bears some resemblance to creating a view, but it is really quite
different: it creates a new table and evaluates the query just once to fill the new table
initially. The new table will not track subsequent changes to the source tables of the
query. In contrast, a view re-evaluates its defining SELECT statement whenever it is
queried.

Parameters

GLOBAL TEMPORARY

If specified, the table is created as a temporary table. Refer to

 CREATE TABLE for details.

table_name

The name (optionally schema-qualified) of the table to be created.

column_name

The name of a column in the new table. If column names are not provided, they
are taken from the output column names of the query.

query

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

124

A query statement (that is, a SELECT command). Refer to

SELECT for a description of the allowed syntax.

See Also

 CREATE TABLE,

SELECT

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

125

3.3.24 CREATE TRIGGER

Name

CREATE TRIGGER -- define a new trigger

Synopsis

CREATE [OR REPLACE] TRIGGER name
 { BEFORE | AFTER }
 { INSERT | UPDATE | DELETE }
 [OR { INSERT | UPDATE | DELETE }] [, ...]
 ON table
 [FOR EACH ROW]
 [DECLARE
 declaration; [, ...]]
 BEGIN
 statement; [, ...]
 [EXCEPTION
 { WHEN exception [OR exception] [...] THEN
 statement; [, ...] } [, ...]
]
 END

Description

CREATE TRIGGER defines a new trigger. CREATE OR REPLACE TRIGGER will either
create a new trigger, or replace an existing definition.

The name of the new trigger must not match any existing trigger defined on the same
table unless the intent is to update the definition of an existing trigger, in which case use
CREATE OR REPLACE TRIGGER.

The trigger is created in the same schema as the table on which the triggering event is
defined.

See Chapter 5 for more information on triggers.

Parameters

name

The name of the trigger to create.

BEFORE | AFTER

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

126

Determines whether the trigger is fired before or after the triggering event.

INSERT | UPDATE | DELETE

Defines the triggering event.

table

The name of the table on which the triggering event occurs.

FOR EACH ROW

Determines whether the trigger should be fired once for every row affected by the
triggering event, or just once per SQL statement. If specified, the trigger is fired
once for every affected row (row-level trigger), otherwise the trigger is a
statement-level trigger.

declaration

A variable, type, or REF CURSOR declaration.

statement

An SPL program statement. Note that a DECLARE - BEGIN - END block is
considered an SPL statement unto itself. Thus, the trigger body may contain
nested blocks.

exception

An exception condition name such as NO_DATA_FOUND, OTHERS, etc.

Examples

The following is a statement-level trigger that fires after the triggering statement (insert,
update, or delete on table emp) is executed.

CREATE OR REPLACE TRIGGER user_audit_trig
 AFTER INSERT OR UPDATE OR DELETE ON emp
DECLARE
 v_action VARCHAR2(24);
BEGIN
 IF INSERTING THEN
 v_action := ' added employee(s) on ';
 ELSIF UPDATING THEN
 v_action := ' updated employee(s) on ';
 ELSIF DELETING THEN
 v_action := ' deleted employee(s) on ';
 END IF;
 DBMS_OUTPUT.PUT_LINE('User ' || USER || v_action ||
 TO_CHAR(SYSDATE,'YYYY-MM-DD'));
END;

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

127

The following is a row-level trigger that fires before each row is either inserted, updated,
or deleted on table emp.

CREATE OR REPLACE TRIGGER emp_sal_trig
 BEFORE DELETE OR INSERT OR UPDATE ON emp
 FOR EACH ROW
DECLARE
 sal_diff NUMBER;
BEGIN
 IF INSERTING THEN
 DBMS_OUTPUT.PUT_LINE('Inserting employee ' || :NEW.empno);
 DBMS_OUTPUT.PUT_LINE('..New salary: ' || :NEW.sal);
 END IF;
 IF UPDATING THEN
 sal_diff := :NEW.sal - :OLD.sal;
 DBMS_OUTPUT.PUT_LINE('Updating employee ' || :OLD.empno);
 DBMS_OUTPUT.PUT_LINE('..Old salary: ' || :OLD.sal);
 DBMS_OUTPUT.PUT_LINE('..New salary: ' || :NEW.sal);
 DBMS_OUTPUT.PUT_LINE('..Raise : ' || sal_diff);
 END IF;
 IF DELETING THEN
 DBMS_OUTPUT.PUT_LINE('Deleting employee ' || :OLD.empno);
 DBMS_OUTPUT.PUT_LINE('..Old salary: ' || :OLD.sal);
 END IF;
END;

See Also

 DROP TRIGGER

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

128

3.3.25 CREATE TYPE

Name

CREATE TYPE -- define a new user-defined type

Synopsis

CREATE [OR REPLACE] TYPE name { IS | AS } OBJECT
 ({ attribute { datatype | objtype } } [, ...])

CREATE [OR REPLACE] TYPE name { IS | AS } TABLE OF
 { datatype | objtype }

Description

CREATE TYPE defines a new user-defined data type. The types that can be created are an
object type or a nested table type. CREATE OR REPLACE TYPE will either create a new
type definition, or replace an existing type definition.

If a schema name is included, then the type is created in the specified schema, otherwise
it is created in the current schema. The name of the new type must not match any existing
type in the same schema.

To update the definition of an existing type, use CREATE OR REPLACE TYPE.

The user that creates the type becomes the owner of the type.

See Section 4.10.2 for more information on nested table types. See Chapter 8 for more
information on object types.

Parameters

name

The name (optionally schema-qualified) of the type to create.

attribute

The name of an attribute in the object type.

datatype

The data type of an attribute in an object type, or of the table of a nested table
type.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

129

objtype

The name of a previously defined object type.

Examples

Create object type, addr_obj_typ.

CREATE OR REPLACE TYPE addr_obj_typ AS OBJECT (
 street VARCHAR2(30),
 city VARCHAR2(20),
 state CHAR(2),
 zip NUMBER(5)
);

Create a nested table type, budget_tbl_typ, of data type, NUMBER(8,2).

CREATE OR REPLACE TYPE budget_tbl_typ IS TABLE OF NUMBER(8,2);

See Also

 DROP TYPE

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

130

3.3.26 CREATE USER

Name

CREATE USER -- define a new database user account

Synopsis

CREATE USER name IDENTIFIED BY password

Description

CREATE USER adds a new user to a Postgres Plus Advanced Server database cluster. You
must be a database superuser to use this command.

When the CREATE USER command is given, a schema will also be created with the same
name as the new user and owned by the new user. Objects with unqualified names
created by this user will be created in this schema.

Parameters

name

The name of the user.

password

Sets the user’s password. The password can be changed later using

ALTER USER.

Notes

The maximum length allowed for the user name and password is 63 characters.

Examples

Create a user named, john.

CREATE USER john IDENTIFIED BY abc;

See Also

ALTER USER,

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

131

DROP USER

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

132

3.3.27 CREATE VIEW

Name

CREATE VIEW -- define a new view

Synopsis

CREATE [OR REPLACE] VIEW name [(column_name [, ...])]
 AS query

Description

CREATE VIEW defines a view of a query. The view is not physically materialized.
Instead, the query is run every time the view is referenced in a query.

CREATE OR REPLACE VIEW is similar, but if a view of the same name already exists, it
is replaced.

If a schema name is given (for example, CREATE VIEW myschema.myview ...) then the
view is created in the specified schema. Otherwise it is created in the current schema. The
view name must be distinct from the name of any other view, table, sequence, or index in
the same schema.

Parameters

name

The name (optionally schema-qualified) of a view to be created.

column_name

An optional list of names to be used for columns of the view. If not given, the
column names are deduced from the query.

query

A query (that is, a SELECT statement) which will provide the columns and rows
of the view.

Refer to

SELECT for more information about valid queries.

Notes

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

133

Currently, views are read only - the system will not allow an insert, update, or delete on a
view. You can get the effect of an updatable view by creating rules that rewrite inserts,
etc. on the view into appropriate actions on other tables. See the CREATE RULE
command in the Postgres Plus documentation set.

Access to tables referenced in the view is determined by permissions of the view owner.
However, functions called in the view are treated the same as if they had been called
directly from the query using the view. Therefore the user of a view must have
permissions to call all functions used by the view.

Examples

Create a view consisting of all employees in department 30:

CREATE VIEW dept_30 AS SELECT * FROM emp WHERE deptno = 30;

See Also

DROP VIEW

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

134

3.3.28 DELETE

Name

DELETE -- delete rows of a table

Synopsis

DELETE [optimizer_hint] FROM table[@dblink]
 [WHERE condition]
 [RETURNING return_expression [, ...]
 { INTO { record | variable [, ...] }
 | BULK COLLECT INTO collection [, ...] }]

Description

DELETE deletes rows that satisfy the WHERE clause from the specified table. If the WHERE
clause is absent, the effect is to delete all rows in the table. The result is a valid, but
empty table.

Note: The TRUNCATE command provides a faster mechanism to remove all rows from
a table.

The RETURNING INTO { record | variable [, ...] } clause may only be
specified if the DELETE command is used within an SPL program. In addition the result
set of the DELETE command must not include more than one row, otherwise an exception
is thrown. If the result set is empty, then the contents of the target record or variables are
set to null.

The RETURNING BULK COLLECT INTO collection [, ...] clause may only be
specified if the DELETE command is used within an SPL program. If more than one
collection is specified as the target of the BULK COLLECT INTO clause, then each
collection must consist of a single, scalar field – i.e., collection must not be a
record. The result set of the DELETE command may contain none, one, or more rows.
return_expression evaluated for each row of the result set, becomes an element in
collection starting with the first element. Any existing rows in collection are
deleted. If the result set is empty, then collection will be empty.

You must have the DELETE privilege on the table to delete from it, as well as the SELECT
privilege for any table whose values are read in the condition.

Parameters

optimizer_hint

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

135

Comment-embedded hints to the optimizer for selection of an execution plan. See
Section 3.4 for information on optimizer hints.

table

The name (optionally schema-qualified) of an existing table.

dblink

Database link name identifying a remote database. See the

CREATE DATABASE LINK command for information on database links.

condition

A value expression that returns a value of type BOOLEAN that determines the rows
which are to be deleted.

return_expression

An expression that may include one or more columns from table. If a column
name from table is specified in return_expression, the value substituted for
the column when return_expression is evaluated is the value from the
deleted row.

record

A record whose field the evaluated return_expression is to be assigned. The
first return_expression is assigned to the first field in record, the second
return_expression is assigned to the second field in record, etc. The
number of fields in record must exactly match the number of expressions and
the fields must be type-compatible with their assigned expressions.

variable

A variable to which the evaluated return_expression is to be assigned. If
more than one return_expression and variable are specified, the first
return_expression is assigned to the first variable, the second
return_expression is assigned to the second variable, etc. The number of
variables specified following the INTO keyword must exactly match the number
of expressions following the RETURNING keyword and the variables must be
type-compatible with their assigned expressions.

collection

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

136

A collection in which an element is created from the evaluated
return_expression. There can be either a single collection which may be a
collection of a single field or a collection of a record type, or there may be more
than one collection in which case each collection must consist of a single field.
The number of return expressions must match in number and order the number of
fields in all specified collections. Each corresponding return_expression and
collection field must be type-compatible.

Examples

Delete all rows for employee 7900 from the jobhist table:

DELETE FROM jobhist WHERE empno = 7900;

Clear the table jobhist:

DELETE FROM jobhist;

See Also

TRUNCATE

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

137

3.3.29 DROP DATABASE LINK

Name

DROP DATABASE LINK -- remove a database link

Synopsis

DROP [PUBLIC] DATABASE LINK name

Description

DROP DATABASE LINK drops existing database links. To execute this command you
must be a superuser or the owner of the database link.

Parameters

name

The name of a database link to be removed.

PUBLIC

Indicates that name is a public database link.

Examples

Remove the public database link named, oralink:

DROP PUBLIC DATABASE LINK oralink;

Remove the private database link named, edblink:

DROP DATABASE LINK edblink;

See Also

CREATE DATABASE LINK

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

138

3.3.30 DROP FUNCTION

Name

DROP FUNCTION -- remove a function

Synopsis

DROP FUNCTION name [([type [, ...]])]

Description

DROP FUNCTION removes the definition of an existing function. To execute this
command you must be a superuser or the owner of the function. The argument types to
the function must be specified if there is at least one argument. (This requirement is not
Oracle compatible. Postgres Plus Advanced Server allows overloading of function names,
so the function signature is required in the Postgres Plus Advanced Server DROP
FUNCTION command.)

Parameters

name

The name (optionally schema-qualified) of an existing function.

type

The data type of an argument of the function.

Examples

The following command removes the emp_comp function.

DROP FUNCTION emp_comp(NUMBER, NUMBER);

See Also

CREATE FUNCTION

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

139

3.3.31 DROP INDEX

Name

DROP INDEX -- remove an index

Synopsis

DROP INDEX name

Description

DROP INDEX drops an existing index from the database system. To execute this
command you must be a superuser or the owner of the index. If any objects depend on the
index, an error will be given and the index will not be dropped.

Parameters

name

The name (optionally schema-qualified) of an index to remove.

Examples

This command will remove the index, name_idx:

DROP INDEX name_idx;

See Also

ALTER INDEX,

 CREATE INDEX

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

140

3.3.32 DROP PACKAGE

Name

DROP PACKAGE -- remove a package

Synopsis

DROP PACKAGE [BODY] name

Description

DROP PACKAGE drops an existing package. To execute this command you must be a
superuser or the owner of the package. If BODY is specified, only the package body is
removed – the package specification is not dropped. If BODY is omitted, both the package
specification and body are removed.

Parameters

name

The name (optionally schema-qualified) of a package to remove.

Examples

This command will remove the emp_admin package:

DROP PACKAGE emp_admin;

See Also

 CREATE PACKAGE, CREATE PACKAGE BODY

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

141

3.3.33 DROP PROCEDURE

Name

DROP PROCEDURE -- remove a procedure

Synopsis

DROP PROCEDURE name

Description

DROP PROCEDURE removes the definition of an existing procedure. To execute this
command you must be a superuser or the owner of the procedure.

Parameters

name

The name (optionally schema-qualified) of an existing procedure.

Examples

The following command removes the select_emp procedure.

DROP PROCEDURE select_emp;

See Also

 CREATE PROCEDURE

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

142

3.3.34 DROP PUBLIC SYNONYM

Name

DROP PUBLIC SYNONYM -- remove a public synonym

Synopsis

DROP PUBLIC SYNONYM name

Description

DROP PUBLIC SYNONYM drops existing public synonyms. To execute this command you
must be a superuser or the owner of the public synonym.

See Section 2.2.4 for additional information on public synonyms.

Parameters

name

The name of a public synonym to be removed

Examples

This command will remove the public synonym named, personnel:

DROP PUBLIC SYNONYM personnel;

See Also

 CREATE PUBLIC SYNONYM

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

143

3.3.35 DROP ROLE

Name

DROP ROLE -- remove a database role

Synopsis

DROP ROLE name [CASCADE]

Description

DROP ROLE removes the specified role. To drop a superuser role, you must be a
superuser yourself; to drop non-superuser roles, you must have CREATEROLE privilege.

A role cannot be removed if it is still referenced in any database of the cluster; an error
will be raised if so. Before dropping the role, you must drop all the objects it owns (or
reassign their ownership) and revoke any privileges the role has been granted.

However, it is not necessary to remove role memberships involving the role; DROP ROLE
automatically revokes any memberships of the target role in other roles, and of other
roles in the target role. The other roles are not dropped nor otherwise affected.

Alternatively, if the only objects owned by the role belong within a schema that is owned
by the role and has the same name as the role, the CASCADE option can be specified. In
this case the issuer of the DROP ROLE name CASCADE command must be a superuser
and the named role, the schema, and all objects within the schema will be deleted.

Parameters

name

The name of the role to remove.

CASCADE

If specified, also drops the schema owned by, and with the same name as the role
(and all objects owned by the role belonging to the schema) as long as no other
dependencies on the role or the schema exist.

Examples

To drop a role:

DROP ROLE admins;

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

144

See Also

ALTER ROLE,

 CREATE ROLE, SET ROLE

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

145

3.3.36 DROP SEQUENCE

Name

DROP SEQUENCE -- remove a sequence

Synopsis

DROP SEQUENCE name [, ...]

Description

DROP SEQUENCE removes sequence number generators. To execute this command you
must be a superuser or the owner of the sequence.

Parameters

name

The name (optionally schema-qualified) of a sequence.

Examples

To remove the sequence, serial:

DROP SEQUENCE serial;

See Also

ALTER SEQUENCE, CREATE SEQUENCE

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

146

3.3.37 DROP TABLE

Name

DROP TABLE -- remove a table

Synopsis

DROP TABLE name

Description

DROP TABLE removes tables from the database. Only its owner may destroy a table. To
empty a table of rows, without destroying the table, use DELETE.

DROP TABLE always removes any indexes, rules, triggers, and constraints that exist for
the target table.

Parameters

name

The name (optionally schema-qualified) of the table to drop.

Examples

To destroy table, emp:

DROP TABLE emp;

See Also

ALTER TABLE,

 CREATE TABLE

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

147

3.3.38 DROP TABLESPACE

Name

DROP TABLESPACE -- remove a tablespace

Synopsis

DROP TABLESPACE tablespacename

Description

DROP TABLESPACE removes a tablespace from the system.

A tablespace can only be dropped by its owner or a superuser. The tablespace must be
empty of all database objects before it can be dropped. It is possible that objects in other
databases may still reside in the tablespace even if no objects in the current database are
using the tablespace.

Parameters

tablespacename

The name of a tablespace.

Examples

To remove tablespace employee_space from the system:

DROP TABLESPACE employee_space;

See Also

ALTER TABLESPACE

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

148

3.3.39 DROP TRIGGER

Name

DROP TRIGGER -- remove a trigger

Synopsis

DROP TRIGGER name

Description

DROP TRIGGER removes a trigger from its associated table. The command must be run
by a superuser or the owner of the table on which the trigger is defined.

Parameters

name

The name of a trigger to remove.

Examples

Remove trigger emp_sal_trig:

DROP TRIGGER emp_sal_trig;

See Also

 CREATE TRIGGER

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

149

3.3.40 DROP TYPE

Name

DROP TYPE -- remove a type definition

Synopsis

DROP TYPE name

Description

DROP TYPE removes the type definition. To execute this command you must be a
superuser or the owner of the type. The type will not be deleted if there are other database
objects dependent upon the named type.

Parameters

name

The name of a type definition to remove.

Examples

Drop object type addr_obj_typ.

DROP TYPE addr_obj_typ;

Drop nested table type budget_tbl_typ.

DROP TYPE budget_tbl_typ;

See Also

 CREATE TYPE

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

150

3.3.41 DROP USER

Name

DROP USER -- remove a database user account

Synopsis

DROP USER name [CASCADE]

Description

DROP USER removes the specified user. To drop a superuser, you must be a superuser
yourself; to drop non-superusers, you must have CREATEROLE privilege.

A user cannot be removed if it is still referenced in any database of the cluster; an error
will be raised if so. Before dropping the user, you must drop all the objects it owns (or
reassign their ownership) and revoke any privileges the user has been granted.

However, it is not necessary to remove role memberships involving the user; DROP USER
automatically revokes any memberships of the target user in other roles, and of other
roles in the target user. The other roles are not dropped nor otherwise affected.

Alternatively, if the only objects owned by the user belong within a schema that is owned
by the user and has the same name as the user, the CASCADE option can be specified. In
this case the issuer of the DROP USER name CASCADE command must be a superuser
and the named user, the schema, and all objects within the schema will be deleted.

Parameters

name

The name of the user to remove.

CASCADE

If specified, also drops the schema owned by, and with the same name as the user
(and all objects owned by the user belonging to the schema) as long as no other
dependencies on the user or the schema exist.

Examples

To drop a user account who owns no objects nor has been granted any privileges on other
objects:

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

151

DROP USER john;

To drop user account, john, who has not been granted any privileges on any objects, and
does not own any objects outside of a schema named, john, that is owned by user, john:

DROP USER john CASCADE;

See Also

ALTER USER, CREATE USER

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

152

3.3.42 DROP VIEW

Name

DROP VIEW -- remove a view

Synopsis

DROP VIEW name

Description

DROP VIEW drops an existing view. To execute this command you must be the owner of
the view. The named view will not be deleted if other objects are dependent upon this
view (such as a view of a view).

Parameters

name

The name (optionally schema-qualified) of the view to remove.

Examples

This command will remove the view called dept_30:

DROP VIEW dept_30;

See Also

 CREATE VIEW

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

153

3.3.43 GRANT

Name

GRANT -- define access privileges

Synopsis

GRANT { { SELECT | INSERT | UPDATE | DELETE | REFERENCES }
 [,...] | ALL [PRIVILEGES] }
 ON tablename
 TO { username | groupname | PUBLIC } [, ...]
 [WITH GRANT OPTION]

GRANT { SELECT | ALL [PRIVILEGES] }
 ON sequencename
 TO { username | groupname | PUBLIC } [, ...]
 [WITH GRANT OPTION]

GRANT { EXECUTE | ALL [PRIVILEGES] }
 ON FUNCTION progname
 ([[argmode] [argname] argtype] [, ...])
 TO { username | groupname | PUBLIC } [, ...]
 [WITH GRANT OPTION]

GRANT { EXECUTE | ALL [PRIVILEGES] }
 ON PROCEDURE progname
 [([[argmode] [argname] argtype] [, ...])]
 TO { username | groupname | PUBLIC } [, ...]
 [WITH GRANT OPTION]

GRANT { EXECUTE | ALL [PRIVILEGES] }
 ON PACKAGE packagename
 TO { username | groupname | PUBLIC } [, ...]
 [WITH GRANT OPTION]

GRANT role [, ...]
 TO { username | groupname | PUBLIC } [, ...]
 [WITH ADMIN OPTION]

GRANT { CONNECT | RESOURCE | DBA } [, ...]
 TO { username | groupname } [, ...]
 [WITH ADMIN OPTION]

Description

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

154

The GRANT command has two basic variants: one that grants privileges on a database
object (table, view, sequence, or program), and one that grants membership in a role.
These variants are similar in many ways, but they are different enough to be described
separately.

In Postgres Plus Advanced Server, the concept of users and groups has been unified into
a single type of entity called a role. In this context, a user is a role that has the LOGIN
attribute – the role may be used to create a session and connect to an application. A group
is a role that does not have the LOGIN attribute – the role may not be used to create a
session or connect to an application.

A role may be a member of one or more other roles, so the traditional concept of users
belonging to groups is still valid. However, with the generalization of users and groups,
users may “belong” to users, groups may “belong” to groups, and groups may “belong”
to users, forming a general multi-level hierarchy of roles. User names and group names
share the same namespace therefore it is not necessary to distinguish whether a grantee is
a user or a group in the GRANT command.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

155

3.3.44 GRANT on Database Objects

This variant of the GRANT command gives specific privileges on a database object to a
role. These privileges are added to those already granted, if any.

The key word PUBLIC indicates that the privileges are to be granted to all roles,
including those that may be created later. PUBLIC may be thought of as an implicitly
defined group that always includes all roles. Any particular role will have the sum of
privileges granted directly to it, privileges granted to any role it is presently a member of,
and privileges granted to PUBLIC.

If the WITH GRANT OPTION is specified, the recipient of the privilege may in turn grant
it to others. Without a grant option, the recipient cannot do that. Grant options cannot be
granted to PUBLIC.

There is no need to grant privileges to the owner of an object (usually the user that
created it), as the owner has all privileges by default. (The owner could, however, choose
to revoke some of his own privileges for safety.) The right to drop an object or to alter its
definition in any way is not described by a grantable privilege; it is inherent in the owner,
and cannot be granted or revoked. The owner implicitly has all grant options for the
object as well.

Depending on the type of object, the initial default privileges may include granting some
privileges to PUBLIC. The default is no public access for tables and EXECUTE privilege
for functions, procedures, and packages. The object owner may of course revoke these
privileges. (For maximum security, issue the REVOKE in the same transaction that creates
the object; then there is no window in which another user may use the object.)

The possible privileges are:

SELECT

Allows

SELECT from any column of the specified table, view, or sequence. For
sequences, this privilege also allows the use of the currval function.

INSERT

Allows

INSERT of a new row into the specified table.

UPDATE

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

156

Allows UPDATE of a column of the specified table. SELECT ... FOR UPDATE
also requires this privilege (besides the SELECT privilege).

DELETE

Allows DELETE of a row from the specified table.

REFERENCES

To create a foreign key constraint, it is necessary to have this privilege on both the
referencing and referenced tables.

EXECUTE

Allows the use of the specified package, procedure, or function. When applied to
a package, allows the use of all of the package’s public procedures, public
functions, public variables, records, cursors and other public objects and object
types. This is the only type of privilege that is applicable to functions, procedures,
and packages.

The Postgres Plus Advanced Server syntax for granting the EXECUTE privilege is
not fully Oracle compatible. Postgres Plus Advanced Server requires qualification
of the program name by one of the keywords, FUNCTION, PROCEDURE, or
PACKAGE whereas these keywords must be omitted in Oracle. In addition for
functions, Postgres Plus Advanced Server requires the full function signature after
the function name (including an empty parenthesis if there are no function
arguments). For procedures, the full signature is required if the procedure has one
or more arguments. In Oracle, function and procedure signatures must be omitted.
This is due to the fact that all programs share the same namespace in Oracle,
whereas functions, procedures, and packages have their own individual
namespace in Postgres Plus Advanced Server to allow program name overloading
to a certain extent.

ALL PRIVILEGES

Grant all of the available privileges at once.

The privileges required by other commands are listed on the reference page of the
respective command.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

157

3.3.45 GRANT on Roles

This variant of the GRANT command grants membership in a role to one or more other
roles. Membership in a role is significant because it conveys the privileges granted to a
role to each of its members.

If the WITH ADMIN OPTION is specified, the member may in turn grant membership in
the role to others, and revoke membership in the role as well. Without the admin option,
ordinary users cannot do that. Database superusers can grant or revoke membership in
any role to anyone. Roles having the CREATEROLE privilege can grant or revoke
membership in any role that is not a superuser.

There are three pre-defined roles that have the following meanings:

CONNECT

Granting the CONNECT role is equivalent to giving the grantee the LOGIN
privilege. The grantor must have the CREATEROLE privilege.

RESOURCE

Granting the RESOURCE role is equivalent to granting the CREATE and USAGE
privileges on a schema that has the same name as the grantee. This schema must
exist before the grant is given. The grantor must have the privilege to grant
CREATE or USAGE privileges on this schema to the grantee.

DBA

Granting the DBA role is equivalent to making the grantee a superuser. The grantor
must be a superuser.

Notes

The

REVOKE command is used to revoke access privileges.

When a non-owner of an object attempts to GRANT privileges on the object, the command
will fail outright if the user has no privileges whatsoever on the object. As long as some
privilege is available, the command will proceed, but it will grant only those privileges
for which the user has grant options. The GRANT ALL PRIVILEGES forms will issue a
warning message if no grant options are held, while the other forms will issue a warning
if grant options for any of the privileges specifically named in the command are not held.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

158

(In principle these statements apply to the object owner as well, but since the owner is
always treated as holding all grant options, the cases can never occur.)

It should be noted that database superusers can access all objects regardless of object
privilege settings. This is comparable to the rights of root in a Unix system. As with
root, it’s unwise to operate as a superuser except when absolutely necessary.

If a superuser chooses to issue a GRANT or REVOKE command, the command is performed
as though it were issued by the owner of the affected object. In particular, privileges
granted via such a command will appear to have been granted by the object owner. (For
role membership, the membership appears to have been granted by the containing role
itself.)

GRANT and REVOKE can also be done by a role that is not the owner of the affected
object, but is a member of the role that owns the object, or is a member of a role that
holds privileges WITH GRANT OPTION on the object. In this case the privileges will be
recorded as having been granted by the role that actually owns the object or holds the
privileges WITH GRANT OPTION. For example, if table t1 is owned by role g1, of which
role u1 is a member, then u1 can grant privileges on t1 to u2, but those privileges will
appear to have been granted directly by g1. Any other member of role g1 could revoke
them later.

If the role executing GRANT holds the required privileges indirectly via more than one
role membership path, it is unspecified which containing role will be recorded as having
done the grant. In such cases it is best practice to use SET ROLE to become the specific
role you want to do the GRANT as.

Currently, Postgres Plus Advanced Server does not support granting or revoking
privileges for individual columns of a table. One possible workaround is to create a view
having just the desired columns and then grant privileges to that view.

Examples

Grant insert privilege to all users on table emp:

GRANT INSERT ON emp TO PUBLIC;

Grant all available privileges to user mary on view salesemp:

GRANT ALL PRIVILEGES ON salesemp TO mary;

Note that while the above will indeed grant all privileges if executed by a superuser or the
owner of emp, when executed by someone else it will only grant those permissions for
which the someone else has grant options.

Grant membership in role admins to user joe:

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

159

GRANT admins TO joe;

Grant CONNECT privilege to user joe:

GRANT CONNECT TO joe;

See Also

REVOKE, SET ROLE

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

160

3.3.46 INSERT

Name

INSERT -- create new rows in a table

Synopsis

INSERT INTO table[@dblink] [(column [, ...])]
 { VALUES ({ expression | DEFAULT } [, ...])
 [RETURNING return_expression [, ...]
 { INTO { record | variable [, ...] }
 | BULK COLLECT INTO collection [, ...] }]
 | query }

Description

INSERT allows you to insert new rows into a table. You can insert a single row at a time
or several rows as a result of a query.

The columns in the target list may be listed in any order. Each column not present in the
target list will be inserted using a default value, either its declared default value or null.

If the expression for each column is not of the correct data type, automatic type
conversion will be attempted.

The RETURNING INTO { record | variable [, ...] } clause may only be
specified when the INSERT command is used within an SPL program and only when the
VALUES clause is used.

The RETURNING BULK COLLECT INTO collection [, ...] clause may only be
specified if the INSERT command is used within an SPL program. If more than one
collection is specified as the target of the BULK COLLECT INTO clause, then each
collection must consist of a single, scalar field – i.e., collection must not be a
record. return_expression evaluated for each inserted row, becomes an element in
collection starting with the first element. Any existing rows in collection are
deleted. If the result set is empty, then collection will be empty.

You must have INSERT privilege to a table in order to insert into it. If you use the query
clause to insert rows from a query, you also need to have SELECT privilege on any table
used in the query.

Parameters

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

161

table

The name (optionally schema-qualified) of an existing table.

dblink

Database link name identifying a remote database. See the

CREATE DATABASE LINK command for information on database links.

column

The name of a column in table.

expression

An expression or value to assign to column.

DEFAULT

This column will be filled with its default value.

query

A query (SELECT statement) that supplies the rows to be inserted. Refer to the

SELECT command for a description of the syntax.

return_expression

An expression that may include one or more columns from table. If a column
name from table is specified in return_expression, the value substituted for
the column when return_expression is evaluated is determined as follows:

If the column specified in return_expression is assigned a value in
the INSERT command, then the assigned value is used in the evaluation of
return_expression.

If the column specified in return_expression is not assigned a value
in the INSERT command and there is no default value for the column in
the table’s column definition, then null is used in the evaluation of
return_expression.

If the column specified in return_expression is not assigned a value
in the INSERT command and there is a default value for the column in the

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

162

table’s column definition, then the default value is used in the evaluation
of return_expression.

record

A record whose field the evaluated return_expression is to be assigned. The
first return_expression is assigned to the first field in record, the second
return_expression is assigned to the second field in record, etc. The
number of fields in record must exactly match the number of expressions and
the fields must be type-compatible with their assigned expressions.

variable

A variable to which the evaluated return_expression is to be assigned. If
more than one return_expression and variable are specified, the first
return_expression is assigned to the first variable, the second
return_expression is assigned to the second variable, etc. The number of
variables specified following the INTO keyword must exactly match the number
of expressions following the RETURNING keyword and the variables must be
type-compatible with their assigned expressions.

collection

A collection in which an element is created from the evaluated
return_expression. There can be either a single collection which may be a
collection of a single field or a collection of a record type, or there may be more
than one collection in which case each collection must consist of a single field.
The number of return expressions must match in number and order the number of
fields in all specified collections. Each corresponding return_expression and
collection field must be type-compatible.

Examples

Insert a single row into table emp:

INSERT INTO emp VALUES (8021,'JOHN','SALESMAN',7698,'22-FEB-07',1250,500,30);

In this second example, the column, comm, is omitted and therefore it will have the
default value of null:

INSERT INTO emp (empno, ename, job, mgr, hiredate, sal, deptno)
 VALUES (8022,'PETERS','CLERK',7698,'03-DEC-06',950,30);

The third example uses the DEFAULT clause for the hiredate and comm columns rather
than specifying a value:

INSERT INTO emp VALUES (8023,'FORD','ANALYST',7566,NULL,3000,NULL,20);

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

163

This example creates a table for the department names and then inserts into the table by
selecting from the dname column of the dept table:

CREATE TABLE deptnames (
 deptname VARCHAR2(14)
);
INSERT INTO deptnames SELECT dname FROM dept;

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

164

3.3.47 LOCK

Name

LOCK -- lock a table

Synopsis

LOCK TABLE name [, ...] IN lockmode MODE [NOWAIT]

where lockmode is one of:

ROW SHARE | ROW EXCLUSIVE | SHARE | SHARE ROW EXCLUSIVE |
EXCLUSIVE

Description

LOCK TABLE obtains a table-level lock, waiting if necessary for any conflicting locks to
be released. If NOWAIT is specified, LOCK TABLE does not wait to acquire the desired
lock: if it cannot be acquired immediately, the command is aborted and an error is
emitted. Once obtained, the lock is held for the remainder of the current transaction.
(There is no “UNLOCK TABLE” command; locks are always released at transaction
end.)

When acquiring locks automatically for commands that reference tables, Postgres Plus
Advanced Server always uses the least restrictive lock mode possible. LOCK TABLE
provides for cases when you might need more restrictive locking. For example, suppose
an application runs a transaction at the isolation level read committed and needs to ensure
that data in a table remains stable for the duration of the transaction. To achieve this you
could obtain SHARE lock mode over the table before querying. This will prevent
concurrent data changes and ensure subsequent reads of the table see a stable view of
committed data, because SHARE lock mode conflicts with the ROW EXCLUSIVE lock
acquired by writers, and your LOCK TABLE name IN SHARE MODE statement will wait
until any concurrent holders of ROW EXCLUSIVE mode locks commit or roll back. Thus,
once you obtain the lock, there are no uncommitted writes outstanding; furthermore none
can begin until you release the lock.

To achieve a similar effect when running a transaction at the isolation level serializable,
you have to execute the LOCK TABLE statement before executing any data modification
statement. A serializable transaction’s view of data will be frozen when its first data
modification statement begins. A later LOCK TABLE will still prevent concurrent writes -
but it won’t ensure that what the transaction reads corresponds to the latest committed
values.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

165

If a transaction of this sort is going to change the data in the table, then it should use
SHARE ROW EXCLUSIVE lock mode instead of SHARE mode.

This ensures that only one transaction of this type runs at a time. Without this, a deadlock
is possible: two transactions might both acquire SHARE mode, and then be unable to also
acquire ROW EXCLUSIVE mode to actually perform their updates. (Note that a
transaction’s own locks never conflict, so a transaction can acquire ROW EXCLUSIVE
mode when it holds SHARE mode - but not if anyone else holds SHARE mode.) To avoid
deadlocks, make sure all transactions acquire locks on the same objects in the same order,
and if multiple lock modes are involved for a single object, then transactions should
always acquire the most restrictive mode first.

Parameters

name

The name (optionally schema-qualified) of an existing table to lock

The command LOCK TABLE a, b; is equivalent to LOCK TABLE a; LOCK
TABLE b. The tables are locked one-by-one in the order specified in the LOCK
TABLE command.

lockmode

The lock mode specifies which locks this lock conflicts with.

If no lock mode is specified, then ACCESS EXCLUSIVE, the most restrictive
mode, is used. (ACCESS EXCLUSIVE is not an Oracle compatible term. In
Postgres Plus Advanced Server, this mode ensures that no other transaction can
access the locked table in any manner.)

NOWAIT

Specifies that LOCK TABLE should not wait for any conflicting locks to be
released: if the specified lock cannot be immediately acquired without waiting,
the transaction is aborted.

Notes

All forms of LOCK require UPDATE and/or DELETE privileges.

LOCK TABLE is useful only inside a transaction block since the lock is dropped as soon
as the transaction ends. A LOCK TABLE command appearing outside any transaction
block forms a self-contained transaction, so the lock will be dropped as soon as it is
obtained.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

166

LOCK TABLE only deals with table-level locks, and so the mode names involving ROW are
all misnomers. These mode names should generally be read as indicating the intention of
the user to acquire row-level locks within the locked table. Also, ROW EXCLUSIVE mode
is a sharable table lock. Keep in mind that all the lock modes have identical semantics so
far as LOCK TABLE is concerned, differing only in the rules about which modes conflict
with which.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

167

3.3.48 REVOKE

Name

REVOKE -- remove access privileges

Synopsis

REVOKE { { SELECT | INSERT | UPDATE | DELETE | REFERENCES }
 [,...] | ALL [PRIVILEGES] }
 ON tablename
 FROM { username | groupname | PUBLIC } [, ...]
 [CASCADE | RESTRICT]

REVOKE { SELECT | ALL [PRIVILEGES] }
 ON sequencename
 FROM { username | groupname | PUBLIC } [, ...]
 [CASCADE | RESTRICT]

REVOKE { EXECUTE | ALL [PRIVILEGES] }
 ON FUNCTION progname
 ([[argmode] [argname] argtype] [, ...])
 FROM { username | groupname | PUBLIC } [, ...]
 [CASCADE | RESTRICT]

REVOKE { EXECUTE | ALL [PRIVILEGES] }
 ON PROCEDURE progname
 [([[argmode] [argname] argtype] [, ...])]
 FROM { username | groupname | PUBLIC } [, ...]
 [CASCADE | RESTRICT]

REVOKE { EXECUTE | ALL [PRIVILEGES] }
 ON PACKAGE packagename
 FROM { username | groupname | PUBLIC } [, ...]
 [CASCADE | RESTRICT]

REVOKE role [, ...] FROM { username | groupname | PUBLIC }
 [, ...]
 [CASCADE | RESTRICT]

REVOKE { CONNECT | RESOURCE | DBA } [, ...]
 FROM { username | groupname } [, ...]

Description

The REVOKE command revokes previously granted privileges from one or more roles.
The key word PUBLIC refers to the implicitly defined group of all roles.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

168

See the description of the

GRANT command for the meaning of the privilege types.

Note that any particular role will have the sum of privileges granted directly to it,
privileges granted to any role it is presently a member of, and privileges granted to
PUBLIC. Thus, for example, revoking SELECT privilege from PUBLIC does not
necessarily mean that all roles have lost SELECT privilege on the object: those who have
it granted directly or via another role will still have it.

If the privilege had been granted with the grant option, the grant option for the privilege
is revoked as well as the privilege, itself.

If a user holds a privilege with grant option and has granted it to other users then the
privileges held by those other users are called dependent privileges. If the privilege or the
grant option held by the first user is being revoked and dependent privileges exist, those
dependent privileges are also revoked if CASCADE is specified, else the revoke action will
fail. This recursive revocation only affects privileges that were granted through a chain of
users that is traceable to the user that is the subject of this REVOKE command. Thus, the
affected users may effectively keep the privilege if it was also granted through other
users.

Note: CASCADE is not an Oracle compatible option. By default Oracle always cascades
dependent privileges, but Postgres Plus Advanced Server requires the CASCADE keyword
to be explicitly given, otherwise the REVOKE command will fail.

When revoking membership in a role, GRANT OPTION is instead called ADMIN OPTION,
but the behavior is similar.

Notes

A user can only revoke privileges that were granted directly by that user. If, for example,
user A has granted a privilege with grant option to user B, and user B has in turned
granted it to user C, then user A cannot revoke the privilege directly from C. Instead, user
A could revoke the grant option from user B and use the CASCADE option so that the
privilege is in turn revoked from user C. For another example, if both A and B have
granted the same privilege to C, A can revoke his own grant but not B’s grant, so C will
still effectively have the privilege.

When a non-owner of an object attempts to REVOKE privileges on the object, the
command will fail outright if the user has no privileges whatsoever on the object. As long
as some privilege is available, the command will proceed, but it will revoke only those
privileges for which the user has grant options. The REVOKE ALL PRIVILEGES forms
will issue a warning message if no grant options are held, while the other forms will issue
a warning if grant options for any of the privileges specifically named in the command

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

169

are not held. (In principle these statements apply to the object owner as well, but since the
owner is always treated as holding all grant options, the cases can never occur.)

If a superuser chooses to issue a GRANT or REVOKE command, the command is performed
as though it were issued by the owner of the affected object. Since all privileges
ultimately come from the object owner (possibly indirectly via chains of grant options), it
is possible for a superuser to revoke all privileges, but this may require use of CASCADE
as stated above.

REVOKE can also be done by a role that is not the owner of the affected object, but is a
member of the role that owns the object, or is a member of a role that holds privileges
WITH GRANT OPTION on the object. In this case the command is performed as though it
were issued by the containing role that actually owns the object or holds the privileges
WITH GRANT OPTION. For example, if table t1 is owned by role g1, of which role u1 is
a member, then u1 can revoke privileges on t1 that are recorded as being granted by g1.
This would include grants made by u1 as well as by other members of role g1.

If the role executing REVOKE holds privileges indirectly via more than one role
membership path, it is unspecified which containing role will be used to perform the
command. In such cases it is best practice to use SET ROLE to become the specific role
you want to do the REVOKE as. Failure to do so may lead to revoking privileges other
than the ones you intended, or not revoking anything at all.

Examples

Revoke insert privilege for the public on table emp:

REVOKE INSERT ON emp FROM PUBLIC;

Revoke all privileges from user mary on view salesemp:

REVOKE ALL PRIVILEGES ON salesemp FROM mary;

Note that this actually means “revoke all privileges that I granted”.

Revoke membership in role admins from user joe:

REVOKE admins FROM joe;

Revoke CONNECT privilege from user joe:

REVOKE CONNECT FROM joe;

See Also

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

170

GRANT, SET ROLE

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

171

3.3.49 ROLLBACK

Name

ROLLBACK -- abort the current transaction

Synopsis

ROLLBACK [WORK]

Description

ROLLBACK rolls back the current transaction and causes all the updates made by the
transaction to be discarded.

Parameters

WORK

Optional key word - has no effect.

Notes

Use

COMMIT to successfully terminate a transaction.

Issuing ROLLBACK when not inside a transaction does no harm.

Examples

To abort all changes:

ROLLBACK;

See Also

COMMIT,

ROLLBACK TO SAVEPOINT,

SAVEPOINT

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

172

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

173

3.3.50 ROLLBACK TO SAVEPOINT

Name

ROLLBACK TO SAVEPOINT -- roll back to a savepoint

Synopsis

ROLLBACK [WORK] TO [SAVEPOINT] savepoint_name

Description

Roll back all commands that were executed after the savepoint was established. The
savepoint remains valid and can be rolled back to again later, if needed.

ROLLBACK TO SAVEPOINT implicitly destroys all savepoints that were established after
the named savepoint.

Parameters

savepoint_name

The savepoint to which to roll back.

Notes

Specifying a savepoint name that has not been established is an error.

ROLLBACK TO SAVEPOINT is not supported within SPL programs.

Examples

To undo the effects of the commands executed savepoint depts was established:

\set AUTOCOMMIT off
INSERT INTO dept VALUES (50, 'HR', 'NEW YORK');
SAVEPOINT depts;
INSERT INTO emp (empno, ename, deptno) VALUES (9001, 'JONES', 50);
INSERT INTO emp (empno, ename, deptno) VALUES (9002, 'ALICE', 50);
ROLLBACK TO SAVEPOINT depts;

See Also

COMMIT,

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

174

ROLLBACK,

SAVEPOINT

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

175

3.3.51 SAVEPOINT

Name

SAVEPOINT -- define a new savepoint within the current transaction

Synopsis

SAVEPOINT savepoint_name

Description

SAVEPOINT establishes a new savepoint within the current transaction.

A savepoint is a special mark inside a transaction that allows all commands that are
executed after it was established to be rolled back, restoring the transaction state to what
it was at the time of the savepoint.

Parameters

savepoint_name

The name to be given to the savepoint.

Notes

Use

ROLLBACK TO SAVEPOINT to rollback to a savepoint.

Savepoints can only be established when inside a transaction block. There can be
multiple savepoints defined within a transaction.

When another savepoint is established with the same name as a previous savepoint, the
old savepoint is kept, though only the more recent one will be used when rolling back.

SAVEPOINT is not supported within SPL programs.

Examples

To establish a savepoint and later undo the effects of all commands executed after it was
established:

\set AUTOCOMMIT off
INSERT INTO dept VALUES (50, 'HR', 'NEW YORK');

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

176

SAVEPOINT depts;
INSERT INTO emp (empno, ename, deptno) VALUES (9001, 'JONES', 50);
INSERT INTO emp (empno, ename, deptno) VALUES (9002, 'ALICE', 50);
SAVEPOINT emps;
INSERT INTO jobhist VALUES (9001,'17-SEP-07',NULL,'CLERK',800,NULL,50,'New
Hire');
INSERT INTO jobhist VALUES (9002,'20-SEP-07',NULL,'CLERK',700,NULL,50,'New
Hire');
ROLLBACK TO depts;
COMMIT;

The above transaction will commit a row into the dept table, but the inserts into the emp
and jobhist tables are rolled back.

See Also

COMMIT,

ROLLBACK,

ROLLBACK TO SAVEPOINT

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

177

3.3.52 SELECT

Name

SELECT -- retrieve rows from a table or view

Synopsis

SELECT [optimizer_hint] [ALL | DISTINCT]
 * | expression [AS output_name] [, ...]
 FROM from_item [, ...]
 [WHERE condition]
 [[START WITH start_expression]
 CONNECT BY { PRIOR parent_expr = child_expr |
 child_expr = PRIOR parent_expr }
 [ORDER SIBLINGS BY expression [ASC | DESC] [, ...]]]
 [GROUP BY expression [, ...] [LEVEL]]
 [HAVING condition [, ...]]
 [{ UNION [ALL] | INTERSECT | MINUS } select]
 [ORDER BY expression [ASC | DESC] [, ...]]
 [FOR UPDATE]

where from_item can be one of:

 table_name[@dblink] [alias]
 (select) alias
 from_item [NATURAL] join_type from_item
 [ON join_condition | USING (join_column [, ...])]

Description

SELECT retrieves rows from one or more tables. The general processing of SELECT is as
follows:

1. All elements in the FROM list are computed. (Each element in the FROM list is a
real or virtual table.) If more than one element is specified in the FROM list, they
are cross-joined together. (See FROM Clause below.)

2. If the WHERE clause is specified, all rows that do not satisfy the condition are
eliminated from the output. (See WHERE Clause below.)

3. If the GROUP BY clause is specified, the output is divided into groups of rows that
match on one or more values. If the HAVING clause is present, it eliminates groups
that do not satisfy the given condition. (See GROUP BY Clause and HAVING
Clause below.)

4. Using the operators UNION, INTERSECT, and MINUS, the output of more than one
SELECT statement can be combined to form a single result set. The UNION

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

178

operator returns all rows that are in one or both of the result sets. The INTERSECT
operator returns all rows that are strictly in both result sets. The MINUS operator
returns the rows that are in the first result set but not in the second. In all three
cases, duplicate rows are eliminated. In the case of the UNION operator, if ALL is
specified then duplicates are not eliminated. (See UNION Clause, INTERSECT
Clause, and MINUS Clause below.)

5. The actual output rows are computed using the SELECT output expressions for
each selected row. (See SELECT List below.)

6. The CONNECT BY clause is used to select data that has a hierarchical relationship.
Such data has a parent-child relationship between rows. (See CONNECT BY
Clause .)

7. If the ORDER BY clause is specified, the returned rows are sorted in the specified
order. If ORDER BY is not given, the rows are returned in whatever order the
system finds fastest to produce. (See ORDER BY Clause below.)

8. DISTINCT eliminates duplicate rows from the result. ALL (the default) will return
all candidate rows, including duplicates. (See DISTINCT Clause below.)

9. The FOR UPDATE clause causes the SELECT statement to lock the selected rows
against concurrent updates. (See FOR UPDATE Clause below.)

You must have SELECT privilege on a table to read its values. The use of FOR UPDATE
requires UPDATE privilege as well.

Parameters

optimizer_hint

Comment-embedded hints to the optimizer for selection of an execution plan. See
Section 3.4 for information on optimizer hints.

The remaining parameters are discussed within the following sections.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

179

3.3.52.1 FROM Clause

The FROM clause specifies one or more source tables for the SELECT. If multiple sources
are specified, the result is the Cartesian product (cross join) of all the sources. Usually
qualification conditions are added to restrict the returned rows to a small subset of the
Cartesian product.

The FROM clause can contain the following elements:

table_name[@dblink]

The name (optionally schema-qualified) of an existing table or view. dblink is a
database link name identifying a remote database. See the

CREATE DATABASE LINK command for information on database links.

alias

A substitute name for the FROM item containing the alias. An alias is used for
brevity or to eliminate ambiguity for self-joins (where the same table is scanned
multiple times). When an alias is provided, it completely hides the actual name of
the table or function; for example given FROM foo AS f, the remainder of the
SELECT must refer to this FROM item as f not foo.

select

A sub-SELECT can appear in the FROM clause. This acts as though its output were
created as a temporary table for the duration of this single SELECT command.
Note that the sub-SELECT must be surrounded by parentheses, and an alias must
be provided for it.

join_type

One of

[INNNER] JOIN
LEFT [OUTER] JOIN
RIGHT [OUTER] JOIN
FULL [OUTER] JOIN
CROSS JOIN

For the INNER and OUTER join types, a join condition must be specified, namely
exactly one of NATURAL, ON join_condition, or USING (join_column [,

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

180

...]). See below for the meaning. For CROSS JOIN, none of these clauses
may appear.

A JOIN clause combines two FROM items. Use parentheses if necessary to
determine the order of nesting. In the absence of parentheses, JOINs nest left-to-
right. In any case JOIN binds more tightly than the commas separating FROM
items.

CROSS JOIN and INNER JOIN produce a simple Cartesian product, the same
result as you get from listing the two items at the top level of FROM, but restricted
by the join condition (if any). CROSS JOIN is equivalent to INNER JOIN ON
(TRUE), that is, no rows are removed by qualification. These join types are just a
notational convenience, since they do nothing you couldn’t do with plain FROM
and WHERE.

LEFT OUTER JOIN returns all rows in the qualified Cartesian product (i.e., all
combined rows that pass its join condition), plus one copy of each row in the left-
hand table for which there was no right-hand row that passed the join condition.
This left-hand row is extended to the full width of the joined table by inserting
null values for the right-hand columns. Note that only the JOIN clause’s own
condition is considered while deciding which rows have matches. Outer
conditions are applied afterwards.

Conversely, RIGHT OUTER JOIN returns all the joined rows, plus one row for
each unmatched right-hand row (extended with nulls on the left). This is just a
notational convenience, since you could convert it to a LEFT OUTER JOIN by
switching the left and right inputs.

FULL OUTER JOIN returns all the joined rows, plus one row for each unmatched
left-hand row (extended with nulls on the right), plus one row for each unmatched
right-hand row (extended with nulls on the left).

ON join_condition

join_condition is an expression resulting in a value of type BOOLEAN (similar
to a WHERE clause) that specifies which rows in a join are considered to match.

USING (join_column [, ...])

A clause of the form USING (a, b, ...) is shorthand for ON
left_table.a = right_table.a AND left_table.b =
right_table.b Also, USING implies that only one of each pair of equivalent
columns will be included in the join output, not both.

NATURAL

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

181

NATURAL is shorthand for a USING list that mentions all columns in the two tables
that have the same names.

3.3.52.2 WHERE Clause

The optional WHERE clause has the general form

WHERE condition

where condition is any expression that evaluates to a result of type BOOLEAN. Any row
that does not satisfy this condition will be eliminated from the output. A row satisfies the
condition if it returns “true” when the actual row values are substituted for any variable
references.

3.3.52.3 GROUP BY Clause

The optional GROUP BY clause has the general form

GROUP BY expression [, ...]

GROUP BY will condense into a single row all selected rows that share the same values
for the grouped expressions. expression can be an input column name, or the name or
ordinal number of an output column (SELECT list item), or an arbitrary expression
formed from input-column values. In case of ambiguity, a GROUP BY name will be
interpreted as an input-column name rather than an output column name.

Aggregate functions, if any are used, are computed across all rows making up each
group, producing a separate value for each group (whereas without GROUP BY, an
aggregate produces a single value computed across all the selected rows). When GROUP
BY is present, it is not valid for the SELECT list expressions to refer to ungrouped
columns except within aggregate functions, since there would be more than one possible
value to return for an ungrouped column.

3.3.52.4 HAVING Clause

The optional HAVING clause has the general form

HAVING condition

where condition is the same as specified for the WHERE clause.

HAVING eliminates group rows that do not satisfy the condition. HAVING is different from
WHERE; WHERE filters individual rows before the application of GROUP BY, while
HAVING filters group rows created by GROUP BY. Each column referenced in condition

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

182

must unambiguously reference a grouping column, unless the reference appears within an
aggregate function.

3.3.52.5 SELECT List

The SELECT list (between the key words SELECT and FROM) specifies expressions that
form the output rows of the SELECT statement. The expressions can (and usually do)
refer to columns computed in the FROM clause. Using the clause AS output_name,
another name can be specified for an output column. This name is primarily used to label
the column for display. It can also be used to refer to the column’s value in ORDER BY
and GROUP BY clauses, but not in the WHERE or HAVING clauses; there you must write
out the expression instead.

Instead of an expression, * can be written in the output list as a shorthand for all the
columns of the selected rows.

3.3.52.6 UNION Clause

The UNION clause has this general form:

select_statement UNION [ALL] select_statement

select_statement is any SELECT statement without an ORDER BY or FOR UPDATE
clause. (ORDER BY can be attached to a sub-expression if it is enclosed in parentheses.
Without parentheses, these clauses will be taken to apply to the result of the UNION, not
to its right-hand input expression.)

The UNION operator computes the set union of the rows returned by the involved SELECT
statements. A row is in the set union of two result sets if it appears in at least one of the
result sets. The two SELECT statements that represent the direct operands of the UNION
must produce the same number of columns, and corresponding columns must be of
compatible data types.

The result of UNION does not contain any duplicate rows unless the ALL option is
specified. ALL prevents elimination of duplicates.

Multiple UNION operators in the same SELECT statement are evaluated left to right,
unless otherwise indicated by parentheses.

Currently, FOR UPDATE may not be specified either for a UNION result or for any input
of a UNION.

3.3.52.7 INTERSECT Clause

The INTERSECT clause has this general form:

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

183

select_statement INTERSECT select_statement

select_statement is any SELECT statement without an ORDER BY or FOR UPDATE
clause.

The INTERSECT operator computes the set intersection of the rows returned by the
involved SELECT statements. A row is in the intersection of two result sets if it appears in
both result sets.

The result of INTERSECT does not contain any duplicate rows.

Multiple INTERSECT operators in the same SELECT statement are evaluated left to right,
unless parentheses dictate otherwise. INTERSECT binds more tightly than UNION. That is,
A UNION B INTERSECT C will be read as A UNION (B INTERSECT C).

3.3.52.8 MINUS Clause

The MINUS clause has this general form:

select_statement MINUS select_statement

select_statement is any SELECT statement without an ORDER BY or FOR UPDATE
clause.

The MINUS operator computes the set of rows that are in the result of the left SELECT
statement but not in the result of the right one.

The result of MINUS does not contain any duplicate rows.

Multiple MINUS operators in the same SELECT statement are evaluated left to right,
unless parentheses dictate otherwise. MINUS binds at the same level as UNION.

3.3.52.9 CONNECT BY Clause

The CONNECT BY clause determines the parent-child relationship of rows when
performing a hierarchical query. It has the general form:

CONNECT BY { PRIOR parent_expr = child_expr |
 child_expr = PRIOR parent_expr }

parent_expr is evaluated on a candidate parent row. If parent_expr =
child_expr results in “true” for a row returned by the FROM clause, then this row is
considered a child of the parent.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

184

The following optional clauses may be specified in conjunction with the CONNECT BY
clause:

START WITH start_expression

The rows returned by the FROM clause on which start_expression evaluates
to “true” become the root nodes of the hierarchy.

ORDER SIBLINGS BY expression [ASC | DESC] [, ...]

Sibling rows of the hierarchy are ordered by expression in the result set.

(See Section 2.2.5 for additional information on hierarchical queries.)

3.3.52.10 ORDER BY Clause

The optional ORDER BY clause has this general form:

ORDER BY expression [ASC | DESC] [, ...]

expression can be the name or ordinal number of an output column (SELECT list item),
or it can be an arbitrary expression formed from input-column values.

The ORDER BY clause causes the result rows to be sorted according to the specified
expressions. If two rows are equal according to the leftmost expression, they are
compared according to the next expression and so on. If they are equal according to all
specified expressions, they are returned in an implementation-dependent order.

The ordinal number refers to the ordinal (left-to-right) position of the result column. This
feature makes it possible to define an ordering on the basis of a column that does not
have a unique name. This is never absolutely necessary because it is always possible to
assign a name to a result column using the AS clause.

It is also possible to use arbitrary expressions in the ORDER BY clause, including columns
that do not appear in the SELECT result list. Thus the following statement is valid:

SELECT ename FROM emp ORDER BY empno;

A limitation of this feature is that an ORDER BY clause applying to the result of a UNION,
INTERSECT, or MINUS clause may only specify an output column name or number, not
an expression.

If an ORDER BY expression is a simple name that matches both a result column name and
an input column name, ORDER BY will interpret it as the result column name. This is the
opposite of the choice that GROUP BY will make in the same situation. This inconsistency
is made to be compatible with the SQL standard.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

185

Optionally one may add the key word ASC (ascending) or DESC (descending) after any
expression in the ORDER BY clause. If not specified, ASC is assumed by default.

The null value sorts higher than any other value. In other words, with ascending sort
order, null values sort at the end, and with descending sort order, null values sort at the
beginning.

Character-string data is sorted according to the locale-specific collation order that was
established when the database cluster was initialized.

3.3.52.11 DISTINCT Clause

If DISTINCT is specified, all duplicate rows are removed from the result set (one row is
kept from each group of duplicates). ALL specifies the opposite: all rows are kept; that is
the default.

3.3.52.12 FOR UPDATE Clause

The FOR UPDATE clause has this form:

FOR UPDATE

FOR UPDATE causes the rows retrieved by the SELECT statement to be locked as though
for update. This prevents them from being modified or deleted by other transactions until
the current transaction ends. That is, other transactions that attempt UPDATE, DELETE, or
SELECT FOR UPDATE of these rows will be blocked until the current transaction ends.
Also, if an UPDATE, DELETE, or SELECT FOR UPDATE from another transaction has
already locked a selected row or rows, SELECT FOR UPDATE will wait for the other
transaction to complete, and will then lock and return the updated row (or no row, if the
row was deleted).

FOR UPDATE cannot be used in contexts where returned rows can’t be clearly identified
with individual table rows; for example it can't be used with aggregation.

Examples

To join table, dept with table, emp:

SELECT d.deptno, d.dname, e.empno, e.ename, e.mgr, e.hiredate
 FROM emp e, dept d
 WHERE d.deptno = e.deptno;

 deptno | dname | empno | ename | mgr | hiredate
--------+------------+-------+--------+------+--------------------
 10 | ACCOUNTING | 7934 | MILLER | 7782 | 23-JAN-82 00:00:00
 10 | ACCOUNTING | 7782 | CLARK | 7839 | 09-JUN-81 00:00:00
 10 | ACCOUNTING | 7839 | KING | | 17-NOV-81 00:00:00
 20 | RESEARCH | 7788 | SCOTT | 7566 | 19-APR-87 00:00:00

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

186

 20 | RESEARCH | 7566 | JONES | 7839 | 02-APR-81 00:00:00
 20 | RESEARCH | 7369 | SMITH | 7902 | 17-DEC-80 00:00:00
 20 | RESEARCH | 7876 | ADAMS | 7788 | 23-MAY-87 00:00:00
 20 | RESEARCH | 7902 | FORD | 7566 | 03-DEC-81 00:00:00
 30 | SALES | 7521 | WARD | 7698 | 22-FEB-81 00:00:00
 30 | SALES | 7844 | TURNER | 7698 | 08-SEP-81 00:00:00
 30 | SALES | 7499 | ALLEN | 7698 | 20-FEB-81 00:00:00
 30 | SALES | 7698 | BLAKE | 7839 | 01-MAY-81 00:00:00
 30 | SALES | 7654 | MARTIN | 7698 | 28-SEP-81 00:00:00
 30 | SALES | 7900 | JAMES | 7698 | 03-DEC-81 00:00:00
(14 rows)

To sum the column, sal of all employees and group the results by department number:

SELECT deptno, SUM(sal) AS total
 FROM emp
 GROUP BY deptno;

 deptno | total
--------+----------
 10 | 8750.00
 20 | 10875.00
 30 | 9400.00
(3 rows)

To sum the column, sal of all employees, group the results by department number and
show those group totals that are less than 10000:

SELECT deptno, SUM(sal) AS total
 FROM emp
 GROUP BY deptno
 HAVING SUM(sal) < 10000;

 deptno | total
--------+---------
 10 | 8750.00
 30 | 9400.00
(2 rows)

The following two examples are identical ways of sorting the individual results according
to the contents of the second column (dname):

SELECT * FROM dept ORDER BY dname;

 deptno | dname | loc
--------+------------+----------
 10 | ACCOUNTING | NEW YORK
 40 | OPERATIONS | BOSTON
 20 | RESEARCH | DALLAS
 30 | SALES | CHICAGO
(4 rows)

SELECT * FROM dept ORDER BY 2;

 deptno | dname | loc
--------+------------+----------
 10 | ACCOUNTING | NEW YORK
 40 | OPERATIONS | BOSTON
 20 | RESEARCH | DALLAS

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

187

 30 | SALES | CHICAGO
(4 rows)

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

188

3.3.53 SET CONSTRAINTS

Name

SET CONSTRAINTS -- set constraint checking modes for the current transaction

Synopsis

SET CONSTRAINTS { ALL | name [, ...] } { DEFERRED | IMMEDIATE }

Description

SET CONSTRAINTS sets the behavior of constraint checking within the current
transaction. IMMEDIATE constraints are checked at the end of each statement. DEFERRED
constraints are not checked until transaction commit. Each constraint has its own
IMMEDIATE or DEFERRED mode.

Upon creation, a constraint is given one of three characteristics: DEFERRABLE
INITIALLY DEFERRED, DEFERRABLE INITIALLY IMMEDIATE, or NOT
DEFERRABLE. The third class is always IMMEDIATE and is not affected by the SET
CONSTRAINTS command. The first two classes start every transaction in the indicated
mode, but their behavior can be changed within a transaction by SET CONSTRAINTS.

SET CONSTRAINTS with a list of constraint names changes the mode of just those
constraints (which must all be deferrable). If there are multiple constraints matching any
given name, all are affected. SET CONSTRAINTS ALL changes the mode of all
deferrable constraints.

When SET CONSTRAINTS changes the mode of a constraint from DEFERRED to
IMMEDIATE, the new mode takes effect retroactively: any outstanding data modifications
that would have been checked at the end of the transaction are instead checked during the
execution of the SET CONSTRAINTS command. If any such constraint is violated, the
SET CONSTRAINTS fails (and does not change the constraint mode). Thus, SET
CONSTRAINTS can be used to force checking of constraints to occur at a specific point in
a transaction.

Currently, only foreign key constraints are affected by this setting. Check and unique
constraints are always effectively not deferrable.

Notes

This command only alters the behavior of constraints within the current transaction.
Thus, if you execute this command outside of a transaction block it will not appear to
have any effect.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

189

3.3.54 SET ROLE

Name

SET ROLE -- set the current user identifier of the current session

Synopsis

SET ROLE { rolename | NONE }

Description

This command sets the current user identifier of the current SQL session context to be
rolename. After SET ROLE, permissions checking for SQL commands is carried out as
though the named role were the one that had logged in originally.

The specified rolename must be a role that the current session user is a member of. (If
the session user is a superuser, any role can be selected.)

NONE resets the current user identifier to be the current session user identifier. These
forms may be executed by any user.

Notes

Using this command, it is possible to either add privileges or restrict one’s privileges. If
the session user role has the INHERITS attribute, then it automatically has all the
privileges of every role that it could SET ROLE to; in this case SET ROLE effectively
drops all the privileges assigned directly to the session user and to the other roles it is a
member of, leaving only the privileges available to the named role. On the other hand, if
the session user role has the NOINHERITS attribute, SET ROLE drops the privileges
assigned directly to the session user and instead acquires the privileges available to the
named role.

In particular, when a superuser chooses to SET ROLE to a non-superuser role, she loses
her superuser privileges.

Examples

User mary takes on the identify of role admins:

SET ROLE admins;

User mary reverts back to her own identity:

SET ROLE NONE;

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

190

See Also

ALTER ROLE,

 CREATE ROLE, DROP ROLE,

GRANT,

REVOKE

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

191

3.3.55 SET TRANSACTION

Name

SET TRANSACTION -- set the characteristics of the current transaction

Synopsis

SET TRANSACTION transaction_mode

where transaction_mode is one of:

 ISOLATION LEVEL { SERIALIZABLE | READ COMMITTED }
 READ WRITE | READ ONLY

Description

The SET TRANSACTION command sets the characteristics of the current transaction. It
has no effect on any subsequent transactions.

The available transaction characteristics are the transaction isolation level and the
transaction access mode (read/write or read-only).

The isolation level of a transaction determines what data the transaction can see when
other transactions are running concurrently:

READ COMMITTED

A statement can only see rows committed before it began. This is the default.

SERIALIZABLE

All statements of the current transaction can only see rows committed before the
first query or data-modification statement was executed in this transaction.

The transaction isolation level cannot be changed after the first query or data-
modification statement (SELECT, INSERT, DELETE, UPDATE, or FETCH) of a transaction
has been executed.

The transaction access mode determines whether the transaction is read/write or read-
only. Read/write is the default. When a transaction is read-only, the following SQL
commands are disallowed: INSERT, UPDATE, and DELETE if the table they would write
to is not a temporary table; all CREATE, ALTER, and DROP commands; COMMENT, GRANT,
REVOKE, TRUNCATE; and EXECUTE if the command it would execute is among those
listed. This is a high-level notion of read-only that does not prevent all writes to disk.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

192

3.3.56 TRUNCATE

Name

TRUNCATE -- empty a table

Synopsis

TRUNCATE TABLE name

Description

TRUNCATE quickly removes all rows from a table. It has the same effect as an unqualified
DELETE but since it does not actually scan the table, it is faster. This is most useful on
large tables.

Parameters

name

The name (optionally schema-qualified) of the table to be truncated.

Notes

TRUNCATE cannot be used if there are foreign-key references to the table from other
tables. Checking validity in such cases would require table scans, and the whole point is
not to do one.

TRUNCATE will not run any user-defined ON DELETE triggers that might exist for the
table.

Examples

Truncate the table bigtable:

TRUNCATE TABLE bigtable;

See Also

 DELETE

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

193

3.3.57 UPDATE

Name

UPDATE -- update rows of a table

Synopsis

UPDATE [optimizer_hint] table[@dblink]
 SET column = { expression | DEFAULT } [, ...]
 [WHERE condition]
 [RETURNING return_expression [, ...]
 { INTO { record | variable [, ...] }
 | BULK COLLECT INTO collection [, ...] }]

Description

UPDATE changes the values of the specified columns in all rows that satisfy the condition.
Only the columns to be modified need be mentioned in the SET clause; columns not
explicitly modified retain their previous values.

The RETURNING INTO { record | variable [, ...] } clause may only be
specified within an SPL program. In addition the result set of the UPDATE command must
not return more than one row, otherwise an exception is thrown. If the result set is empty,
then the contents of the target record or variables are set to null.

The RETURNING BULK COLLECT INTO collection [, ...] clause may only be
specified if the UPDATE command is used within an SPL program. If more than one
collection is specified as the target of the BULK COLLECT INTO clause, then each
collection must consist of a single, scalar field – i.e., collection must not be a
record. The result set of the UPDATE command may contain none, one, or more rows.
return_expression evaluated for each row of the result set, becomes an element in
collection starting with the first element. Any existing rows in collection are
deleted. If the result set is empty, then collection will be empty.

You must have the UPDATE privilege on the table to update it, as well as the SELECT
privilege to any table whose values are read in expression or condition.

Parameters

optimizer_hint

Comment-embedded hints to the optimizer for selection of an execution plan. See
Section 3.4 for information on optimizer hints.

table

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

194

The name (optionally schema-qualified) of the table to update.

dblink

Database link name identifying a remote database. See the

CREATE DATABASE LINK command for information on database links.

column

The name of a column in table.

expression

An expression to assign to the column. The expression may use the old values of
this and other columns in the table.

DEFAULT

Set the column to its default value (which will be null if no specific default
expression has been assigned to it).

condition

An expression that returns a value of type BOOLEAN. Only rows for which this
expression returns true will be updated.

return_expression

An expression that may include one or more columns from table. If a column
name from table is specified in return_expression, the value substituted for
the column when return_expression is evaluated is determined as follows:

If the column specified in return_expression is assigned a value in
the UPDATE command, then the assigned value is used in the evaluation of
return_expression.

If the column specified in return_expression is not assigned a value
in the UPDATE command, then the column’s current value in the affected
row is used in the evaluation of return_expression.

record

A record whose field the evaluated return_expression is to be assigned. The
first return_expression is assigned to the first field in record, the second
return_expression is assigned to the second field in record, etc. The

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

195

number of fields in record must exactly match the number of expressions and
the fields must be type-compatible with their assigned expressions.

variable

A variable to which the evaluated return_expression is to be assigned. If
more than one return_expression and variable are specified, the first
return_expression is assigned to the first variable, the second
return_expression is assigned to the second variable, etc. The number of
variables specified following the INTO keyword must exactly match the number
of expressions following the RETURNING keyword and the variables must be
type-compatible with their assigned expressions.

collection

A collection in which an element is created from the evaluated
return_expression. There can be either a single collection which may be a
collection of a single field or a collection of a record type, or there may be more
than one collection in which case each collection must consist of a single field.
The number of return expressions must match in number and order the number of
fields in all specified collections. Each corresponding return_expression and
collection field must be type-compatible.

Examples

Change the location to AUSTIN for department 20 in the dept table:

UPDATE dept SET loc = 'AUSTIN' WHERE deptno = 20;

For all employees with job SALESMAN in the emp table, update the salary by 10% and
increase the commission by 500.

UPDATE emp SET sal = sal * 1.1, comm = comm + 500 WHERE job = 'SALESMAN';

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

196

3.4 Optimizer Hints

When a DELETE, SELECT, or UPDATE command is issued, the Postgres Plus Advanced
Server database server goes through a process to produce the result set of the command
which is the final set of rows returned by the database server. How this result set is
produced is the job of the query planner, also known as the query optimizer. Depending
upon the specific command, there may be one or more alternatives, called query plans,
the planner may consider as possible ways to create the result set. The selection of the
plan to be used to actually execute the command is dependent upon various factors
including:

• Costs assigned to various operations to retrieve the data (see the Planner Cost
Constants in the postgresql.conf file).

• Settings of various planner method parameters (see the Planner Method
Configuration section in the postgresql.conf file).

• Column statistics that have been gathered on the table data by the ANALYZE
command (see the Postgres Plus documentation set for information on the
ANALYZE command and column statistics).

Generally speaking, of the various feasible plans, the query planner chooses the one of
least estimated cost for actual execution.

However, it is possible in any given DELETE, SELECT, or UPDATE command to directly
influence selection of all or part of the final plan by using optimizer hints. Optimizer hints
are directives embedded in comment-like syntax immediately following the DELETE,
SELECT, or UPDATE key words that tell the planner to utilize or not utilize a certain
approach for producing the result set.

Synopsis

{ DELETE | SELECT | UPDATE } /*+ { hint [comment] } [...] */
 statement_body

{ DELETE | SELECT | UPDATE } --+ { hint [comment] } [...]
 statement_body

Optimizer hints may be given in two different formats as shown above. Note that in both
formats, a plus sign (+) must immediately follow the /* or -- opening comment
symbols with no intervening space in order for the following tokens to be interpreted as
hints.

In the first format, the hint and optional comment may span multiple lines. In the second
format, all hints and comments must be on a single line. The remainder of the statement
must start on a new line.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

197

Description

The following points regarding the usage of optimizer hints should be noted:

• The database server will always try to use the specified hints if at all possible.
• If a planner method parameter is set so as to disable a certain plan type, then this

plan will not be used even if it is specified in a hint, unless there are no other
possible options for the planner. Examples of planner method parameters are
enable_indexscan, enable_seqscan, enable_hashjoin,
enable_mergejoin, and enable_nestloop. These are all Boolean
parameters.

• Remember that the hint is embedded within a comment. As a consequence, if the
hint is misspelled or if any parameter to a hint such as view, table, or column
name is misspelled, or non-existent in the SQL command, there will be no
indication that any sort of error has occurred. No syntax error will be given and
the entire hint is simply ignored.

• If an alias is used for a table or view name in the SQL command, then the alias
name, not the original object name, must be used in the hint. For example, in the
command, SELECT /*+ FULL(acct) */ * FROM accounts acct ...,
acct, the alias for accounts, must be specified in the FULL hint, not the table
name, accounts.

• Use the EXPLAIN command to ensure that the hint is correctly formed and the
planner is using the hint. See the Postgres Plus documentation set for information
on the EXPLAIN command.

• In general, optimizer hints should not be used in production applications.
Typically, the table data changes throughout the life of the application. By
ensuring that the more dynamic columns are ANALYZEd frequently, the column
statistics will be updated to reflect value changes and the planner will use such
information to produce the least cost plan for any given command execution. Use
of optimizer hints defeats the purpose of this process and will result in the same
plan regardless of how the table data changes.

Parameters

hint

An optimizer hint directive.

comment

A string with additional information. Note that there are restrictions as to what
characters may be included in the comment. Generally, comment may only
consist of alphabetic, numeric, the underscore, dollar sign, number sign and space
characters. These must also conform to the syntax of an identifier. See Section
3.1.2 for more information on identifiers. Any subsequent hint will be ignored if
the comment is not in this form.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

198

statement_body

The remainder of the DELETE, SELECT, or UPDATE command.

The following sections describe the various optimizer hint directives in more detail.

3.4.1 Default Optimization Modes

There are a number of optimization modes that can be chosen as the default setting for a
Postgres Plus Advanced Server database cluster. This setting can also be changed on a
per session basis by using the

ALTER SESSION command as well as in individual DELETE, SELECT, and UPDATE
commands within an optimizer hint. The configuration parameter that controls these
default modes is named OPTIMIZER_MODE. The following table shows the possible
values.

Table 3-10 Default Optimization Modes

Hint Description
ALL_ROWS Optimizes for retrieval of all rows of the result set.

CHOOSE Does no default optimization based on assumed number of rows to be retrieved
from the result set. This is the default.

FIRST_ROWS Optimizes for retrieval of only the first row of the result set.
FIRST_ROWS_10 Optimizes for retrieval of the first 10 rows of the results set.
FIRST_ROWS_100 Optimizes for retrieval of the first 100 rows of the result set.
FIRST_ROWS_1000 Optimizes for retrieval of the first 1000 rows of the result set.

FIRST_ROWS(n)
Optimizes for retrieval of the first n rows of the result set. This form may not be
used as the object of the ALTER SESSION SET OPTIMIZER_MODE command.
It may only be used in the form of a hint in a SQL command.

These optimization modes are based upon the assumption that the client submitting the
SQL command is interested in viewing only the first “n” rows of the result set and will
then abandon the remainder of the result set. Resources allocated to the query are
adjusted as such.

Examples

Alter the current session to optimize for retrieval of the first 10 rows of the result set.

ALTER SESSION SET OPTIMIZER_MODE = FIRST_ROWS_10;

The current value of the OPTIMIZER_MODE parameter can be shown by using the SHOW
command. Note that this command is a utility dependent command. In PSQL, the SHOW
command is used as follows:

SHOW OPTIMIZER_MODE;

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

199

optimizer_mode

 first_rows_10
(1 row)

The Oracle compatible SHOW command has the following syntax:

SHOW PARAMETER OPTIMIZER_MODE;

NAME
--
VALUE
--
optimizer_mode
first_rows_10

The following example shows an optimization mode used in a SELECT command as a
hint:

SELECT /*+ FIRST_ROWS(7) */ * FROM emp;

 empno | ename | job | mgr | hiredate | sal | comm | deptno
-------+--------+-----------+------+--------------------+---------+---------+--------
 7369 | SMITH | CLERK | 7902 | 17-DEC-80 00:00:00 | 800.00 | | 20
 7499 | ALLEN | SALESMAN | 7698 | 20-FEB-81 00:00:00 | 1600.00 | 300.00 | 30
 7521 | WARD | SALESMAN | 7698 | 22-FEB-81 00:00:00 | 1250.00 | 500.00 | 30
 7566 | JONES | MANAGER | 7839 | 02-APR-81 00:00:00 | 2975.00 | | 20
 7654 | MARTIN | SALESMAN | 7698 | 28-SEP-81 00:00:00 | 1250.00 | 1400.00 | 30
 7698 | BLAKE | MANAGER | 7839 | 01-MAY-81 00:00:00 | 2850.00 | | 30
 7782 | CLARK | MANAGER | 7839 | 09-JUN-81 00:00:00 | 2450.00 | | 10
 7788 | SCOTT | ANALYST | 7566 | 19-APR-87 00:00:00 | 3000.00 | | 20
 7839 | KING | PRESIDENT | | 17-NOV-81 00:00:00 | 5000.00 | | 10
 7844 | TURNER | SALESMAN | 7698 | 08-SEP-81 00:00:00 | 1500.00 | 0.00 | 30
 7876 | ADAMS | CLERK | 7788 | 23-MAY-87 00:00:00 | 1100.00 | | 20
 7900 | JAMES | CLERK | 7698 | 03-DEC-81 00:00:00 | 950.00 | | 30
 7902 | FORD | ANALYST | 7566 | 03-DEC-81 00:00:00 | 3000.00 | | 20
 7934 | MILLER | CLERK | 7782 | 23-JAN-82 00:00:00 | 1300.00 | | 10
(14 rows)

3.4.2 Access Method Hints

The following hints influence how the optimizer accesses relations to create the result set.

Table 3-11 Access Method Hints

Hint Description
FULL(table) Perform a full sequential scan on table.
INDEX(table [index] [...]) Use index on table to access the relation.
NO_INDEX(table [index] [...]) Do not use index on table to access the relation.

In addition, the ALL_ROWS, FIRST_ROWS, and FIRST_ROWS(n) hints of Table 3-10 can
be used.

Examples

The sample application does not have sufficient data to illustrate the effects of optimizer
hints so the remainder of the examples in this section will use a banking database created

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

200

by the pgbench application located in the Postgres Plus Advanced Server
dbserver\bin subdirectory.

The following steps create a database named, bank, populated by the tables, accounts,
branches, tellers, and history. The –s 5 option specifies a scaling factor of five
which results in the creation of five branches, each with 100,000 accounts, resulting in a
total of 500,000 rows in the accounts table and five rows in the branches table. Ten
tellers are assigned to each branch resulting in a total of 50 rows in the tellers table.

Note, if using Linux use the export command instead of the SET PATH command as
shown below.

export PATH=/opt/EnterpriseDB/8.3/dbserver/bin:$PATH

The following example was run in Windows.

SET PATH=C:\EnterpriseDB\8.3\dbserver\bin;%PATH%

createdb -U enterprisedb bank
CREATE DATABASE

pgbench -i -s 5 -U enterprisedb -d bank

creating tables...
10000 tuples done.
20000 tuples done.
30000 tuples done.
 .
 .
 .
470000 tuples done.
480000 tuples done.
490000 tuples done.
500000 tuples done.
set primary key...
vacuum...done.

Ten transactions per client are then processed for eight clients for a total of 80
transactions. This will populate the history table with 80 rows.

pgbench –U enterprisedb –d bank –c 8 –t 10
 .
 .
 .
transaction type: TPC-B (sort of)
scaling factor: 5
number of clients: 8
number of transactions per client: 10
number of transactions actually processed: 80/80
tps = 6.023189 (including connections establishing)
tps = 7.140944 (excluding connections establishing)

The table definitions are shown below:

\d accounts

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

201

 Table "public.accounts"
 Column | Type | Modifiers
----------+---------------+-----------
 aid | integer | not null
 bid | integer |
 abalance | integer |
 filler | character(84) |
Indexes:
 "accounts_pkey" PRIMARY KEY, btree (aid)

\d branches

 Table "public.branches"
 Column | Type | Modifiers
----------+---------------+-----------
 bid | integer | not null
 bbalance | integer |
 filler | character(88) |
Indexes:
 "branches_pkey" PRIMARY KEY, btree (bid)

\d tellers

 Table "public.tellers"
 Column | Type | Modifiers
----------+---------------+-----------
 tid | integer | not null
 bid | integer |
 tbalance | integer |
 filler | character(84) |
Indexes:
 "tellers_pkey" PRIMARY KEY, btree (tid)

\d history

 Table "public.history"
 Column | Type | Modifiers
--------+-----------------------------+-----------
 tid | integer |
 bid | integer |
 aid | integer |
 delta | integer |
 mtime | timestamp without time zone |
 filler | character(22) |

The EXPLAIN command shows the plan selected by the query planner. In the following
example, aid is the primary key column, so an indexed search is used on index,
accounts_pkey.

EXPLAIN SELECT * FROM accounts WHERE aid = 100;

 QUERY PLAN

--
 Index Scan using accounts_pkey on accounts (cost=0.00..8.32 rows=1
width=97)
 Index Cond: (aid = 100)
(2 rows)

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

202

The FULL hint is used to force a full sequential scan instead of using the index as shown
below:

EXPLAIN SELECT /*+ FULL(accounts) */ * FROM accounts WHERE aid = 100;

 QUERY PLAN

 Seq Scan on accounts (cost=0.00..14461.10 rows=1 width=97)
 Filter: (aid = 100)
(2 rows)

The NO_INDEX hint also forces a sequential scan as shown below:

EXPLAIN SELECT /*+ NO_INDEX(accounts accounts_pkey) */ * FROM accounts WHERE
aid = 100;

 QUERY PLAN

 Seq Scan on accounts (cost=0.00..14461.10 rows=1 width=97)
 Filter: (aid = 100)
(2 rows)

In addition to using the EXPLAIN command as shown in the prior examples, more
detailed information regarding whether or not a hint was used by the planner can be
obtained by setting the client_min_messages and trace_hints configuration
parameters as follows:

SET client_min_messages TO info;
SET trace_hints TO true;

The SELECT command with the NO_INDEX hint is repeated below to illustrate the
additional information produced when the aforementioned configuration parameters are
set.

EXPLAIN SELECT /*+ NO_INDEX(accounts accounts_pkey) */ * FROM accounts WHERE
aid = 100;

INFO: [HINTS] Index Scan of [accounts].[accounts_pkey] rejected because of
NO_INDEX hint.

INFO: [HINTS] Bitmap Heap Scan of [accounts].[accounts_pkey] rejected
because of NO_INDEX hint.
 QUERY PLAN

 Seq Scan on accounts (cost=0.00..14461.10 rows=1 width=97)
 Filter: (aid = 100)
(2 rows)

Note that if a hint is ignored, the INFO: [HINTS] line will not appear. This may be an
indication that there was a syntax error or some other misspelling in the hint as shown in
the following example where the index name is misspelled.

EXPLAIN SELECT /*+ NO_INDEX(accounts accounts_xxx) */ * FROM accounts WHERE
aid = 100;

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

203

 QUERY PLAN

--
 Index Scan using accounts_pkey on accounts (cost=0.00..8.32 rows=1
 width=97)
 Index Cond: (aid = 100)
(2 rows)

3.4.3 Joining Relations Hints

When two tables are to be joined, there are three possible plans that may be used to
perform the join.

• Nested Loop Join – The right table is scanned once for every row in the left table.
• Merge Sort Join – Each table is sorted on the join attributes before the join starts.

The two tables are then scanned in parallel and the matching rows are combined
to form the join rows.

• Hash Join – The right table is scanned and its join attributes are loaded into a hash
table using its join attributes as hash keys. The left table is then scanned and its
join attributes are used as hash keys to locate the matching rows from the right
table.

The following table lists the optimizer hints that can be used to influence the planner to
use one type of join plan over another.

Table 3-12 Join Hints

Hint Description

USE_HASH(table [...]) Use a hash join with a hash table created from the join
attributes of table.

NO_USE_HASH(table [...]) Do not use a hash join created from the join attributes of
table.

USE_MERGE(table [...]) Use a merge sort join for table.
NO_USE_MERGE(table [...]) Do not use a merge sort join for table.
USE_NL(table [...]) Use a nested loop join for table.
NO_USE_NL(table [...]) Do not use a nested loop join for table.

Examples

In the following example, a join is performed on the branches and accounts tables.
The query plan shows that a hash join is used by creating a hash table from the join
attribute of the branches table.

EXPLAIN SELECT b.bid, a.aid, abalance FROM branches b, accounts a WHERE b.bid
= a.bid;

 QUERY PLAN
--
 Hash Join (cost=1.11..20092.70 rows=500488 width=12)
 Hash Cond: (a.bid = b.bid)
 -> Seq Scan on accounts a (cost=0.00..13209.88 rows=500488 width=12)

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

204

 -> Hash (cost=1.05..1.05 rows=5 width=4)
 -> Seq Scan on branches b (cost=0.00..1.05 rows=5 width=4)
(5 rows)

By using the USE_HASH(a) hint, the planner is forced to create the hash table from the
accounts join attribute instead of from the branches table. Note the use of the alias, a,
for the accounts table in the USE_HASH hint.

EXPLAIN SELECT /*+ USE_HASH(a) */ b.bid, a.aid, abalance FROM branches b,
accounts a WHERE b.bid = a.bid;

 QUERY PLAN

 Hash Join (cost=21909.98..30011.52 rows=500488 width=12)
 Hash Cond: (b.bid = a.bid)
 -> Seq Scan on branches b (cost=0.00..1.05 rows=5 width=4)
 -> Hash (cost=13209.88..13209.88 rows=500488 width=12)
 -> Seq Scan on accounts a (cost=0.00..13209.88 rows=500488
width=12)
(5 rows)

Next, the NO_USE_HASH(a b) hint forces the planner to use an approach other than
hash tables. The result is a nested loop.

EXPLAIN SELECT /*+ NO_USE_HASH(a b) */ b.bid, a.aid, abalance FROM branches
b, accounts a WHERE b.bid = a.bid;

 QUERY PLAN
--
 Nested Loop (cost=1.05..69515.84 rows=500488 width=12)
 Join Filter: (b.bid = a.bid)
 -> Seq Scan on accounts a (cost=0.00..13209.88 rows=500488 width=12)
 -> Materialize (cost=1.05..1.11 rows=5 width=4)
 -> Seq Scan on branches b (cost=0.00..1.05 rows=5 width=4)
(5 rows)

Finally, the USE_MERGE hint forces the planner to use a merge join.

EXPLAIN SELECT /*+ USE_MERGE(a) */ b.bid, a.aid, abalance FROM branches b,
accounts a WHERE b.bid = a.bid;

 QUERY PLAN

 Merge Join (cost=69143.62..76650.97 rows=500488 width=12)
 Merge Cond: (b.bid = a.bid)
 -> Sort (cost=1.11..1.12 rows=5 width=4)
 Sort Key: b.bid
 -> Seq Scan on branches b (cost=0.00..1.05 rows=5 width=4)
 -> Sort (cost=69142.52..70393.74 rows=500488 width=12)
 Sort Key: a.bid
 -> Seq Scan on accounts a (cost=0.00..13209.88 rows=500488
width=12)
(8 rows)

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

205

In this three-table join example, the planner first performs a hash join on the branches
and history tables, then finally performs a nested loop join of the result with the
accounts_pkey index of the accounts table.

EXPLAIN SELECT h.mtime, h.delta, b.bid, a.aid FROM history h, branches b,
accounts a WHERE h.bid = b.bid AND h.aid = a.aid;

 QUERY PLAN

 Nested Loop (cost=1.11..207.95 rows=26 width=20)
 -> Hash Join (cost=1.11..25.40 rows=26 width=20)
 Hash Cond: (h.bid = b.bid)
 -> Seq Scan on history h (cost=0.00..20.20 rows=1020 width=20)
 -> Hash (cost=1.05..1.05 rows=5 width=4)
 -> Seq Scan on branches b (cost=0.00..1.05 rows=5 width=4)
 -> Index Scan using accounts_pkey on accounts a (cost=0.00..7.01 rows=1
 width=4)
 Index Cond: (h.aid = a.aid)
(8 rows)

This plan is altered by using hints to force a combination of a merge sort join and a hash
join.

EXPLAIN SELECT /*+ USE_MERGE(h b) USE_HASH(a) */ h.mtime, h.delta, b.bid,
a.aid FROM history h, branches b, accounts a WHERE h.bid = b.bid AND h.aid =
a.aid;

 QUERY PLAN

 Merge Join (cost=23480.11..23485.60 rows=26 width=20)
 Merge Cond: (h.bid = b.bid)
 -> Sort (cost=23479.00..23481.55 rows=1020 width=20)
 Sort Key: h.bid
 -> Hash Join (cost=21421.98..23428.03 rows=1020 width=20)
 Hash Cond: (h.aid = a.aid)
 -> Seq Scan on history h (cost=0.00..20.20 rows=1020
 width=20)
 -> Hash (cost=13209.88..13209.88 rows=500488 width=4)
 -> Seq Scan on accounts a (cost=0.00..13209.88
 rows=500488 width=4)
 -> Sort (cost=1.11..1.12 rows=5 width=4)
 Sort Key: b.bid
 -> Seq Scan on branches b (cost=0.00..1.05 rows=5 width=4)
(12 rows)

3.4.4 Global Hints

Thus far, hints have been applied directly to tables that are referenced in the SQL
command. It is also possible to apply hints to tables that appear in a view when the view
is referenced in the SQL command. The hint does not appear in the view, itself, but rather
in the SQL command that references the view.

When specifying a hint that is to apply to a table within a view, the view and table names
are given in dot notation within the hint argument list.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

206

Synopsis

hint(view.table)

Parameters

hint

Any of the hints in Table 3-11 or Table 3-12.

view

The name of the view containing table.

table

The table on which the hint is to be applied.

Examples

A view named, tx, is created from the three-table join of history, branches, and
accounts shown in the final example of Section 3.4.3.

CREATE VIEW tx AS SELECT h.mtime, h.delta, b.bid, a.aid FROM history h,
branches b, accounts a WHERE h.bid = b.bid AND h.aid = a.aid;

The query plan produced by selecting from this view is show below:

EXPLAIN SELECT * FROM tx;

 QUERY PLAN

 Nested Loop (cost=1.11..207.95 rows=26 width=20)
 -> Hash Join (cost=1.11..25.40 rows=26 width=20)
 Hash Cond: (h.bid = b.bid)
 -> Seq Scan on history h (cost=0.00..20.20 rows=1020 width=20)
 -> Hash (cost=1.05..1.05 rows=5 width=4)
 -> Seq Scan on branches b (cost=0.00..1.05 rows=5 width=4)
 -> Index Scan using accounts_pkey on accounts a (cost=0.00..7.01 rows=1
 width=4)
 Index Cond: (h.aid = a.aid)
(8 rows)

The same hints that were applied to this join at the end of Section 3.4.3 can be applied to
the view as follows:

EXPLAIN SELECT /*+ USE_MERGE(tx.h tx.b) USE_HASH(tx.a) */ * FROM tx;

 QUERY PLAN

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

207

-
 Merge Join (cost=23480.11..23485.60 rows=26 width=20)
 Merge Cond: (h.bid = b.bid)
 -> Sort (cost=23479.00..23481.55 rows=1020 width=20)
 Sort Key: h.bid
 -> Hash Join (cost=21421.98..23428.03 rows=1020 width=20)
 Hash Cond: (h.aid = a.aid)
 -> Seq Scan on history h (cost=0.00..20.20 rows=1020
 width=20)
 -> Hash (cost=13209.88..13209.88 rows=500488 width=4)
 -> Seq Scan on accounts a (cost=0.00..13209.88
 rows=500488 width=4)
 -> Sort (cost=1.11..1.12 rows=5 width=4)
 Sort Key: b.bid
 -> Seq Scan on branches b (cost=0.00..1.05 rows=5 width=4)
(12 rows)

In addition to applying hints to tables within stored views, hints can be applied to tables
within subqueries as illustrated by the following example. In this query on the sample
application emp table, employees and their managers are listed by joining the emp table
with a subquery of the emp table identified by the alias, b.

SELECT a.empno, a.ename, b.empno "mgr empno", b.ename "mgr ename" FROM emp a,
(SELECT * FROM emp) b WHERE a.mgr = b.empno;

empno | ename | mgr empno | mgr ename
-------+--------+-----------+-----------
 7902 | FORD | 7566 | JONES
 7788 | SCOTT | 7566 | JONES
 7521 | WARD | 7698 | BLAKE
 7844 | TURNER | 7698 | BLAKE
 7654 | MARTIN | 7698 | BLAKE
 7900 | JAMES | 7698 | BLAKE
 7499 | ALLEN | 7698 | BLAKE
 7934 | MILLER | 7782 | CLARK
 7876 | ADAMS | 7788 | SCOTT
 7782 | CLARK | 7839 | KING
 7698 | BLAKE | 7839 | KING
 7566 | JONES | 7839 | KING
 7369 | SMITH | 7902 | FORD
(13 rows)

The plan chosen by the query planner is shown below:

EXPLAIN SELECT a.empno, a.ename, b.empno "mgr empno", b.ename "mgr ename"
FROM emp a, (SELECT * FROM emp) b WHERE a.mgr = b.empno;

 QUERY PLAN

 Merge Join (cost=2.81..3.08 rows=13 width=26)
 Merge Cond: (a.mgr = emp.empno)
 -> Sort (cost=1.41..1.44 rows=14 width=20)
 Sort Key: a.mgr
 -> Seq Scan on emp a (cost=0.00..1.14 rows=14 width=20)
 -> Sort (cost=1.41..1.44 rows=14 width=13)
 Sort Key: emp.empno
 -> Seq Scan on emp (cost=0.00..1.14 rows=14 width=13)
(8 rows)

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

208

A hint can be applied to the emp table within the subquery to perform an index scan on
index, emp_pk, instead of a table scan. Note the difference in the query plans.

EXPLAIN SELECT /*+ INDEX(b.emp emp_pk) */ a.empno, a.ename, b.empno "mgr
empno", b.ename "mgr ename" FROM emp a, (SELECT * FROM emp) b WHERE a.mgr =
b.empno;

 QUERY PLAN

 Merge Join (cost=1.41..13.21 rows=13 width=26)
 Merge Cond: (a.mgr = emp.empno)
 -> Sort (cost=1.41..1.44 rows=14 width=20)
 Sort Key: a.mgr
 -> Seq Scan on emp a (cost=0.00..1.14 rows=14 width=20)
 -> Index Scan using emp_pk on emp (cost=0.00..12.46 rows=14 width=13)
(6 rows)

3.4.5 Conflicting Hints

This final section on hints deals with cases where two or more conflicting hints are given
in a SQL command. In such cases, the hints that contradict each other are ignored. The
following table lists hints that are contradictory to each other.

Table 3-13 Conflicting Hints

Hint Conflicting Hint
ALL_ROWS FIRST_ROWS - all formats
FULL(table) INDEX(table [index])

INDEX(table) FULL(table)
NO_INDEX(table)

INDEX(table index) FULL(table)
NO_INDEX(table index)

USE_HASH(table) NO_USE_HASH(table)
USE_MERGE(table) NO_USE_MERGE(table)
USE_NL(table) NO_USE_NL(table)

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

209

3.5 Functions and Operators

Postgres Plus Advanced Server provides a large number of functions and operators for
the built-in data types.

3.5.1 Logical Operators

The usual logical operators are available: AND, OR, NOT

SQL uses a three-valued Boolean logic where the null value represents "unknown".
Observe the following truth tables:

Table 3-14 AND/OR Truth Table

a b a AND b a OR b
True True True True
True False False True
True Null Null True
False False False False
False Null False Null
Null Null Null Null

Table 3-15 NOT Truth Table

a NOT a
True False
False True
Null Null

The operators AND and OR are commutative, that is, you can switch the left and right
operand without affecting the result.

3.5.2 Comparison Operators

The usual comparison operators are shown in the following table.

Table 3-16 Comparison Operators

Operator Description
< Less than
> Greater than
<= Less than or equal to
>= Greater than or equal to
= Equal
<> Not equal
!= Not equal

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

210

Comparison operators are available for all data types where this makes sense. All
comparison operators are binary operators that return values of type BOOLEAN;
expressions like 1 < 2 < 3 are not valid (because there is no < operator to compare a
Boolean value with 3).

In addition to the comparison operators, the special BETWEEN construct is available.

a BETWEEN x AND y

is equivalent to

a >= x AND a <= y

Similarly,

a NOT BETWEEN x AND y

is equivalent to

a < x OR a > y

There is no difference between the two respective forms apart from the CPU cycles
required to rewrite the first one into the second one internally.

To check whether a value is or is not null, use the constructs

expression IS NULL
expression IS NOT NULL

Do not write expression = NULL because NULL is not "equal to" NULL. (The null
value represents an unknown value, and it is not known whether two unknown values are
equal.) This behavior conforms to the SQL standard.

Some applications may expect that expression = NULL returns true if expression
evaluates to the null value. It is highly recommended that these applications be modified
to comply with the SQL standard.

3.5.3 Mathematical Functions and Operators

Mathematical operators are provided for many Postgres Plus Advanced Server types. For
types without common mathematical conventions for all possible permutations (e.g.,
date/time types) the actual behavior is described in subsequent sections.

The following table shows the available mathematical operators.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

211

Table 3-17 Mathematical Operators

Operator Description Example Result
+ Addition 2 + 3 5

- Subtraction 2 – 3 -1

* Multiplication 2 * 3 6

/ Division (integer division truncates results) 4 / 2 2

The following table shows the available mathematical functions. Many of these functions
are provided in multiple forms with different argument types. Except where noted, any
given form of a function returns the same data type as its argument. The functions
working with DOUBLE PRECISION data are mostly implemented on top of the host
system’s C library; accuracy and behavior in boundary cases may therefore vary
depending on the host system.

Table 3-18 Mathematical Functions

Function Return Type Description Example Result
ABS(x) Same as x Absolute value ABS(-17.4) 17.4

CEIL(DOUBLE PRECISION
or NUMBER) Same as input Smallest integer not

less than argument
CEIL(-42.8) -42

EXP(DOUBLE PRECISION
or NUMBER) Same as input Exponential EXP(1.0) 2.71828182845904

52

FLOOR(DOUBLE PRECISION
or NUMBER) Same as input Largest integer not

greater than argument
FLOOR(-42.8) 43

LN(DOUBLE PRECISION or
NUMBER) Same as input Natural logarithm LN(2.0) 0.69314718055994

53
LOG(b NUMBER, x
NUMBER)

NUMBER Logarithm to base b LOG(2.0, 64.0) 6.00000000000000
00

MOD(y, x) Same as
argument types Remainder of y/x MOD(9, 4) 1

NVL(x, y)

Same as
argument types;
where both
arguments are of
the same data
type

If x is null, then NVL
returns y

NVL(9, 0) 9

POWER(a DOUBLE
PRECISION, b DOUBLE
PRECISION)

DOUBLE
PRECISION

a raised to the power
of b

POWER(9.0, 3.0)
729.000000000000
0000

POWER(a NUMBER, b
NUMBER) NUMBER a raised to the power

of b
POWER(9.0, 3.0)

729.000000000000
0000

ROUND(DOUBLE PRECISION
or NUMBER) Same as input Round to nearest

integer
ROUND(42.4) 42

ROUND(v NUMBER, s
INTEGER) NUMBER Round to s decimal

places
ROUND(42.4382, 2) 42.44

SIGN(DOUBLE PRECISION
or NUMBER) Same as input Sign of the argument

(-1, 0, +1)
SIGN(-8.4) -1

SQRT(DOUBLE PRECISION
or NUMBER) Same as input Square root SQRT(2.0) 1.41421356237309

5
TRUNC(DOUBLE PRECISION
or NUMBER) Same as input Truncate toward zero TRUNC(42.8) 42

TRUNC(v NUMBER, s NUMBER Truncate to s decimal TRUNC(42.4382, 2) 42.43

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

212

Function Return Type Description Example Result
INTEGER) places

WIDTH_BUCKET(op
NUMBER, b1 NUMBER, b2
NUMBER, count INTEGER)

INTEGER

Return the bucket to
which op would be
assigned in an
equidepth histogram
with count buckets,
in the range b1 to b2

WIDTH_BUCKET(5.35,
0.024, 10.06, 5) 3

The following table shows the available trigonometric functions. All trigonometric
functions take arguments and return values of type DOUBLE PRECISION.

Table 3-19 Trigonometric Functions

Function Description
ACOS(x) Inverse cosine
ASIN(x) Inverse sine
ATAN(x) Inverse tangent
ATAN2(x, y) Inverse tangent of x/y
COS(x) Cosine
SIN(x) Sine
TAN(x) Tangent

3.5.4 String Functions and Operators

This section describes functions and operators for examining and manipulating string
values. Strings in this context include values of all the types CHAR, VARCHAR2, and CLOB.
Unless otherwise noted, all of the functions listed below work on all of these types, but be
wary of potential effects of the automatic padding when using the CHAR type. Generally,
the functions described here also work on data of non-string types by converting that data
to a string representation first.

Table 3-20 SQL String Functions and Operators

Function Return
Type Description Example Result

string || string CLOB String concatenation 'Enterprise' ||
'DB' EnterpriseDB

CONCAT(string,
string)

CLOB String concatenation 'a' || 'b' ab

INSTR(string, set, [
start [, occurrence]
])

INTEGER

Finds the location of a set of
characters in a string, starting
at position start in the string,
string, and looking for the
first, second, third and so on
occurrences of the set.

INSTR('PETER PIPER
PICKED UP A PACK OF
PICKED
PEPPERS','PI',1,3)

33

LOWER(string) CLOB Convert string to lower case LOWER('TOM') tom

SUBSTR(string, start
[, count]) CLOB

Extract substring starting from
start and going for count
characters. If count is not
specified, the string is clipped

SUBSTR('This is a
test',6,2) is

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

213

Function Return
Type Description Example Result

from the start till the end.

TRIM([LEADING |
TRAILING | BOTH] [
characters] FROM
string)

CLOB

Remove the longest string
containing only the characters
(a space by default) from the
start/end/both ends of the
string.

TRIM(BOTH 'x' FROM
'xTomxx') Tom

LTRIM(string [, set]) CLOB

Removes all the characters
specified in set from the left
of a given string. If set is
not specified, a blank space is
used as default.

LTRIM('abcdefghi',
'abc') defghi

RTRIM(string [, set]) CLOB

Removes all the characters
specified in set from the right
of a given string. If set is
not specified, a blank space is
used as default.

RTRIM('abcdefghi',
'ghi') abcdef

UPPER(string) CLOB Convert string to upper case UPPER('tom') TOM

Additional string manipulation functions are available and are listed in the following
table. Some of them are used internally to implement the SQL-standard string functions
listed in Table 3-20.

Table 3-21 Other String Functions

Function Return Type Description Example Result

ASCII(string) INTEGER ASCII code of the first byte
of the argument

ASCII('x') 120

CHR(INTEGER) CLOB Character with the given
ASCII code

CHR(65) A

DECODE(expr, expr1a,
expr1b [, expr2a,
expr2b]... [, default
])

Same as
argument
types of
expr1b,
expr2b,...,
default

Finds first match of expr
with expr1a, expr2a, etc.
When match found, returns
corresponding parameter
pair, expr1b, expr2b, etc.
If no match found, returns
default. If no match found
and default not specified,
returns null.

DECODE(3, 1,'One',
2,'Two', 3,'Three',
'Not found')

Three

INITCAP(string) CLOB

Convert the first letter of
each word to uppercase and
the rest to lowercase. Words
are sequences of
alphanumeric characters
separated by non-
alphanumeric characters.

INITCAP('hi
THOMAS') Hi Thomas

LPAD(string, length
INTEGER [, fill]) CLOB

Fill up string to size,
length by prepending the
characters, fill (a space by
default). If string is
already longer than length

LPAD('hi', 5, 'xy') xyxhi

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

214

Function Return Type Description Example Result
then it is truncated (on the
right).

NVL(expr1, expr2)

Same as
argument
types; both
arguments
have the same
data type

If expr1 is not null, return
expr1, otherwise return
expr2

NVL(null, 'abc') abc

REPLACE(string,
search_string [,
replace_string]

CLOB

Replaces one value in a
string with another. If you
do not specify a value for
replace_string, the
search_string value
when found, is removed.

REPLACE('GEORGE',
'GE', 'EG') EGOREG

RPAD(string, length
INTEGER [, fill])

CLOB

Fill up string to size,
length by appending the
characters, fill (a space by
default). If string is
already longer than length
then it is truncated.

RPAD('hi', 5, 'xy') hixyx

TRANSLATE(string, from,
to) CLOB

Any character in string
that matches a character in
the from set is replaced by
the corresponding character
in the to set.

TRANSLATE('12345',
'14', 'ax') a23x5

3.5.5 Pattern Matching Using the LIKE Operator

Postgres Plus Advanced Server provides pattern matching using the traditional SQL
LIKE operator. The syntax for the LIKE operator is as follows.

string LIKE pattern [ESCAPE escape-character]
string NOT LIKE pattern [ESCAPE escape-character]

Every pattern defines a set of strings. The LIKE expression returns true if string is
contained in the set of strings represented by pattern. As expected, the NOT LIKE
expression returns false if LIKE returns true, and vice versa. An equivalent expression is
NOT (string LIKE pattern).

If pattern does not contain percent signs or underscore, then the pattern only represents
the string itself; in that case LIKE acts like the equals operator. An underscore (_) in
pattern stands for (matches) any single character; a percent sign (%) matches any string
of zero or more characters.

Some examples:

'abc' LIKE 'abc' true
'abc' LIKE 'a%' true
'abc' LIKE '_b_' true

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

215

'abc' LIKE 'c' false

LIKE pattern matches always cover the entire string. To match a pattern anywhere within
a string, the pattern must therefore start and end with a percent sign.

To match a literal underscore or percent sign without matching other characters, the
respective character in pattern must be preceded by the escape character. The default
escape character is the backslash but a different one may be selected by using the
ESCAPE clause. To match the escape character itself, write two escape characters.

Note that the backslash already has a special meaning in string literals, so to write a
pattern constant that contains a backslash you must write two backslashes in an SQL
statement. Thus, writing a pattern that actually matches a literal backslash means writing
four backslashes in the statement. You can avoid this by selecting a different escape
character with ESCAPE; then a backslash is not special to LIKE anymore. (But it is still
special to the string literal parser, so you still need two of them.)

It’s also possible to select no escape character by writing ESCAPE ''. This effectively
disables the escape mechanism, which makes it impossible to turn off the special
meaning of underscore and percent signs in the pattern.

3.5.6 Data Type Formatting Functions

The Postgres Plus Advanced Server formatting functions provide a powerful set of tools
for converting various data types (date/time, integer, floating point, numeric) to formatted
strings and for converting from formatted strings to specific data types. Table 3-22 lists
them. These functions all follow a common calling convention: the first argument is the
value to be formatted and the second argument is a string template that defines the output
or input format.

Table 3-22 Formatting Functions

Function Return
Type Description Example Result

TO_CHAR(DATE [,
format]) VARCHAR2

Convert a date/time
to a string with
output, format. If
omitted default
format is DD-MON-
YY.

TO_CHAR(SYSDATE, 'MM/DD/YYYY
HH12:MI:SS AM')

07/25/2007
09:43:02 AM

TO_CHAR(INTEGER [,
format]) VARCHAR2

Convert an integer to
a string with output,
format

TO_CHAR(2412, '999,999S') 2,412+

TO_CHAR(NUMBER [,
format]) VARCHAR2

Convert a decimal
number to a string
with output, format

TO_CHAR(10125.35,
'999,999.99') 10,125.35

TO_CHAR(DOUBLE
PRECISION, format) CLOB

Convert a floating-
point number to a
string with output,

TO_CHAR(CAST(123.5282 AS
REAL), '999.99') 123.53

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

216

Function Return
Type Description Example Result

format

TO_DATE(string [,
format]) DATE

Convert a date
formatted string to a
DATE data type

TO_DATE('2007-07-04
13:39:10', 'YYYY-MM-DD
HH24:MI:SS')

04-JUL-07
13:39:10

TO_NUMBER(string [,
format]) NUMBER

Convert a number
formatted string to a
NUMBER data type

TO_NUMBER('2,412-',
'999,999S') -2412

TO_TIMESTAMP(string,
format) TIMESTAMP

Convert a timestamp
formatted string to a
TIMESTAMP data type

TO_TIMESTAMP('05 Dec 2000
08:30:25 pm', 'DD Mon YYYY
hh12:mi:ss pm')

05-DEC-00
20:30:25

In an output template string (for TO_CHAR), there are certain patterns that are recognized
and replaced with appropriately-formatted data from the value to be formatted. Any text
that is not a template pattern is simply copied verbatim. Similarly, in an input template
string (for anything but TO_CHAR), template patterns identify the parts of the input data
string to be looked at and the values to be found there.

The following table shows the template patterns available for formatting date values
using the TO_CHAR and TO_DATE functions.

Table 3-23 Template Date/Time Format Patterns

Pattern Description
HH Hour of day (01-12)
HH12 Hour of day (01-12)
HH24 Hour of day (00-23)
MI Minute (00-59)
SS Second (00-59)
SSSSS Seconds past midnight (0-86399)
AM or A.M. or PM
or P.M. Meridian indicator (uppercase)
am or a.m. or pm
or p.m. Meridian indicator (lowercase)

Y,YYY Year (4 and more digits) with comma
YEAR Year (spelled out)
SYEAR Year (spelled out) (BC dates prefixed by a minus sign)
YYYY Year (4 and more digits)
SYYYY Year (4 and more digits) (BC dates prefixed by a minus sign)
YYY Last 3 digits of year
YY Last 2 digits of year
Y Last digit of year
IYYY ISO year (4 and more digits)
IYY Last 3 digits of ISO year
IY Last 2 digits of ISO year
I Last 1 digit of ISO year
BC or B.C. or AD
or A.D. Era indicator (uppercase)

bc or b.c. or ad Era indicator (lowercase)

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

217

Pattern Description
or a.d.
MONTH Full uppercase month name
Month Full mixed-case month name
month Full lowercase month name
MON Abbreviated uppercase month name (3 chars in English, localized lengths vary)
Mon Abbreviated mixed-case month name (3 chars in English, localized lengths vary)
mon Abbreviated lowercase month name (3 chars in English, localized lengths vary)
MM Month number (01-12)
DAY Full uppercase day name
Day Full mixed-case day name
day Full lowercase day name
DY Abbreviated uppercase day name (3 chars in English, localized lengths vary)
Dy Abbreviated mixed-case day name (3 chars in English, localized lengths vary)
dy Abbreviated lowercase day name (3 chars in English, localized lengths vary)
DDD Day of year (001-366)
DD Day of month (01-31)
D Day of week (1-7; Sunday is 1)
W Week of month (1-5) (The first week starts on the first day of the month)
WW Week number of year (1-53) (The first week starts on the first day of the year)
IW ISO week number of year; the first Thursday of the new year is in week 1
CC Century (2 digits); the 21st century starts on 2001-01-01
SCC Same as CC except BC dates are prefixed by a minus sign
J Julian Day (days since January 1, 4712 BC)
Q Quarter
RM Month in Roman numerals (I-XII; I=January) (uppercase)
rm Month in Roman numerals (i-xii; i=January) (lowercase)

RR

First 2 digits of the year when given only the last 2 digits of the year. Result is based upon an
algorithm using the current year and the given 2-digit year. The first 2 digits of the given 2-
digit year will be the same as the first 2 digits of the current year with the following
exceptions:

If the given 2-digit year is < 50 and the last 2 digits of the current year is >= 50, then the first
2 digits for the given year is 1 greater than the first 2 digits of the current year.

If the given 2-digit year is >= 50 and the last 2 digits of the current year is < 50, then the first
2 digits for the given year is 1 less than the first 2 digits of the current year.

RRRR
Only affects TO_DATE function. Allows specification of 2-digit or 4-digit year. If 2-digit
year given, then returns first 2 digits of year like RR format. If 4-digit year given, returns the
given 4-digit year.

Certain modifiers may be applied to any template pattern to alter its behavior. For
example, FMMonth is the Month pattern with the FM modifier. The following table shows
the modifier patterns for date/time formatting.

Table 3-24 Template Pattern Modifiers for Date/Time Formatting

Modifier Description Example
FM prefix Fill mode (suppress padding blanks and zeros) FMMonth

TH suffix Uppercase ordinal number suffix DDTH

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

218

Modifier Description Example
th suffix Lowercase ordinal number suffix DDth

FX prefix Fixed format global option (see usage notes) FX Month DD Day

SP suffix Spell mode DDSP

Usage notes for date/time formatting:

• FM suppresses leading zeroes and trailing blanks that would otherwise be added to
make the output of a pattern fixed-width.

• TO_TIMESTAMP and TO_DATE skip multiple blank spaces in the input string if the
FX option is not used. FX must be specified as the first item in the template. For
example TO_TIMESTAMP('2000 JUN', 'YYYY MON') is correct, but
TO_TIMESTAMP('2000 JUN', 'FXYYYY MON') returns an error, because
TO_TIMESTAMP expects one space only.

• Ordinary text is allowed in TO_CHAR templates and will be output literally.
• In conversions from string to timestamp or date, the CC field is ignored if there

is a YYY, YYYY or Y,YYY field. If CC is used with YY or Y then the year is
computed as (CC-1)*100+YY.

The following table shows the template patterns available for formatting numeric values.

Table 3-25 Template Patterns for Numeric Formatting

Pattern Description
9 Value with the specified number of digits
0 Value with leading zeroes
. (period) Decimal point
, (comma) Group (thousand) separator
$ Dollar sign
PR Negative value in angle brackets
S Sign anchored to number (uses locale)
L Currency symbol (uses locale)
D Decimal point (uses locale)
G Group separator (uses locale)
MI Minus sign specified in right-most position (if number < 0)
RN or rn Roman numeral (input between 1 and 3999)
V Shift specified number of digits (see notes)

Usage notes for numeric formatting:

• 9 results in a value with the same number of digits as there are 9s. If a digit is not
available it outputs a space.

• TH does not convert values less than zero and does not convert fractional
numbers.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

219

V effectively multiplies the input values by 10n, where n is the number of digits following
V. TO_CHAR does not support the use of V combined with a decimal point. (E.g.,
99.9V99 is not allowed.)

The following table shows some examples of the use of the TO_CHAR and TO_DATE
functions.

Table 3-26 TO_CHAR Examples

Expression Result
TO_CHAR(CURRENT_TIMESTAMP, 'Day, DD HH12:MI:SS') 'Tuesday , 06 05:39:18'
TO_CHAR(CURRENT_TIMESTAMP,
'FMDay, FMDD HH12:MI:SS')

'Tuesday, 6 05:39:18'

TO_CHAR(-0.1, '99.99') ' -.10'
TO_CHAR(-0.1, 'FM9.99') '-.1'
TO_CHAR(0.1, '0.9') ' 0.1'
TO_CHAR(12, '9990999.9') ' 0012.0'
TO_CHAR(12, 'FM9990999.9') '0012.'
TO_CHAR(485, '999') ' 485'
TO_CHAR(-485, '999') '-485'
TO_CHAR(1485, '9,999') ' 1,485'
TO_CHAR(1485, '9G999') ' 1,485'
TO_CHAR(148.5, '999.999') ' 148.500'
TO_CHAR(148.5, 'FM999.999') '148.5'
TO_CHAR(148.5, 'FM999.990') '148.500'
TO_CHAR(148.5, '999D999') ' 148.500'
TO_CHAR(3148.5, '9G999D999') ' 3,148.500'
TO_CHAR(-485, '999S') '485-'
TO_CHAR(-485, '999MI') '485-'
TO_CHAR(485, '999MI') '485 '
TO_CHAR(485, 'FM999MI') '485'
TO_CHAR(-485, '999PR') '<485>'
TO_CHAR(485, 'L999') '$ 485'
TO_CHAR(485, 'RN') ' CDLXXXV'
TO_CHAR(485, 'FMRN') 'CDLXXXV'
TO_CHAR(5.2, 'FMRN') 'V'
TO_CHAR(12, '99V999') ' 12000'
TO_CHAR(12.4, '99V999') ' 12400'
TO_CHAR(12.45, '99V9') ' 125'

3.5.7 Date/Time Functions and Operators

Table 3-28 shows the available functions for date/time value processing, with details
appearing in the following subsections. Table 3-27 illustrates the behaviors of the basic
arithmetic operators (+, -). For formatting functions, refer to Section 3.5.6. You should be
familiar with the background information on date/time data types from Section 3.2.4.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

220

Table 3-27 Date/Time Operators

Operator Example Result
+ DATE '2001-09-28' + 7 05-OCT-01 00:00:00
+ TIMESTAMP '2001-09-28 13:30:00' + 3 01-OCT-01 13:30:00
- DATE '2001-10-01' - 7 24-SEP-01 00:00:00
- TIMESTAMP '2001-09-28 13:30:00' - 3 25-SEP-01 13:30:00

- TIMESTAMP '2001-09-29 03:00:00' -
TIMESTAMP '2001-09-27 12:00:00'

@ 1 day 15 hours

In the date/time functions of Table 3-28 the use of the DATE and TIMESTAMP data types
are interchangeable.

Table 3-28 Date/Time Functions

Function Return
Type Description Example Result

ADD_MONTHS(DATE,
NUMBER) DATE

Add months to a date; see
Section REF
_Ref171326180 \n \h
3.5.7.1

ADD_MONTHS('28-FEB-97',
3.8)

31-MAY-97
00:00:00

CURRENT_DATE DATE
Current date; see Section
REF _Ref171321439 \n \h
3.5.7.8

CURRENT_DATE 04-JUL-07

EXTRACT(field FROM
TIMESTAMP)

DOUBLE
PRECISION

Get subfield; see Section
REF _Ref171325337 \n \h
3.5.7.2

EXTRACT(hour FROM
TIMESTAMP '2001-02-16
20:38:40')

20

LAST_DAY(DATE) DATE

Returns the last day of the
month represented by the
given date. If the given
date contains a time
portion, it is carried
forward to the result
unchanged.

LAST_DAY('14-APR-98')
30-APR-98
00:00:00

LOCALTIMESTAMP [
(precision)] TIMESTAMP

Current date and time
(start of current
transaction); see Section
REF _Ref171321439 \n \h
3.5.7.8

LOCALTIMESTAMP
04-JUL-07
15:33:23.484

MONTHS_BETWEEN(DATE,
DATE) NUMBER

Number of months
between two dates; see
Section REF
_Ref171393068 \n \h
3.5.7.3

MONTHS_BETWEEN('28-FEB-
07', '30-NOV-06') 3

NEXT_DAY(DATE,
dayofweek) DATE

Date falling on
dayofweek following
specified date; see Section
REF _Ref171394200 \n \h
3.5.7.4

NEXT_DAY('16-APR-
07','FRI')

20-APR-07
00:00:00

NEW_TIME(DATE,
VARCHAR, VARCHAR) DATE Converts a date and time

to an alternate time zone

NEW_TIME(TO_DATE
'2005/05/29 01:45',
'AST', 'PST')

2005/05/29
21:45:00

ROUND(DATE [, format
]) DATE Date rounded according to

format; see Section REF
ROUND(TO_DATE('29-MAY-
05'),'MON')

01-JUN-05
00:00:00

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

221

Function Return
Type Description Example Result

_Ref171394533 \n \h
3.5.7.5

SYSDATE DATE Current date and time SYSDATE 06-AUG-07
10:06:27

TRUNC(DATE [, format
]) DATE

Truncate according to
format; see Section REF
_Ref174165473 \n \h
3.5.7.7

TRUNC(TO_DATE('29-MAY-
05'), 'MON')

01-MAY-05
00:00:00

3.5.7.1 ADD_MONTHS

The ADD_MONTHS functions adds (or subtracts if the second parameter is negative) the
specified number of months to the given date. The resulting day of the month is the same
as the day of the month of the given date except when the day is the last day of the month
in which case the resulting date always falls on the last day of the month.

Any fractional portion of the number of months parameter is truncated before performing
the calculation.

If the given date contains a time portion, it is carried forward to the result unchanged.

The following are examples of the ADD_MONTHS function.

SELECT ADD_MONTHS('13-JUN-07',4) FROM DUAL;

 add_months

 13-OCT-07 00:00:00
(1 row)

SELECT ADD_MONTHS('31-DEC-06',2) FROM DUAL;

 add_months

 28-FEB-07 00:00:00
(1 row)

SELECT ADD_MONTHS('31-MAY-04',-3) FROM DUAL;

 add_months

 29-FEB-04 00:00:00
(1 row)

3.5.7.2 EXTRACT

The EXTRACT function retrieves subfields such as year or hour from date/time values.
The EXTRACT function returns values of type DOUBLE PRECISION. The following are
valid field names:

YEAR

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

222

The year field

SELECT EXTRACT(YEAR FROM TIMESTAMP '2001-02-16 20:38:40') FROM DUAL;

 date_part

 2001
(1 row)

MONTH

The number of the month within the year (1 - 12)

SELECT EXTRACT(MONTH FROM TIMESTAMP '2001-02-16 20:38:40') FROM DUAL;

 date_part

 2
(1 row)

DAY

The day (of the month) field (1 - 31)

SELECT EXTRACT(DAY FROM TIMESTAMP '2001-02-16 20:38:40') FROM DUAL;

 date_part

 16
(1 row)

HOUR

The hour field (0 - 23)

SELECT EXTRACT(HOUR FROM TIMESTAMP '2001-02-16 20:38:40') FROM DUAL;

 date_part

 20
(1 row)

MINUTE

The minutes field (0 - 59)

SELECT EXTRACT(MINUTE FROM TIMESTAMP '2001-02-16 20:38:40') FROM DUAL;

 date_part

 38
(1 row)

SECOND

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

223

The seconds field, including fractional parts (0 - 59)

SELECT EXTRACT(SECOND FROM TIMESTAMP '2001-02-16 20:38:40') FROM DUAL;

 date_part

 40
(1 row)

3.5.7.3 MONTHS_BETWEEN

The MONTHS_BETWEEN function returns the number of months between two dates. The
result is a numeric value which is positive if the first date is greater than the second date
or negative if the first date is less than the second date.

The result is always a whole number of months if the day of the month of both date
parameters is the same, or both date parameters fall on the last day of their respective
months.

The following are some examples of the MONTHS_BETWEEN function.

SELECT MONTHS_BETWEEN('15-DEC-06','15-OCT-06') FROM DUAL;

 months_between

 2
(1 row)

SELECT MONTHS_BETWEEN('15-OCT-06','15-DEC-06') FROM DUAL;

 months_between

 -2
(1 row)

SELECT MONTHS_BETWEEN('31-JUL-00','01-JUL-00') FROM DUAL;

 months_between

 0.967741935
(1 row)

SELECT MONTHS_BETWEEN('01-JAN-07','01-JAN-06') FROM DUAL;

 months_between

 12
(1 row)

3.5.7.4 NEXT_DAY

The NEXT_DAY function returns the first occurrence of the given weekday strictly greater
than the given date. At least the first three letters of the weekday must be specified - e.g.,
SAT. If the given date contains a time portion, it is carried forward to the result
unchanged.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

224

The following are examples of the NEXT_DAY function.

SELECT NEXT_DAY(TO_DATE('13-AUG-07','DD-MON-YY'),'SUNDAY') FROM DUAL;

 next_day

 19-AUG-07 00:00:00
(1 row)

SELECT NEXT_DAY(TO_DATE('13-AUG-07','DD-MON-YY'),'MON') FROM DUAL;

 next_day

 20-AUG-07 00:00:00
(1 row)

3.5.7.5 NEW_TIME

The NEW_TIME function converts a date and time from one time zone to another.
NEW_TIME returns a value of type DATE. The syntax is:

NEW_TIME(DATE, time_zone1, time_zone2)

time_zone1 and time_zone2 must be string values from the Time Zone column of the
following table:

Time Zone  Offset from UTC  Description 
AST UTC+4 Atlantic Standard Time
ADT UTC+3 Atlantic Daylight Time
BST UTC+11 Bering Standard Time
BDT UTC+10 Bering Daylight Time
CST UTC+6 Central Standard Time
CDT UTC+5 Central Daylight Time
EST UTC+5 Eastern Standard Time
EDT UTC+4 Eastern Daylight Time
GMT UTC Greenwich Mean Time
HST UTC+10 Alaska‐Hawaii Standard Time
HDT UTC+9 Alaska‐Hawaii Daylight Time
MST UTC+7 Mountain Standard Time
MDT UTC+6 Mountain Daylight Time
NST UTC+3:30 Newfoundland Standard Time
PST UTC+8 Pacific Standard Time
PDT UTC+7 Pacific Daylight Time
YST UTC+9 Yukon Standard Time
YDT UTC+8 Yukon Daylight Time

Following is an example of the NEW_TIME function.

SELECT NEW_TIME(TO_DATE('08-13-07 10:35:15','MM-DD-YY HH24:MI:SS'),'AST',
'PST') "Pacific Standard Time" FROM DUAL;

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

225

Pacific Standard Time

 13-AUG-07 06:35:15
(1 row)

3.5.7.6 ROUND

The ROUND function returns a date rounded according to a specified template pattern. If
the template pattern is omitted, the date is rounded to the nearest day. The following table
shows the template patterns for the ROUND function.

Table 3-29 Template Date Patterns for the ROUND Function

Pattern Description

CC, SCC
Returns January 1, cc01 where cc is first 2 digits of the given year if last 2 digits <=
50, or 1 greater than the first 2 digits of the given year if last 2 digits > 50; (for AD
years)

SYYY, YYYY,
YEAR, SYEAR,
YYY, YY, Y

Returns January 1, yyyy where yyyy is rounded to the nearest year; rounds down on
June 30, rounds up on July 1

IYYY, IYY, IY, I
Rounds to the beginning of the ISO year which is determined by rounding down if
the month and day is on or before June 30th, or by rounding up if the month and day
is July 1st or later

Q
Returns the first day of the quarter determined by rounding down if the month and
day is on or before the 15th of the second month of the quarter, or by rounding up if
the month and day is on the 16th of the second month or later of the quarter

MONTH, MON, MM,
RM

Returns the first day of the specified month if the day of the month is on or prior to
the 15th; returns the first day of the following month if the day of the month is on
the 16th or later

WW Round to the nearest date that corresponds to the same day of the week as the first
day of the year

IW Round to the nearest date that corresponds to the same day of the week as the first
day of the ISO year

W Round to the nearest date that corresponds to the same day of the week as the first
day of the month

DDD, DD, J Rounds to the start of the nearest day; 11:59:59 AM or earlier rounds to the start of
the same day; 12:00:00 PM or later rounds to the start of the next day

DAY, DY, D Rounds to the nearest Sunday
HH, HH12, HH24 Round to the nearest hour
MI Round to the nearest minute

Following are examples of usage of the ROUND function.

The following examples round to the nearest hundred years.

SELECT TO_CHAR(ROUND(TO_DATE('1950','YYYY'),'CC'),'DD-MON-YYYY') "Century"
FROM DUAL;

 Century

 01-JAN-1901
(1 row)

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

226

SELECT TO_CHAR(ROUND(TO_DATE('1951','YYYY'),'CC'),'DD-MON-YYYY') "Century"
FROM DUAL;

 Century

 01-JAN-2001
(1 row)

The following examples round to the nearest year.

SELECT TO_CHAR(ROUND(TO_DATE('30-JUN-1999','DD-MON-YYYY'),'Y'),'DD-MON-YYYY')
"Year" FROM DUAL;

 Year

 01-JAN-1999
(1 row)

SELECT TO_CHAR(ROUND(TO_DATE('01-JUL-1999','DD-MON-YYYY'),'Y'),'DD-MON-YYYY')
"Year" FROM DUAL;

 Year

 01-JAN-2000
(1 row)

The following examples round to the nearest ISO year. The first example rounds to 2004
and the ISO year for 2004 begins on December 29th of 2003. The second example rounds
to 2005 and the ISO year for 2005 begins on January 3rd of that same year.

(An ISO year begins on the first Monday from which a 7 day span, Monday thru Sunday,
contains at least 4 days of the new year. Thus, it is possible for the beginning of an ISO
year to start in December of the prior year.)

SELECT TO_CHAR(ROUND(TO_DATE('30-JUN-2004','DD-MON-YYYY'),'IYYY'),'DD-MON-
YYYY') "ISO Year" FROM DUAL;

 ISO Year

 29-DEC-2003
(1 row)

SELECT TO_CHAR(ROUND(TO_DATE('01-JUL-2004','DD-MON-YYYY'),'IYYY'),'DD-MON-
YYYY') "ISO Year" FROM DUAL;

 ISO Year

 03-JAN-2005
(1 row)

The following examples round to the nearest quarter.

SELECT ROUND(TO_DATE('15-FEB-07','DD-MON-YY'),'Q') "Quarter" FROM DUAL;

 Quarter

 01-JAN-07 00:00:00

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

227

(1 row)

SELECT ROUND(TO_DATE('16-FEB-07','DD-MON-YY'),'Q') "Quarter" FROM DUAL;

 Quarter

 01-APR-07 00:00:00
(1 row)

The following examples round to the nearest month.

SELECT ROUND(TO_DATE('15-DEC-07','DD-MON-YY'),'MONTH') "Month" FROM DUAL;

 Month

 01-DEC-07 00:00:00
(1 row)

SELECT ROUND(TO_DATE('16-DEC-07','DD-MON-YY'),'MONTH') "Month" FROM DUAL;

 Month

 01-JAN-08 00:00:00
(1 row)

The following examples round to the nearest week. The first day of 2007 lands on a
Monday so in the first example, January 18th is closest to the Monday that lands on
January 15th. In the second example, January 19th is closer to the Monday that falls on
January 22nd.

SELECT ROUND(TO_DATE('18-JAN-07','DD-MON-YY'),'WW') "Week" FROM DUAL;

 Week

 15-JAN-07 00:00:00
(1 row)

SELECT ROUND(TO_DATE('19-JAN-07','DD-MON-YY'),'WW') "Week" FROM DUAL;

 Week

 22-JAN-07 00:00:00
(1 row)

The following examples round to the nearest ISO week. An ISO week begins on a
Monday. In the first example, January 1, 2004 is closest to the Monday that lands on
December 29, 2003. In the second example, January 2, 2004 is closer to the Monday that
lands on January 5, 2004.

SELECT ROUND(TO_DATE('01-JAN-04','DD-MON-YY'),'IW') "ISO Week" FROM DUAL;

 ISO Week

 29-DEC-03 00:00:00
(1 row)

SELECT ROUND(TO_DATE('02-JAN-04','DD-MON-YY'),'IW') "ISO Week" FROM DUAL;

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

228

 ISO Week

 05-JAN-04 00:00:00
(1 row)

The following examples round to the nearest week where a week is considered to start on
the same day as the first day of the month.

SELECT ROUND(TO_DATE('05-MAR-07','DD-MON-YY'),'W') "Week" FROM DUAL;

 Week

 08-MAR-07 00:00:00
(1 row)

SELECT ROUND(TO_DATE('04-MAR-07','DD-MON-YY'),'W') "Week" FROM DUAL;

 Week

 01-MAR-07 00:00:00
(1 row)

The following examples round to the nearest day.

SELECT ROUND(TO_DATE('04-AUG-07 11:59:59 AM','DD-MON-YY HH:MI:SS AM'),'J')
"Day" FROM DUAL;

 Day

 04-AUG-07 00:00:00
(1 row)

SELECT ROUND(TO_DATE('04-AUG-07 12:00:00 PM','DD-MON-YY HH:MI:SS AM'),'J')
"Day" FROM DUAL;

 Day

 05-AUG-07 00:00:00
(1 row)

The following examples round to the start of the nearest day of the week (Sunday).

SELECT ROUND(TO_DATE('08-AUG-07','DD-MON-YY'),'DAY') "Day of Week" FROM DUAL;

 Day of Week

 05-AUG-07 00:00:00
(1 row)

SELECT ROUND(TO_DATE('09-AUG-07','DD-MON-YY'),'DAY') "Day of Week" FROM DUAL;

 Day of Week

 12-AUG-07 00:00:00
(1 row)

The following examples round to the nearest hour.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

229

SELECT TO_CHAR(ROUND(TO_DATE('09-AUG-07 08:29','DD-MON-YY HH:MI'),'HH'),'DD-
MON-YY HH24:MI:SS') "Hour" FROM DUAL;

 Hour

 09-AUG-07 08:00:00
(1 row)

SELECT TO_CHAR(ROUND(TO_DATE('09-AUG-07 08:30','DD-MON-YY HH:MI'),'HH'),'DD-
MON-YY HH24:MI:SS') "Hour" FROM DUAL;

 Hour

 09-AUG-07 09:00:00
(1 row)

The following examples round to the nearest minute.

SELECT TO_CHAR(ROUND(TO_DATE('09-AUG-07 08:30:29','DD-MON-YY
HH:MI:SS'),'MI'),'DD-MON-YY HH24:MI:SS') "Minute" FROM DUAL;

 Minute

 09-AUG-07 08:30:00
(1 row)

SELECT TO_CHAR(ROUND(TO_DATE('09-AUG-07 08:30:30','DD-MON-YY
HH:MI:SS'),'MI'),'DD-MON-YY HH24:MI:SS') "Minute" FROM DUAL;

 Minute

 09-AUG-07 08:31:00
(1 row)

3.5.7.7 TRUNC

The TRUNC function returns a date truncated according to a specified template pattern. If
the template pattern is omitted, the date is truncated to the nearest day. The following
table shows the template patterns for the TRUNC function.

Table 3-30 Template Date Patterns for the TRUNC Function

Pattern Description
CC, SCC Returns January 1, cc01 where cc is first 2 digits of the given year
SYYY, YYYY,
YEAR, SYEAR,
YYY, YY, Y

Returns January 1, yyyy where yyyy is the given year

IYYY, IYY, IY, I Returns the start date of the ISO year containing the given date
Q Returns the first day of the quarter containing the given date
MONTH, MON, MM,
RM Returns the first day of the specified month

WW Returns the largest date just prior to, or the same as the given date that corresponds
to the same day of the week as the first day of the year

IW Returns the start of the ISO week containing the given date

W Returns the largest date just prior to, or the same as the given date that corresponds
to the same day of the week as the first day of the month

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

230

Pattern Description
DDD, DD, J Returns the start of the day for the given date
DAY, DY, D Returns the start of the week (Sunday) containing the given date
HH, HH12, HH24 Returns the start of the hour
MI Returns the start of the minute

Following are examples of usage of the TRUNC function.

The following example truncates down to the hundred years unit.

SELECT TO_CHAR(TRUNC(TO_DATE('1951','YYYY'),'CC'),'DD-MON-YYYY') "Century"
FROM DUAL;

 Century

 01-JAN-1901
(1 row)

The following example truncates down to the year.

SELECT TO_CHAR(TRUNC(TO_DATE('01-JUL-1999','DD-MON-YYYY'),'Y'),'DD-MON-YYYY')
"Year" FROM DUAL;

 Year

 01-JAN-1999
(1 row)

The following example truncates down to the beginning of the ISO year.

SELECT TO_CHAR(TRUNC(TO_DATE('01-JUL-2004','DD-MON-YYYY'),'IYYY'),'DD-MON-
YYYY') "ISO Year" FROM DUAL;

 ISO Year

 29-DEC-2003
(1 row)

The following example truncates down to the start date of the quarter.

SELECT TRUNC(TO_DATE('16-FEB-07','DD-MON-YY'),'Q') "Quarter" FROM DUAL;

 Quarter

 01-JAN-07 00:00:00
(1 row)

The following example truncates to the start of the month.

SELECT TRUNC(TO_DATE('16-DEC-07','DD-MON-YY'),'MONTH') "Month" FROM DUAL;

 Month

 01-DEC-07 00:00:00
(1 row)

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

231

The following example truncates down to the start of the week determined by the first
day of the year. The first day of 2007 lands on a Monday so the Monday just prior to
January 19th is January 15th.

SELECT TRUNC(TO_DATE('19-JAN-07','DD-MON-YY'),'WW') "Week" FROM DUAL;

 Week

 15-JAN-07 00:00:00
(1 row)

The following example truncates to the start of an ISO week. An ISO week begins on a
Monday. January 2, 2004 falls in the ISO week that starts on Monday, December 29,
2003.

SELECT TRUNC(TO_DATE('02-JAN-04','DD-MON-YY'),'IW') "ISO Week" FROM DUAL;

 ISO Week

 29-DEC-03 00:00:00
(1 row)

The following example truncates to the start of the week where a week is considered to
start on the same day as the first day of the month.

SELECT TRUNC(TO_DATE('21-MAR-07','DD-MON-YY'),'W') "Week" FROM DUAL;

 Week

 15-MAR-07 00:00:00
(1 row)

The following example truncates to the start of the day.

SELECT TRUNC(TO_DATE('04-AUG-07 12:00:00 PM','DD-MON-YY HH:MI:SS AM'),'J')
"Day" FROM DUAL;

 Day

 04-AUG-07 00:00:00
(1 row)

The following example truncates to the start of the week (Sunday).

SELECT TRUNC(TO_DATE('09-AUG-07','DD-MON-YY'),'DAY') "Day of Week" FROM DUAL;

 Day of Week

 05-AUG-07 00:00:00
(1 row)

The following example truncates to the start of the hour.

SELECT TO_CHAR(TRUNC(TO_DATE('09-AUG-07 08:30','DD-MON-YY HH:MI'),'HH'),'DD-
MON-YY HH24:MI:SS') "Hour" FROM DUAL;

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

232

 Hour

 09-AUG-07 08:00:00
(1 row)

The following example truncates to the minute.

SELECT TO_CHAR(TRUNC(TO_DATE('09-AUG-07 08:30:30','DD-MON-YY
HH:MI:SS'),'MI'),'DD-MON-YY HH24:MI:SS') "Minute" FROM DUAL;

 Minute

 09-AUG-07 08:30:00
(1 row)

3.5.7.8 CURRENT DATE/TIME

Postgres Plus Advanced Server provides a number of functions that return values related
to the current date and time. These functions all return values based on the start time of
the current transaction.

• CURRENT_DATE
• LOCALTIMESTAMP
• LOCALTIMESTAMP(precision)
• SYSDATE

LOCALTIMESTAMP can optionally be given a precision parameter which causes the result
to be rounded to that many fractional digits in the seconds field. Without a precision
parameter, the result is given to the full available precision.

SELECT CURRENT_DATE FROM DUAL;

 date

 06-AUG-07
(1 row)

SELECT LOCALTIMESTAMP FROM DUAL;

 timestamp

 06-AUG-07 16:11:35.973
(1 row)

SELECT LOCALTIMESTAMP(2) FROM DUAL;

 timestamp

 06-AUG-07 16:11:44.58
(1 row)

SELECT SYSDATE FROM DUAL;

 timestamp

 06-AUG-07 16:11:48

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

233

(1 row)

Since these functions return the start time of the current transaction, their values do not
change during the transaction. This is considered a feature: the intent is to allow a single
transaction to have a consistent notion of the “current” time, so that multiple
modifications within the same transaction bear the same time stamp. Other database
systems may advance these values more frequently.

3.5.8 Sequence Manipulation Functions

This section describes Postgres Plus Advanced Server’s functions for operating on
sequence objects. Sequence objects (also called sequence generators or just sequences)
are special single-row tables created with the CREATE SEQUENCE command. A sequence
object is usually used to generate unique identifiers for rows of a table. The sequence
functions, listed below, provide simple, multiuser-safe methods for obtaining successive
sequence values from sequence objects.

sequence.NEXTVAL
sequence.CURRVAL

sequence is the identifier assigned to the sequence in the CREATE SEQUENCE
command. The following describes the usage of these functions.

NEXTVAL

Advance the sequence object to its next value and return that value. This is done
atomically: even if multiple sessions execute NEXTVAL concurrently, each will
safely receive a distinct sequence value.

CURRVAL

Return the value most recently obtained by NEXTVAL for this sequence in the
current session. (An error is reported if NEXTVAL has never been called for this
sequence in this session.) Notice that because this is returning a session-local
value, it gives a predictable answer whether or not other sessions have executed
NEXTVAL since the current session did.

If a sequence object has been created with default parameters, NEXTVAL calls on it will
return successive values beginning with 1. Other behaviors can be obtained by using
special parameters in the CREATE SEQUENCE command.

Important: To avoid blocking of concurrent transactions that obtain numbers from the
same sequence, a NEXTVAL operation is never rolled back; that is, once a value has been
fetched it is considered used, even if the transaction that did the NEXTVAL later aborts.
This means that aborted transactions may leave unused "holes" in the sequence of
assigned values.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

234

3.5.9 Conditional Expressions

This section describes the SQL-compliant conditional expressions available in Postgres
Plus Advanced Server.

3.5.9.1 CASE

The SQL CASE expression is a generic conditional expression, similar to if/else
statements in other languages:

CASE WHEN condition THEN result
 [WHEN ...]
 [ELSE result]
END

CASE clauses can be used wherever an expression is valid. condition is an expression
that returns a BOOLEAN result. If the result is true then the value of the CASE expression is
the result that follows the condition. If the result is false any subsequent WHEN clauses
are searched in the same manner. If no WHEN condition is true then the value of the
CASE expression is the result in the ELSE clause. If the ELSE clause is omitted and no
condition matches, the result is null.

An example:

SELECT * FROM test;

 a

 1
 2
 3
(3 rows)

SELECT a,
 CASE WHEN a=1 THEN 'one'
 WHEN a=2 THEN 'two'
 ELSE 'other'
 END
FROM test;

 a | case
---+-------
 1 | one
 2 | two
 3 | other
(3 rows)

The data types of all the result expressions must be convertible to a single output type.

The following “simple” CASE expression is a specialized variant of the general form
above:

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

235

CASE expression
 WHEN value THEN result
 [WHEN ...]
 [ELSE result]
END

The expression is computed and compared to all the value specifications in the WHEN
clauses until one is found that is equal. If no match is found, the result in the ELSE
clause (or a null value) is returned.

The example above can be written using the simple CASE syntax:

SELECT a,
 CASE a WHEN 1 THEN 'one'
 WHEN 2 THEN 'two'
 ELSE 'other'
 END
FROM test;

 a | case
---+-------
 1 | one
 2 | two
 3 | other
(3 rows)

A CASE expression does not evaluate any subexpressions that are not needed to determine
the result. For example, this is a possible way of avoiding a division-by-zero failure:

SELECT ... WHERE CASE WHEN x <> 0 THEN y/x > 1.5 ELSE false END;

3.5.9.2 COALESCE

The COALESCE function returns the first of its arguments that is not null. Null is returned
only if all arguments are null.

COALESCE(value [, value2] ...)

It is often used to substitute a default value for null values when data is retrieved for
display, for example:

SELECT COALESCE(description, short_description, '(none)') ...

Like a CASE expression, COALESCE will not evaluate arguments that are not needed to
determine the result; that is, arguments to the right of the first non-null argument are not
evaluated. This SQL-standard function provides capabilities similar to NVL and IFNULL,
which are used in some other database systems.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

236

3.5.9.3 NULLIF

The NULLIF function returns a null value if value1 and value2 are equal; otherwise it
returns value1.

NULLIF(value1, value2)

This can be used to perform the inverse operation of the COALESCE example given
above:

SELECT NULLIF(value1, '(none)') ...

If value1 is (none), return a null, otherwise return value1.

3.5.9.4 GREATEST and LEAST

The GREATEST and LEAST functions select the largest or smallest value from a list of any
number of expressions.

GREATEST(value [, value2] ...)
LEAST(value [, value2] ...)

The expressions must all be convertible to a common data type, which will be the type of
the result. Null values in the list are ignored. The result will be null only if all the
expressions evaluate to null.

Note that GREATEST and LEAST are not in the SQL standard, but are a common
extension.

3.5.10 Aggregate Functions

Aggregate functions compute a single result value from a set of input values. The built-in
aggregate functions are listed in the following tables.

Table 3-31 General-Purpose Aggregate Functions

Function Argument Type Return Type Description

AVG(expression)

INTEGER, REAL,
DOUBLE PRECISION,
NUMBER

NUMBER for any integer
type, DOUBLE PRECISION
for a floating-point
argument, otherwise the
same as the argument data
type

The average (arithmetic mean) of
all input values

COUNT(*) BIGINT Number of input rows

COUNT(expression) Any BIGINT Number of input rows for which
the value of expression is not null

MAX(expression) Any numeric, string, or
date/time type Same as argument type Maximum value of expression

across all input values

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

237

Function Argument Type Return Type Description

MIN(expression) Any numeric, string, or
date/time type Same as argument type Minimum value of expression

across all input values

SUM(expression)

INTEGER, REAL,
DOUBLE PRECISION,
NUMBER

BIGINT for SMALLINT or
INTEGER arguments,
NUMBER for BIGINT
arguments, DOUBLE
PRECISION for floating-
point arguments, otherwise
the same as the argument
data type

Sum of expression across all input
values

It should be noted that except for COUNT, these functions return a null value when no
rows are selected. In particular, SUM of no rows returns null, not zero as one might
expect. The COALESCE function may be used to substitute zero for null when necessary.

The following table shows the aggregate functions typically used in statistical analysis.
(These are separated out merely to avoid cluttering the listing of more-commonly-used
aggregates.) Where the description mentions N, it means the number of input rows for
which all the input expressions are non-null. In all cases, null is returned if the
computation is meaningless, for example when N is zero.

Table 3-32 Aggregate Functions for Statistics

Function Argument Type Return Type Description
CORR(Y, X) DOUBLE PRECISION DOUBLE PRECISION Correlation coefficient
COVAR_POP(Y, X) DOUBLE PRECISION DOUBLE PRECISION Population covariance
COVAR_SAMP(Y, X) DOUBLE PRECISION DOUBLE PRECISION Sample covariance

REGR_AVGX(Y, X) DOUBLE PRECISION DOUBLE PRECISION Average of the independent
variable (sum(X) / N)

REGR_AVGY(Y, X) DOUBLE PRECISION DOUBLE PRECISION Average of the dependent
variable (sum(Y) / N)

REGR_COUNT(Y, X) DOUBLE PRECISION DOUBLE PRECISION
Number of input rows in
which both expressions are
nonnull

REGR_INTERCEPT(Y, X) DOUBLE PRECISION DOUBLE PRECISION

y-intercept of the least-
squares-fit linear equation
determined by the (X, Y)
pairs

REGR_R2(Y, X) DOUBLE PRECISION DOUBLE PRECISION Square of the correlation
coefficient

REGR_SLOPE(Y, X) DOUBLE PRECISION DOUBLE PRECISION

Slope of the least-squares-
fit linear equation
determined by the (X, Y)
pairs

REGR_SXX(Y, X) DOUBLE PRECISION DOUBLE PRECISION
Sum (X2) – sum (X)2 / N
(“sum of squares” of the
independent variable)

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

238

Function Argument Type Return Type Description

REGR_SXY(Y, X) DOUBLE PRECISION DOUBLE PRECISION

Sum (X*Y) – sum (X) * sum
(Y) / N (“sum of products”
of independent times
dependent variable)

REGR_SYY(Y, X) DOUBLE PRECISION DOUBLE PRECISION
Sum (Y2) – sum (Y)2 / N
(“sum of squares” of the
dependent variable)

STDDEV(expression)
INTEGER, REAL,
DOUBLE PRECISION,
NUMBER

DOUBLE PRECISION for
floating-point arguments,
otherwise NUMBER

Historic alias for
STDDEV_SAMP

STDDEV_POP(expression)
INTEGER, REAL,
DOUBLE PRECISION,
NUMBER

DOUBLE PRECISION for
floating-point arguments,
otherwise NUMBER

Population standard
deviation of the input
values

STDDEV_SAMP(expression)
INTEGER, REAL,
DOUBLE PRECISION,
NUMBER

DOUBLE PRECISION for
floating-point arguments,
otherwise NUMBER

Sample standard deviation
of the input values

VARIANCE(expression)
INTEGER, REAL,
DOUBLE PRECISION,
NUMBER

DOUBLE PRECISION for
floating-point arguments,
otherwise NUMBER

Historical alias for
VAR_SAMP

VAR_POP(expression)
INTEGER, REAL,
DOUBLE PRECISION,
NUMBER

DOUBLE PRECISION for
floating-point arguments,
otherwise NUMBER

Population variance of the
input values (square of the
population standard
deviation)

VAR_SAMP(expression)
INTEGER, REAL,
DOUBLE PRECISION,
NUMBER

DOUBLE PRECISION for
floating-point arguments,
otherwise NUMBER

Sample variance of the
input values (square of the
sample standard deviation)

3.5.11 Subquery Expressions

This section describes the SQL-compliant subquery expressions available in Postgres
Plus Advanced Server. All of the expression forms documented in this section return
Boolean (true/false) results.

3.5.11.1 EXISTS

The argument of EXISTS is an arbitrary SELECT statement, or subquery. The subquery is
evaluated to determine whether it returns any rows. If it returns at least one row, the
result of EXISTS is “true”; if the subquery returns no rows, the result of EXISTS is
“false”.

EXISTS(subquery)

The subquery can refer to variables from the surrounding query, which will act as
constants during any one evaluation of the subquery.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

239

The subquery will generally only be executed far enough to determine whether at least
one row is returned, not all the way to completion. It is unwise to write a subquery that
has any side effects (such as calling sequence functions); whether the side effects occur
or not may be difficult to predict.

Since the result depends only on whether any rows are returned, and not on the contents
of those rows, the output list of the subquery is normally uninteresting. A common
coding convention is to write all EXISTS tests in the form EXISTS(SELECT 1 WHERE
...). There are exceptions to this rule however, such as subqueries that use INTERSECT.

This simple example is like an inner join on deptno, but it produces at most one output
row for each dept row, even though there are multiple matching emp rows:

SELECT dname FROM dept WHERE EXISTS (SELECT 1 FROM emp WHERE emp.deptno =
dept.deptno);

 dname

 ACCOUNTING
 RESEARCH
 SALES
(3 rows)

3.5.11.2 IN

The right-hand side is a parenthesized subquery, which must return exactly one column.
The left-hand expression is evaluated and compared to each row of the subquery result.
The result of IN is “true” if any equal subquery row is found. The result is “false” if no
equal row is found (including the special case where the subquery returns no rows).

expression IN (subquery)

Note that if the left-hand expression yields null, or if there are no equal right-hand values
and at least one right-hand row yields null, the result of the IN construct will be null, not
false. This is in accordance with SQL’s normal rules for Boolean combinations of null
values.

As with EXISTS, it’s unwise to assume that the subquery will be evaluated completely.

3.5.11.3 NOT IN

The right-hand side is a parenthesized subquery, which must return exactly one column.
The left-hand expression is evaluated and compared to each row of the subquery result.
The result of NOT IN is “true” if only unequal subquery rows are found (including the
special case where the subquery returns no rows). The result is “false” if any equal row is
found.

expression NOT IN (subquery)

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

240

Note that if the left-hand expression yields null, or if there are no equal right-hand values
and at least one right-hand row yields null, the result of the NOT IN construct will be
null, not true. This is in accordance with SQL’s normal rules for Boolean combinations of
null values.

As with EXISTS, it’s unwise to assume that the subquery will be evaluated completely.

3.5.11.4 ANY/SOME

The right-hand side is a parenthesized subquery, which must return exactly one column.
The left-hand expression is evaluated and compared to each row of the subquery result
using the given operator, which must yield a Boolean result. The result of ANY is “true” if
any true result is obtained. The result is “false” if no true result is found (including the
special case where the subquery returns no rows).

expression operator ANY (subquery)
expression operator SOME (subquery)

SOME is a synonym for ANY. IN is equivalent to = ANY.

Note that if there are no successes and at least one right-hand row yields null for the
operator’s result, the result of the ANY construct will be null, not false. This is in
accordance with SQL’s normal rules for Boolean combinations of null values.

As with EXISTS, it’s unwise to assume that the subquery will be evaluated completely.

3.5.11.5 ALL

The right-hand side is a parenthesized subquery, which must return exactly one column.
The left-hand expression is evaluated and compared to each row of the subquery result
using the given operator, which must yield a Boolean result. The result of ALL is “true” if
all rows yield true (including the special case where the subquery returns no rows). The
result is “false” if any false result is found. The result is null if the comparison does not
return false for any row, and it returns null for at least one row.

expression operator ALL (subquery)

NOT IN is equivalent to <> ALL.

As with EXISTS, it’s unwise to assume that the subquery will be evaluated completely.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

241

4 Stored Procedure Language
This chapter describes the Stored Procedure Language - SPL. SPL is a highly productive,
procedural programming language for writing custom procedures, functions, triggers, and
packages for Postgres Plus Advanced Server.

SPL provides the following benefits:

• Adds full procedural programming functionality to complement the SQL
language

• Provides a single, common language to create stored procedures, functions,
triggers, and packages for the Postgres Plus Advanced Server database

• Is integrated with pgAdmin III to provide a seamless development and testing
environment

• Promotes the use of reusable code
• Is easy to use

This chapter first describes the basic elements of an SPL program. The chapter then
provides an overview of the organization of an SPL program and how it is used to create
a procedure or a function. Triggers, while still utilizing SPL, are sufficiently different to
warrant a separate discussion. See Chapter 5 for information on triggers. Packages are
discussed in Chapter 6.

The remaining sections of this chapter delve into the details of the SPL language and
provide examples of its application.

4.1 Basic SPL Elements

This section discusses the basic programming elements of an SPL program.

4.1.1 Character Set

SPL programs are written using the following set of characters:

• Uppercase letters A thru Z and lowercase letters a thru z
• Digits 0 thru 9
• Symbols () + - * / < > = ! ~ ^ ; : . ' @ % , " # $ & _ | { } ? []
• White space characters tabs, spaces, and carriage returns

Identifiers, expressions, statements, control structures, etc. that comprise the SPL
language are written using these characters.

Note: The data that can be manipulated by an SPL program is determined by the
character set supported by the database encoding.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

242

4.1.2 Case Sensitivity

Keywords and user-defined identifiers that are used in an SPL program are case
insensitive. So for example, the statement DBMS_OUTPUT.PUT_LINE('Hello
World'); is interpreted to mean the same thing as dbms_output.put_line('Hello
World'); or Dbms_Output.Put_Line('Hello World'); or
DBMS_output.Put_line('Hello World');.

Character and string constants, however, are case sensitive as well as any data retrieved
from the Postgres Plus Advanced Server database or data obtained from other external
sources. The statement DBMS_OUTPUT.PUT_LINE('Hello World!'); produces the
following output:

Hello World!

However the statement DBMS_OUTPUT.PUT_LINE('HELLO WORLD!'); produces the
output:

HELLO WORLD!

4.1.3 Identifiers

Identifiers are user-defined names that are used to identify various elements of an SPL
program including variables, cursors, labels, programs, and parameters.

The syntax rules for valid identifiers are the same as for identifiers in the SQL language.
See Section 3.1.2 for a discussion of SQL identifiers.

An identifier must not be the same as an SPL keyword or a keyword of the SQL
language. The following are some examples of valid identifiers:

x
last___name
a_$_Sign
Many$$$$$$$$signs_____
THIS_IS_AN_EXTREMELY_LONG_NAME
A1

4.1.4 Qualifiers

A qualifier is a name that specifies the owner or context of an entity that is the object of
the qualification. A qualified object is specified as the qualifier name followed by a dot
with no intervening white space, followed by the name of the object being qualified with
no intervening white space. This syntax is called dot notation.

The following is the syntax of a qualified object.

qualifier. [qualifier.]... object

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

243

qualifier is the name of the owner of the object. object is the name of the entity
belonging to qualifier. It is possible to have a chain of qualifications where the
preceding qualifier owns the entity identified by the subsequent qualifier(s) and object.

Almost any identifier can be qualified. What an identifier is qualified by depends upon
what the identifier represents and the context of its usage.

Some examples of qualification follow:

• Procedure and function names qualified by the schema to which they belong -
e.g., schema_name.procedure_name(...)

• Trigger names qualified by the schema to which they belong - e.g.,
schema_name.trigger_name

• Column names qualified by the table to which they belong - e.g., emp.empno
• Table names qualified by the schema to which they belong - e.g., public.emp
• Column names qualified by table and schema - e.g., public.emp.empno

As a general rule, wherever a name appears in the syntax of an SPL statement, its
qualified name can be used as well.

Typically a qualified name would only be used if there is some ambiguity associated with
the name. For example, if two procedures with the same name belonging to two different
schemas are invoked from within a program or if the same name is used for a table
column and SPL variable within the same program.

It is suggested that qualified names be avoided if at all possible. In this chapter, the
following conventions are adopted to avoid such naming conflicts:

• All variables declared in the declaration section of an SPL program are prefixed
by v_. E.g., v_empno

• All formal parameters declared in a procedure or function definition are prefixed
by p_. E.g., p_empno

• Column names and table names do not have any special prefix conventions. E.g.,
column empno in table emp

4.1.5 Constants

Constants or literals are fixed values that can be used in SPL programs to represent
values of various types - e.g., numbers, strings, dates, etc. Constants come in the
following types:

• Numeric (Integer and Real) – see Section 3.1.3.2 for information on numeric
constants.

• Character and String – see Section 3.1.3.1 for information on character and string
constants.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

244

• Date/time – see Section 3.2.4 for information on date/time data types and
constants.

4.2 SPL Programs

SPL is a procedural, block-structured language. There are four different types of
programs that can be created using SPL, namely procedures, functions, triggers, and
packages.

Procedures and functions are discussed in more detail later in this section. Triggers are
discussed in Chapter 5 and packages are addressed in Chapter 6.

4.2.1 SPL Block Structure

Regardless of whether the program is a procedure, function, or trigger, an SPL program
has the same block structure. A block consists of up to three sections - an optional
declaration section, a mandatory executable section, and an optional exception section.
Minimally, a block has an executable section that consists of one or more SPL statements
within the keywords, BEGIN and END.

There may be an optional declaration section that is used to declare variables, cursors,
and types that are used by the statements within the executable and exception sections.
Declarations appear just prior to the BEGIN keyword of the executable section.
Depending upon the context of where the block is used, the declaration section may begin
with the keyword DECLARE.

Finally, there may be an optional exception section which appears within the BEGIN -
END block. The exception section begins with the keyword, EXCEPTION, and continues
until the end of the block in which it appears. If an exception is thrown by a statement
within the block, program control goes to the exception section where the thrown
exception may or may not be handled depending upon the exception and the contents of
the exception section.

The following is the general structure of a block:

[[DECLARE]
 declarations]
 BEGIN
 statements
 [EXCEPTION
 WHEN exception_condition THEN
 statements [, ...]]
 END;

declarations are one or more variable, cursor, or type declarations that are local to the
block. Each declaration must be terminated by a semicolon. The use of the keyword
DECLARE depends upon the context in which the block appears.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

245

statements are one or more SPL statements. Each statement must be terminated by a
semicolon. The end of the block denoted by the keyword END must also be terminated by
a semicolon.

If present, the keyword EXCEPTION marks the beginning of the exception section.
exception_condition is a conditional expression testing for one or more types of
exceptions. If a thrown exception matches one of the exceptions in
exception_condition, the statements following the WHEN
exception_condition clause are executed. There may be one or more WHEN
exception_condition clauses, each followed by statements.

Note: A BEGIN/END block in itself, is considered a statement; thus, blocks may be
nested. The exception section may also contain nested blocks.

The following is the simplest possible block consisting of the NULL statement within the
executable section. The NULL statement is an executable statement that does nothing.

BEGIN
 NULL;
END;

The following block contains a declaration section as well as the executable section.

DECLARE
 v_numerator NUMBER(2);
 v_denominator NUMBER(2);
 v_result NUMBER(5,2);
BEGIN
 v_numerator := 75;
 v_denominator := 14;
 v_result := v_numerator / v_denominator;
 DBMS_OUTPUT.PUT_LINE(v_numerator || ' divided by ' || v_denominator ||
 ' is ' || v_result);
END;

In this example, three numeric variables are declared of data type NUMBER. In the
executable section, values are assigned to two of the variables and then one number is
divided by the other, storing the results in a third variable which is then displayed. If this
block is executed the output would be as follows.

75 divided by 14 is 5.36

The following block consists of all three sections - the declaration, executable, and
exception sections.

DECLARE
 v_numerator NUMBER(2);
 v_denominator NUMBER(2);
 v_result NUMBER(5,2);
BEGIN
 v_numerator := 75;

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

246

 v_denominator := 0;
 v_result := v_numerator / v_denominator;
 DBMS_OUTPUT.PUT_LINE(v_numerator || ' divided by ' || v_denominator ||
 ' is ' || v_result);
 EXCEPTION
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE('An exception occurred');
END;

The following output shows that the statement within the exception section is executed as
a result of the division by zero.

An exception occurred

4.2.2 Anonymous Blocks

The preceding section demonstrated the basic structure of a block. A block can simply be
executed in Postgres Plus Advanced Server.

A block of this type is called an anonymous block. An anonymous block is unnamed and
is not stored in the database. Once the block has been executed and erased from the
application buffer, it cannot be re-executed unless the block code is re-entered into the
application.

Anonymous blocks are useful for quick, one-time programs such as for testing.

Typically, however, the same block of code would be re-executed many times. In order to
run a block of code repeatedly without the necessity of re-entering the code each time,
with some simple modifications, an anonymous block can be turned into a procedure or
function. The following sections discuss how to create a procedure or function that can be
stored in the database and invoked repeatedly by another procedure, function, or
application program.

4.2.3 Procedures Overview

Procedures are SPL programs that are invoked or called as an individual SPL program
statement. When called, procedures may optionally receive values from the caller in the
form of input parameters and optionally return values to the caller in the form of output
parameters.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

247

4.2.3.1 Creating a Procedure

The CREATE PROCEDURE command defines and names a procedure that will be stored in
the database.

CREATE [OR REPLACE] PROCEDURE name [(parameters)]
[AUTHID { DEFINER | CURRENT_USER }]
{ IS | AS }
 [declarations]
 BEGIN
 statements
 END [name];

name is the identifier of the procedure. If [OR REPLACE] is specified and a procedure
with the same name already exists in the schema, the new procedure replaces the existing
one. If [OR REPLACE] is not specified, the new procedure will not be allowed to replace
an existing one with the same name in the same schema. parameters is a list of formal
parameters. If the AUTHID clause is omitted or DEFINER is specified, the rights and
search path of the procedure owner are used to determine access privileges to database
objects and resolve unqualified database object references, respectively. If
CURRENT_USER is specified, the rights and search path of the current user executing the
procedure are used to determine access privileges and resolve unqualified object
references. declarations are variable, cursor, or type declarations. statements are
SPL program statements. The BEGIN - END block may contain an EXCEPTION section.

The following is an example of a simple procedure that takes no parameters.

CREATE OR REPLACE PROCEDURE simple_procedure
IS
BEGIN
 DBMS_OUTPUT.PUT_LINE('That''s all folks!');
END simple_procedure;

The procedure is stored in the database by entering the procedure code in Postgres Plus
Advanced Server.

See the

 CREATE PROCEDURE command for more information on creating a procedure.

4.2.3.2 Calling a Procedure

The procedure can be invoked from another SPL program by simply specifying the
procedure name followed by its parameters, if any, followed by a semicolon.

name [(parameters)];

name is the identifier of the procedure. parameters is a list of actual parameters.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

248

Note: If there are no actual parameters to be passed, the procedure must be called with no
opening and closing parenthesis.

The following is an example of calling the procedure from an anonymous block:

BEGIN
 simple_procedure;
END;

That's all folks!

Note: Each application has its own unique way to call a procedure. In a Java application,
the application programming interface, JDBC, is used.

4.2.3.3 Deleting a Procedure

A procedure can be deleted from the database using the DROP PROCEDURE command.

DROP PROCEDURE name;

name is the name of the procedure to be dropped.

The previously created procedure is dropped in this example:

DROP PROCEDURE simple_procedure;

See the

 DROP PROCEDURE command for more details.

4.2.4 Functions Overview

Functions are SPL programs that are invoked as expressions. When evaluated, a function
returns a value that is substituted in the expression in which the function is embedded.
Functions may optionally take values from the calling program in the form of input
parameters. In addition to the fact that the function, itself, returns a value, a function may
optionally return additional values to the caller in the form of output parameters. The use
of output parameters in functions, however, is not an encouraged programming practice.

4.2.4.1 Creating a Function

The CREATE FUNCTION command defines and names a function that will be stored in
the database.

CREATE [OR REPLACE] FUNCTION name [(parameters)]
 RETURN data_type
[AUTHID { DEFINER | CURRENT_USER }]
{ IS | AS }

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

249

 [declarations]
 BEGIN
 statements
 END [name];

name is the identifier of the function. If [OR REPLACE] is specified and a function with
the same name already exists in the schema, the new function replaces the existing one. If
[OR REPLACE] is not specified, the new function will not be allowed to replace an
existing one with the same name in the same schema. parameters is a list of formal
parameters. data_type is the data type of the value that is returned by the function. If
the AUTHID clause is omitted or DEFINER is specified, the rights and search path of the
function owner are used to determine access privileges to database objects and resolve
unqualified database object references, respectively. If CURRENT_USER is specified, the
rights and search path of the current user executing the function are used to determine
access privileges and resolve unqualified object references. declarations are variable,
cursor, or type declarations. statements are SPL program statements. The BEGIN - END
block may contain an EXCEPTION section.

The following is an example of a simple function that takes no parameters.

CREATE OR REPLACE FUNCTION simple_function
 RETURN VARCHAR2
IS
BEGIN
 RETURN 'That''s All Folks!';
END simple_function;

The following is another function that takes two input parameters. Parameters will be
discussed in more detail in subsequent sections.

CREATE OR REPLACE FUNCTION emp_comp (
 p_sal NUMBER,
 p_comm NUMBER
) RETURN NUMBER
IS
BEGIN
 RETURN (p_sal + NVL(p_comm, 0)) * 24;
END emp_comp;

See the

CREATE FUNCTION command for more information.

4.2.4.2 Calling a Function

A function can be used anywhere an expression can appear within an SPL statement. A
function is invoked by simply specifying its name followed by its parameters enclosed in
parenthesis, if any.

name [(parameters)]

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

250

name is the name of the function. parameters is a list of actual parameters.

Note: If there are no actual parameters to be passed, the function can be called with an
empty parameter list or the opening and closing parenthesis may be omitted entirely.

The following shows how the function can be called from another SPL program.

BEGIN
 DBMS_OUTPUT.PUT_LINE(simple_function);
END;

That's All Folks!

A function is typically used within a SQL statement as shown in the following.

SELECT empno "EMPNO", ename "ENAME", sal "SAL", comm "COMM",
 emp_comp(sal, comm) "YEARLY COMPENSATION" FROM emp;

 EMPNO | ENAME | SAL | COMM | YEARLY COMPENSATION
-------+--------+---------+---------+---------------------
 7369 | SMITH | 800.00 | | 19200.00
 7499 | ALLEN | 1600.00 | 300.00 | 45600.00
 7521 | WARD | 1250.00 | 500.00 | 42000.00
 7566 | JONES | 2975.00 | | 71400.00
 7654 | MARTIN | 1250.00 | 1400.00 | 63600.00
 7698 | BLAKE | 2850.00 | | 68400.00
 7782 | CLARK | 2450.00 | | 58800.00
 7788 | SCOTT | 3000.00 | | 72000.00
 7839 | KING | 5000.00 | | 120000.00
 7844 | TURNER | 1500.00 | 0.00 | 36000.00
 7876 | ADAMS | 1100.00 | | 26400.00
 7900 | JAMES | 950.00 | | 22800.00
 7902 | FORD | 3000.00 | | 72000.00
 7934 | MILLER | 1300.00 | | 31200.00
(14 rows)

4.2.4.3 Deleting a Function

A function can be deleted from the database using the DROP FUNCTION command.

DROP FUNCTION name;

name is the name of the function to be dropped.

The previously created function is dropped in this example:

DROP FUNCTION simple_function;

See the

 DROP FUNCTION command for more details.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

251

4.2.5 Procedure and Function Parameters

An important aspect of using procedures and functions is the capability to pass data from
the calling program to the procedure or function and to receive data back from the
procedure or function. This is accomplished by using parameters.

Parameters are declared in the procedure or function definition, enclosed within
parenthesis following the procedure or function name. Parameters declared in the
procedure or function definition are known as formal parameters. When the procedure or
function is invoked, the calling program supplies the actual data that is to be used in the
called program’s processing as well as the variables that are to receive the results of the
called program’s processing. The data and variables supplied by the calling program
when the procedure or function is called are referred to as the actual parameters.

The following is the general format of a formal parameter declaration.

(name [IN | OUT | IN OUT] data_type [DEFAULT value])

name is an identifier assigned to the formal parameter. If specified, IN defines the
parameter for receiving input data into the procedure or function. An IN parameter can
also be initialized to a default value. If specified, OUT defines the parameter for returning
data from the procedure or function. If specified, IN OUT allows the parameter to be used
for both input and output. If all of IN, OUT, and IN OUT are omitted, then the parameter
acts as if it were defined as IN by default. Whether a parameter is IN, OUT, or IN OUT is
referred to as the parameter’s mode. data_type defines the data type of the parameter.
value is a default value assigned to an IN parameter in the called program if an actual
parameter is not specified in the call.

The following is an example of a procedure that takes parameters:

CREATE OR REPLACE PROCEDURE emp_query (
 p_deptno IN NUMBER,
 p_empno IN OUT NUMBER,
 p_ename IN OUT VARCHAR2,
 p_job OUT VARCHAR2,
 p_hiredate OUT DATE,
 p_sal OUT NUMBER
)
IS
BEGIN
 SELECT empno, ename, job, hiredate, sal
 INTO p_empno, p_ename, p_job, p_hiredate, p_sal
 FROM emp
 WHERE deptno = p_deptno
 AND (empno = p_empno
 OR ename = UPPER(p_ename));
END;

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

252

In this example, p_deptno is an IN formal parameter, p_empno and p_ename are IN
OUT formal parameters, and p_job, p_hiredate, and p_sal are OUT formal
parameters.

Note: In the previous example, no maximum length was specified on the VARCHAR2
parameters and no precision and scale were specified on the NUMBER parameters. It is
illegal to specify a length, precision, scale or other constraints on parameter declarations.
These constraints are automatically inherited from the actual parameters that are used
when the procedure or function is called.

The emp_query procedure can be called by another program, passing it the actual
parameters. The following is an example of another SPL program that calls emp_query.

DECLARE
 v_deptno NUMBER(2);
 v_empno NUMBER(4);
 v_ename VARCHAR2(10);
 v_job VARCHAR2(9);
 v_hiredate DATE;
 v_sal NUMBER;
BEGIN
 v_deptno := 30;
 v_empno := 7900;
 v_ename := '';
 emp_query(v_deptno, v_empno, v_ename, v_job, v_hiredate, v_sal);
 DBMS_OUTPUT.PUT_LINE('Department : ' || v_deptno);
 DBMS_OUTPUT.PUT_LINE('Employee No: ' || v_empno);
 DBMS_OUTPUT.PUT_LINE('Name : ' || v_ename);
 DBMS_OUTPUT.PUT_LINE('Job : ' || v_job);
 DBMS_OUTPUT.PUT_LINE('Hire Date : ' || v_hiredate);
 DBMS_OUTPUT.PUT_LINE('Salary : ' || v_sal);
END;

In this example, v_deptno, v_empno, v_ename, v_job, v_hiredate, and v_sal are
the actual parameters.

The output from the preceding example is shown as follows:

Department : 30
Employee No: 7900
Name : JAMES
Job : CLERK
Hire Date : 03-DEC-81
Salary : 950

4.2.5.1 Parameter Modes

As previously discussed, a parameter has one of three possible modes - IN, OUT, or IN
OUT. The following characteristics of a formal parameter are dependent upon its mode.

• Its initial value when the procedure or function is called
• Whether or not the called procedure or function can modify the formal parameter

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

253

• How the actual parameter value is passed from the calling program to the called
program

• What happens to the formal parameter value when an unhandled exception occurs
in the called program

The following table summarizes the behavior of parameters according to their mode.

Table 4-33 Parameter Modes

Mode Property IN IN OUT OUT
Formal parameter initialized to: Actual parameter value Actual parameter value Actual parameter value
Formal parameter modifiable by the
called program? No Yes Yes

Actual parameter contains: (after
normal called program termination)

Original actual
parameter value prior
to the call

Last value of the
formal parameter

Last value of the
formal parameter

Actual parameter contains: (after a
handled exception in the called
program)

Original actual
parameter value prior
to the call

Last value of the
formal parameter

Last value of the
formal parameter

Actual parameter contains: (after an
unhandled exception in the called
program)

Original actual
parameter value prior
to the call

Original actual
parameter value prior
to the call

Original actual
parameter value prior
to the call

As shown by the table, an IN formal parameter is initialized to the actual parameter with
which it is called unless it was explicitly initialized with a default value. The IN
parameter may be referenced within the called program, however, the called program
may not assign a new value to the IN parameter. After control returns to the calling
program, the actual parameter always contains the same value as it was set to prior to the
call.

The OUT formal parameter is initialized to the actual parameter with which it is called.
The called program may reference and assign new values to the formal parameter. If the
called program terminates without an exception, the actual parameter takes on the value
last set in the formal parameter. If a handled exception occurs, the value of the actual
parameter takes on the last value assigned to the formal parameter. If an unhandled
exception occurs, the value of the actual parameter remains as it was prior to the call.

Like an IN parameter, an IN OUT formal parameter is initialized to the actual parameter
with which it is called. Like an OUT parameter, an IN OUT formal parameter is
modifiable by the called program and the last value in the formal parameter is passed to
the calling program’s actual parameter if the called program terminates without an
exception. If a handled exception occurs, the value of the actual parameter takes on the
last value assigned to the formal parameter. If an unhandled exception occurs, the value
of the actual parameter remains as it was prior to the call.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

254

4.2.6 Program Security

Security over what user may execute an SPL program and what database objects an SPL
program may access for any given user executing the program is controlled by the
following:

• Privilege to execute a program.
• Privileges granted on the database objects (including other SPL programs) which

a program attempts to access.
• Whether the program is defined with definer’s rights or invoker’s rights.

These aspects are discussed in the following sections.

4.2.6.1 EXECUTE Privilege

An SPL program (function, procedure, or package) can begin execution only if any of the
following are true:

• The current user is a superuser, or
• The current user has been granted EXECUTE privilege on the SPL program, or
• The current user inherits EXECUTE privilege on the SPL program by virtue of

being a member of a group which does have such privilege, or
• EXECUTE privilege has been granted to the PUBLIC group.

Whenever an SPL program is created in Postgres Plus Advanced Server, EXECUTE
privilege is automatically granted to the PUBLIC group by default, therefore, any user can
immediately execute the program.

This default privilege can be removed by using the REVOKE EXECUTE command. See the

REVOKE command for details. The following is an example:

REVOKE EXECUTE ON PROCEDURE list_emp FROM PUBLIC;

Explicit EXECUTE privilege on the program can then be granted to individual users or
groups.

GRANT EXECUTE ON PROCEDURE list_emp TO john;

Now, user, john, can execute the list_emp program; other users who do not meet any
of the conditions listed at the beginning of this section cannot.

Once a program begins execution, the next aspect of security is what privilege checks
occur if the program attempts to perform an action on any database object including:

• Reading or modifying table or view data.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

255

• Creating, modifying, or deleting a database object such as a table, view, index, or
sequence.

• Obtaining the current or next value from a sequence.
• Calling another program (function, procedure, or package).

Each such action can be protected by privileges on the database object either allowed or
disallowed for the user.

Note that it is possible for a database to have more than one object of the same type with
the same name, but each such object belonging to a different schema in the database. If
this is the case, which object is being referenced by an SPL program? This is the topic of
the next section.

4.2.6.2 Database Object Name Resolution

A database object inside an SPL program may either be referenced by its qualified name
or by an unqualified name. A qualified name is in the form of schema.name where
schema is the name of the schema under which the database object with identifier, name,
exists. An unqualified name does not have the “schema.” portion. When a reference is
made to a qualified name, there is absolutely no ambiguity as to exactly which database
object is intended – it either does or does not exist in the specified schema.

Locating an object with an unqualified name, however, requires the use of the current
user’s search path. When a user becomes the current user of a session, a default search
path is always associated with that user. The search path consists of a list of schemas
which are searched in left-to-right order for locating an unqualified database object
reference. The object is considered non-existent if it can’t be found in any of the schemas
in the search path. The default search path can be displayed in PSQL using the SHOW
search_path command.

SHOW search_path;

 search_path

 $user,public,sys,dbo
(1 row)

$user in the above search path is a generic placeholder that refers to the current user so
if the current user of the above session is enterprisedb, an unqualified database object
would be searched for in the following schemas in this order – first, enterprisedb,
then public, then sys, and finally, dbo.

Once an unqualified name has been resolved in the search path, it can be determined if
the current user has the appropriate privilege to perform the desired action on that
specific object.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

256

Note: The concept of the search path is not Oracle compatible. For an unqualified
reference, Oracle simply looks in the schema of the current user for the named database
object. It also important to note that in Oracle, a user and his or her schema is the same
entity while in Postgres Plus Advanced Server, a user and a schema are two distinct
objects.

4.2.6.3 Database Object Privileges

Once an SPL program begins execution, any attempt to access a database object from
within the program results in a check to ensure the current user has the authorization to
perform the intended action against the referenced object. Privileges on database objects
are bestowed and removed using the

GRANT and

REVOKE commands, respectively. If the current user attempts unauthorized access on a
database object, then the program will throw an exception. See Section 4.5.5 for
information on exception handling.

The final topic discusses exactly who is the current user.

4.2.6.4 Definer’s vs. Invokers Rights

When an SPL program is about to begin execution, a determination is made as to what
user is to be associated with this process. This user is referred to as the current user. It is
the current user’s search path that will be used to resolve any unqualified object
references. The current user’s database object privileges are used to determine whether or
not access to database objects referenced in the program will be permitted.

The selection of the current user is influenced by whether the SPL program was created
with definer’s right or invoker’s rights. The AUTHID clause determines that selection.
Appearance of the clause AUTHID DEFINER gives the program definer’s rights. This is
also the default if the AUTHID clause is omitted. Use of the clause AUTHID
CURRENT_USER gives the program invoker’s rights. The difference between the two is
summarized as follows:

• If a program has definer’s rights, then the owner of the program becomes the
current user when program execution begins. The program owner’s search path is
used to resolve unqualified object references and the program owner’s database
object privileges are used to determine if access to a referenced object is
permitted. In a definer’s rights program, it is irrelevant as to which user actually
invoked the program.

• If a program has invoker’s rights, then the current user at the time the program is
called remains the current user while the program is executing (but not necessarily
within called subprograms – see the following bullet points). When an invoker’s
rights program is invoked, the current user is typically the user that started the

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

257

session (i.e., made the database connection) although it is possible to change the
current user after the session has started using the SET ROLE command. In an
invoker’s rights program, it is irrelevant as to which user actually owns the
program.

From the previous definitions, the following observations can be made:

• If a definer’s rights program calls a definer’s rights program, the current user
changes from the owner of the calling program to the owner of the called program
during execution of the called program.

• If a definer’s rights program calls an invoker’s rights program, the owner of the
calling program remains the current user during execution of both the calling and
called programs.

• If an invoker’s rights program calls an invoker’s rights program, the current user
of the calling program remains the current user during execution of the called
program.

• If an invokers’ rights program calls a definer’s rights program, the current user
switches to the owner of the definer’s rights program during execution of the
called program.

The same principles apply if the called program in turn calls another program in the cases
cited above.

This section on security concludes with an example using the sample application.

4.2.6.5 Security Example

In the following example, a new database will be created along with two users – hr_mgr
who will own a copy of the entire sample application in schema, hr_mgr; and
sales_mgr who will own a schema named, sales_mgr, that will have a copy of only
the emp table containing only the employees who work in sales.

The procedure list_emp, function hire_clerk, and package emp_admin will be used
in this example. All of the default privileges that are granted upon installation of the
sample application will be removed and then be explicitly re-granted so as to present a
more secure environment in this example.

Programs list_emp and hire_clerk will be changed from the default of definer’s
rights to invoker’s rights. It will be then illustrated that when sales_mgr runs these
programs, they act upon the emp table in sales_mgr’s schema since sales_mgr’s
search path and privileges will be used for name resolution and authorization checking.

Programs get_dept_name and hire_emp in the emp_admin package will then be
executed by sales_mgr. In this case, the dept table and emp table in hr_mgr’s schema
will be accessed as hr_mgr is the owner of the emp_admin package which is using
definer’s rights.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

258

Step 1 – Create Database and Users

As user enterprisedb, create the hr database:

CREATE DATABASE hr;

Switch to the hr database and create the users:

\c hr enterprisedb
CREATE USER hr_mgr IDENTIFIED BY password;
CREATE USER sales_mgr IDENTIFIED BY password;

Step 2 – Create the Sample Application

Create the entire sample application, owned by hr_mgr, in hr_mgr’s schema.

\c - hr_mgr
\i C:/EnterpriseDB/8.3/samples/edb-sample.sql

BEGIN
CREATE TABLE
CREATE TABLE
CREATE TABLE
CREATE VIEW
CREATE SEQUENCE
 .
 .
 .
CREATE PACKAGE
CREATE PACKAGE BODY
COMMIT

Step 3 – Create the emp Table in Schema sales_mgr

Create a subset of the emp table owned by sales_mgr in sales_mgr’s schema.

\c – hr_mgr
GRANT USAGE ON SCHEMA hr_mgr TO sales_mgr;
\c – sales_mgr
CREATE TABLE emp AS SELECT * FROM hr_mgr.emp WHERE job = 'SALESMAN';

In the above example, the GRANT USAGE ON SCHEMA command is given to allow
sales_mgr access into hr_mgr’s schema to make a copy of hr_mgr’s emp table. This
step is required in Postgres Plus Advanced Server and is not Oracle compatible since
Oracle does not have the concept of a schema that is distinct from its user.

Step 4 – Remove Default Privileges

Remove all privileges to later illustrate the minimum required privileges needed.

\c – hr_mgr
REVOKE USAGE ON SCHEMA hr_mgr FROM sales_mgr;
REVOKE ALL ON dept FROM PUBLIC;

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

259

REVOKE ALL ON emp FROM PUBLIC;
REVOKE ALL ON next_empno FROM PUBLIC;
REVOKE EXECUTE ON FUNCTION new_empno() FROM PUBLIC;
REVOKE EXECUTE ON PROCEDURE list_emp FROM PUBLIC;
REVOKE EXECUTE ON FUNCTION hire_clerk(VARCHAR2,NUMBER) FROM PUBLIC;
REVOKE EXECUTE ON PACKAGE emp_admin FROM PUBLIC;

Step 5 – Change list_emp to Invoker’s Rights

While connected as user, hr_mgr, add the AUTHID CURRENT_USER clause to the
list_emp program and resave it in Postgres Plus Advanced Server. When performing
this step, be sure you are logged on as hr_mgr, otherwise the modified program may
wind up in the public schema instead of in hr_mgr’s schema.

CREATE OR REPLACE PROCEDURE list_emp
AUTHID CURRENT_USER
IS
 v_empno NUMBER(4);
 v_ename VARCHAR2(10);
 CURSOR emp_cur IS
 SELECT empno, ename FROM emp ORDER BY empno;
BEGIN
 OPEN emp_cur;
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME');
 DBMS_OUTPUT.PUT_LINE('----- -------');
 LOOP
 FETCH emp_cur INTO v_empno, v_ename;
 EXIT WHEN emp_cur%NOTFOUND;
 DBMS_OUTPUT.PUT_LINE(v_empno || ' ' || v_ename);
 END LOOP;
 CLOSE emp_cur;
END;

Step 6 – Change hire_clerk to Invoker’s Rights and Qualify Call to new_empno

While connected as user, hr_mgr, add the AUTHID CURRENT_USER clause to the
hire_clerk program.

Also, after the BEGIN statement, fully qualify the reference, new_empno, to
hr_mgr.new_empno. In order to force the hire_clerk function to call the
new_empno function in the hr_mgr schema, the call must be changed to a fully qualified
name. Since hire_clerk is now an invoker’s rights program, an unqualified call to
new_empno would result in a search for new_empno in a schema in the search path of
hire_clerk’s caller rather than specifically in schema, hr_mgr, where this program
actually resides.

When resaving the program, be sure you are logged on as hr_mgr, otherwise the
modified program may wind up in the public schema instead of in hr_mgr’s schema.

CREATE OR REPLACE FUNCTION hire_clerk (
 p_ename VARCHAR2,
 p_deptno NUMBER
) RETURN NUMBER

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

260

AUTHID CURRENT_USER
IS
 v_empno NUMBER(4);
 v_ename VARCHAR2(10);
 v_job VARCHAR2(9);
 v_mgr NUMBER(4);
 v_hiredate DATE;
 v_sal NUMBER(7,2);
 v_comm NUMBER(7,2);
 v_deptno NUMBER(2);
BEGIN
 v_empno := hr_mgr.new_empno;
 INSERT INTO emp VALUES (v_empno, p_ename, 'CLERK', 7782,
 TRUNC(SYSDATE), 950.00, NULL, p_deptno);
 SELECT empno, ename, job, mgr, hiredate, sal, comm, deptno INTO
 v_empno, v_ename, v_job, v_mgr, v_hiredate, v_sal, v_comm, v_deptno
 FROM emp WHERE empno = v_empno;
 DBMS_OUTPUT.PUT_LINE('Department : ' || v_deptno);
 DBMS_OUTPUT.PUT_LINE('Employee No: ' || v_empno);
 DBMS_OUTPUT.PUT_LINE('Name : ' || v_ename);
 DBMS_OUTPUT.PUT_LINE('Job : ' || v_job);
 DBMS_OUTPUT.PUT_LINE('Manager : ' || v_mgr);
 DBMS_OUTPUT.PUT_LINE('Hire Date : ' || v_hiredate);
 DBMS_OUTPUT.PUT_LINE('Salary : ' || v_sal);
 DBMS_OUTPUT.PUT_LINE('Commission : ' || v_comm);
 RETURN v_empno;
EXCEPTION
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE('The following is SQLERRM:');
 DBMS_OUTPUT.PUT_LINE(SQLERRM);
 DBMS_OUTPUT.PUT_LINE('The following is SQLCODE:');
 DBMS_OUTPUT.PUT_LINE(SQLCODE);
 RETURN -1;
END;

Step 7 – Grant Required Privileges

While connected as user, hr_mgr, grant the privileges needed so sales_mgr can
execute the list_emp procedure, hire_clerk function, and emp_admin package.
Note that the only data object sales_mgr has access to is the emp table in the
sales_mgr schema. sales_mgr has no privileges on any table in the hr_mgr schema.

GRANT USAGE ON SCHEMA hr_mgr TO sales_mgr;
GRANT EXECUTE ON PROCEDURE list_emp TO sales_mgr;
GRANT EXECUTE ON FUNCTION hire_clerk(VARCHAR2,NUMBER) TO sales_mgr;
GRANT EXECUTE ON FUNCTION new_empno() TO sales_mgr;
GRANT EXECUTE ON PACKAGE emp_admin TO sales_mgr;

Step 8 – Run Programs list_emp and hire_clerk

Connect as user, sales_mgr, and run the following anonymous block:

\c – sales_mgr
DECLARE
 v_empno NUMBER(4);
BEGIN
 hr_mgr.list_emp;
 DBMS_OUTPUT.PUT_LINE('*** Adding new employee ***');

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

261

 v_empno := hr_mgr.hire_clerk('JONES',40);
 DBMS_OUTPUT.PUT_LINE('*** After new employee added ***');
 hr_mgr.list_emp;
END;

EMPNO ENAME
----- -------
7499 ALLEN
7521 WARD
7654 MARTIN
7844 TURNER
*** Adding new employee ***
Department : 40
Employee No: 8000
Name : JONES
Job : CLERK
Manager : 7782
Hire Date : 08-NOV-07 00:00:00
Salary : 950.00
*** After new employee added ***
EMPNO ENAME
----- -------
7499 ALLEN
7521 WARD
7654 MARTIN
7844 TURNER
8000 JONES

The table and sequence accessed by the programs of the anonymous block are illustrated
in the following diagram. The gray ovals represent the schemas of sales_mgr and
hr_mgr. The current user during each program execution is shown within parenthesis in
bold red font.

Figure 3 - Invoker's Rights Programs

Selecting from sales_mgr’s emp table shows that the update was made in this table.

sales_mgr
hr_mgr

emp dept

list_emp
(sales_mgr)

hire_clerk
(sales_mgr)

new_empno
(hr_mgr)

next_
empn
o

emp

(sales_mgr)
BEGIN
 hr_mgr.list_emp;
 hr_mgr.hire_clerk
 ...
END;

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

262

SELECT empno, ename, hiredate, sal, deptno,
hr_mgr.emp_admin.get_dept_name(deptno) FROM sales_mgr.emp;

empno | ename | hiredate | sal | deptno | get_dept_name
-------+--------+--------------------+---------+--------+---------------
 7499 | ALLEN | 20-FEB-81 00:00:00 | 1600.00 | 30 | SALES
 7521 | WARD | 22-FEB-81 00:00:00 | 1250.00 | 30 | SALES
 7654 | MARTIN | 28-SEP-81 00:00:00 | 1250.00 | 30 | SALES
 7844 | TURNER | 08-SEP-81 00:00:00 | 1500.00 | 30 | SALES
 8000 | JONES | 08-NOV-07 00:00:00 | 950.00 | 40 | OPERATIONS
(5 rows)

The following diagram shows that the SELECT command references the emp table in the
sales_mgr schema, but the dept table referenced by the get_dept_name function in
the emp_admin package is from the hr_mgr schema since the emp_admin package has
definer’s rights and is owned by hr_mgr.

Figure 4 Definer's Rights Package

Step 9 – Run Program hire_emp in the emp_admin Package

While connected as user, sales_mgr, run the hire_emp procedure in the emp_admin
package.

EXEC hr_mgr.emp_admin.hire_emp(9001,
'ALICE','SALESMAN',8000,TRUNC(SYSDATE),1000,7369,40);

This diagram illustrates that the hire_emp procedure in the emp_admin definer’s rights
package updates the emp table belonging to hr_mgr.

sales_mgr
hr_mgr

emp dept next_
empn
o

emp

emp_admin
(hr_mgr)

hire_emp

get_dept_name

(sales_mgr)
SELECT empno, ename...
hr_mgr.emp_admin.get_dept_name...
FROM sales_mgr.emp

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

263

Figure 5 Definer's Rights Package

Now connect as user, hr_mgr. The following SELECT command verifies that the new
employee was added to hr_mgr’s emp table since the emp_admin package has definer’s
rights and hr_mgr is emp_admin’s owner.

\c – hr_mgr
SELECT empno, ename, hiredate, sal, deptno,
hr_mgr.emp_admin.get_dept_name(deptno) FROM hr_mgr.emp;

empno | ename | hiredate | sal | deptno | get_dept_name
-------+--------+--------------------+---------+--------+---------------
 7369 | SMITH | 17-DEC-80 00:00:00 | 800.00 | 20 | RESEARCH
 7499 | ALLEN | 20-FEB-81 00:00:00 | 1600.00 | 30 | SALES
 7521 | WARD | 22-FEB-81 00:00:00 | 1250.00 | 30 | SALES
 7566 | JONES | 02-APR-81 00:00:00 | 2975.00 | 20 | RESEARCH
 7654 | MARTIN | 28-SEP-81 00:00:00 | 1250.00 | 30 | SALES
 7698 | BLAKE | 01-MAY-81 00:00:00 | 2850.00 | 30 | SALES
 7782 | CLARK | 09-JUN-81 00:00:00 | 2450.00 | 10 | ACCOUNTING
 7788 | SCOTT | 19-APR-87 00:00:00 | 3000.00 | 20 | RESEARCH
 7839 | KING | 17-NOV-81 00:00:00 | 5000.00 | 10 | ACCOUNTING
 7844 | TURNER | 08-SEP-81 00:00:00 | 1500.00 | 30 | SALES
 7876 | ADAMS | 23-MAY-87 00:00:00 | 1100.00 | 20 | RESEARCH
 7900 | JAMES | 03-DEC-81 00:00:00 | 950.00 | 30 | SALES
 7902 | FORD | 03-DEC-81 00:00:00 | 3000.00 | 20 | RESEARCH
 7934 | MILLER | 23-JAN-82 00:00:00 | 1300.00 | 10 | ACCOUNTING
 9001 | ALICE | 08-NOV-07 00:00:00 | 8000.00 | 40 | OPERATIONS
(15 rows)

4.3 Variable Declarations

As discussed in Section 4.2.1 SPL is a block-structured language. The first section that
can appear in a block is the declaration section. The declaration section contains the
definition of variables, cursors, and other types that can be used in SPL statements
contained in the block. In this section, variable declarations are examined in more detail.

sales_mgr
hr_mgr

emp dept next_
empn
o

emp

emp_admin
(hr_mgr)

hire_emp

get_dept_name

(sales_mgr)
EXEC hr_mgr.emp_admin.hire_emp...

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

264

4.3.1 Declaring a Variable

Generally, all variables used in a block must be declared in the declaration section of the
block. A variable declaration consists of a name that is assigned to the variable and its
data type. (See Section 3.2 for a discussion of data types.) Optionally, the variable can be
initialized to a default value in the variable declaration.

The general syntax of a variable declaration is:

name type [{ := | DEFAULT } { expression | NULL }];

name is an identifier assigned to the variable. type is the data type assigned to the
variable. [:= expression], if given, specifies the initial value assigned to the variable
when the block is entered. If the clause is not given then the variable is initialized to the
SQL null value.

The default value is evaluated every time the block is entered. So, for example, assigning
SYSDATE to a variable of type DATE causes the variable to have the time of the current
invocation, not the time when the procedure or function was precompiled.

The following procedure illustrates some variable declarations that utilize defaults
consisting of string and numeric expressions.

CREATE OR REPLACE PROCEDURE dept_salary_rpt (
 p_deptno NUMBER
)
IS
 todays_date DATE := SYSDATE;
 rpt_title VARCHAR2(60) := 'Report For Department # ' || p_deptno
 || ' on ' || todays_date;
 base_sal INTEGER := 35525;
 base_comm_rate NUMBER := 1.33333;
 base_annual NUMBER := ROUND(base_sal * base_comm_rate, 2);
BEGIN
 DBMS_OUTPUT.PUT_LINE(rpt_title);
 DBMS_OUTPUT.PUT_LINE('Base Annual Salary: ' || base_annual);
END;

The following output of the above procedure shows that default values in the variable
declarations are indeed assigned to the variables.

EXEC dept_salary_rpt(20);

Report For Department # 20 on 10-JUL-07 16:44:45
Base Annual Salary: 47366.55

4.3.2 Using %TYPE in Variable Declarations

Often, variables will be declared in SPL programs that will be used to hold values from
tables in the database. In order to ensure compatibility between the table columns and the
SPL variables, the data types of the two should be the same.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

265

However, as quite often happens, a change might be made to the table definition. If the
data type of the column is changed, the corresponding change may be required to the
variable in the SPL program.

Instead of coding the specific column data type into the variable declaration the column
attribute, %TYPE, can be used instead. A qualified column name in dot notation or the
name of a previously declared variable must be specified as a prefix to %TYPE. The data
type of the column or variable prefixed to %TYPE is assigned to the variable being
declared. If the data type of the given column or variable changes, the new data type will
be associated with the variable without the need to modify the declaration code.

Note: The %TYPE attribute can be used with formal parameter declarations as well.

name { { table | view }.column | variable }%TYPE;

name is the identifier assigned to the variable or formal parameter that is being declared.
column is the name of a column in table or view. variable is the name of a variable
that was declared prior to the variable identified by name.

Note: The variable does not inherit any of the column’s other attributes such as might be
specified on the column with the NOT NULL clause or the DEFAULT clause.

In the following example a procedure queries the emp table using an employee number,
displays the employee’s data, finds the average salary of all employees in the department
to which the employee belongs, and then compares the chosen employee’s salary with the
department average.

CREATE OR REPLACE PROCEDURE emp_sal_query (
 p_empno IN NUMBER
)
IS
 v_ename VARCHAR2(10);
 v_job VARCHAR2(9);
 v_hiredate DATE;
 v_sal NUMBER(7,2);
 v_deptno NUMBER(2);
 v_avgsal NUMBER(7,2);
BEGIN
 SELECT ename, job, hiredate, sal, deptno
 INTO v_ename, v_job, v_hiredate, v_sal, v_deptno
 FROM emp WHERE empno = p_empno;
 DBMS_OUTPUT.PUT_LINE('Employee # : ' || p_empno);
 DBMS_OUTPUT.PUT_LINE('Name : ' || v_ename);
 DBMS_OUTPUT.PUT_LINE('Job : ' || v_job);
 DBMS_OUTPUT.PUT_LINE('Hire Date : ' || v_hiredate);
 DBMS_OUTPUT.PUT_LINE('Salary : ' || v_sal);
 DBMS_OUTPUT.PUT_LINE('Dept # : ' || v_deptno);

 SELECT AVG(sal) INTO v_avgsal
 FROM emp WHERE deptno = v_deptno;
 IF v_sal > v_avgsal THEN
 DBMS_OUTPUT.PUT_LINE('Employee''s salary is more than the '
 || 'department average of ' || v_avgsal);

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

266

 ELSE
 DBMS_OUTPUT.PUT_LINE('Employee''s salary does not exceed the '
 || 'department average of ' || v_avgsal);
 END IF;
END;

Instead of the above, the procedure could be written as follows without explicitly coding
the emp table data types into the declaration section of the procedure.

CREATE OR REPLACE PROCEDURE emp_sal_query (
 p_empno IN emp.empno%TYPE
)
IS
 v_ename emp.ename%TYPE;
 v_job emp.job%TYPE;
 v_hiredate emp.hiredate%TYPE;
 v_sal emp.sal%TYPE;
 v_deptno emp.deptno%TYPE;
 v_avgsal v_sal%TYPE;
BEGIN
 SELECT ename, job, hiredate, sal, deptno
 INTO v_ename, v_job, v_hiredate, v_sal, v_deptno
 FROM emp WHERE empno = p_empno;
 DBMS_OUTPUT.PUT_LINE('Employee # : ' || p_empno);
 DBMS_OUTPUT.PUT_LINE('Name : ' || v_ename);
 DBMS_OUTPUT.PUT_LINE('Job : ' || v_job);
 DBMS_OUTPUT.PUT_LINE('Hire Date : ' || v_hiredate);
 DBMS_OUTPUT.PUT_LINE('Salary : ' || v_sal);
 DBMS_OUTPUT.PUT_LINE('Dept # : ' || v_deptno);

 SELECT AVG(sal) INTO v_avgsal
 FROM emp WHERE deptno = v_deptno;
 IF v_sal > v_avgsal THEN
 DBMS_OUTPUT.PUT_LINE('Employee''s salary is more than the '
 || 'department average of ' || v_avgsal);
 ELSE
 DBMS_OUTPUT.PUT_LINE('Employee''s salary does not exceed the '
 || 'department average of ' || v_avgsal);
 END IF;
END;

Note: p_empno shows an example of a formal parameter defined using %TYPE.

v_avgsal illustrates the usage of %TYPE referring to another variable instead of a table
column.

The following is sample output from executing this procedure.

EXEC emp_sal_query(7698);

Employee # : 7698
Name : BLAKE
Job : MANAGER
Hire Date : 01-MAY-81 00:00:00
Salary : 2850.00
Dept # : 30
Employee's salary is more than the department average of 1566.67

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

267

4.3.3 Using %ROWTYPE in Record Declarations

Using the %TYPE attribute provides an easy way to create a variable dependent upon a
column’s data type. Using the %ROWTYPE attribute, a record can be defined that contains
fields corresponding to all columns of a given table. Each field takes on the data type of
its corresponding column.

Note: The fields in the record do not inherit any of the columns’ other attributes such as
might be specified with the NOT NULL clause or the DEFAULT clause.

A record is a named, ordered collection of fields. A field is similar to a variable; it has an
identifier and data type, but has the additional property of belonging to a record, and must
be referenced using dot notation with the record name as its qualifier.

A record can be declared using the %ROWTYPE attribute. The %ROWTYPE attribute is
prefixed by a table name. Each column in the named table defines an identically named
field in the record with the same data type as the column.

record table%ROWTYPE;

record is an identifier assigned to the record. table is the name of a table whose
columns are to define the fields in the record. A view may be used as well to define a
record.The following example shows how the emp_sal_query procedure from the prior
section can be modified to use emp%ROWTYPE to create a record named r_emp instead of
declaring individual variables for the columns in emp.

CREATE OR REPLACE PROCEDURE emp_sal_query (
 p_empno IN emp.empno%TYPE
)
IS
 r_emp emp%ROWTYPE;
 v_avgsal emp.sal%TYPE;
BEGIN
 SELECT ename, job, hiredate, sal, deptno
 INTO r_emp.ename, r_emp.job, r_emp.hiredate, r_emp.sal, r_emp.deptno
 FROM emp WHERE empno = p_empno;
 DBMS_OUTPUT.PUT_LINE('Employee # : ' || p_empno);
 DBMS_OUTPUT.PUT_LINE('Name : ' || r_emp.ename);
 DBMS_OUTPUT.PUT_LINE('Job : ' || r_emp.job);
 DBMS_OUTPUT.PUT_LINE('Hire Date : ' || r_emp.hiredate);
 DBMS_OUTPUT.PUT_LINE('Salary : ' || r_emp.sal);
 DBMS_OUTPUT.PUT_LINE('Dept # : ' || r_emp.deptno);

 SELECT AVG(sal) INTO v_avgsal
 FROM emp WHERE deptno = r_emp.deptno;
 IF r_emp.sal > v_avgsal THEN
 DBMS_OUTPUT.PUT_LINE('Employee''s salary is more than the '
 || 'department average of ' || v_avgsal);
 ELSE
 DBMS_OUTPUT.PUT_LINE('Employee''s salary does not exceed the '
 || 'department average of ' || v_avgsal);
 END IF;
END;

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

268

4.3.4 User-Defined Record Types and Record Variables

Records can be declared based upon a table definition using the %ROWTYPE attribute as
shown in Section 4.3.3. This section describes how a new record structure can be defined
that is not tied to any particular table definition.

The TYPE IS RECORD statement is used to create the definition of a record type. A
record type is a definition of a record comprised of one or more identifiers and their
corresponding data types. A record type cannot, by itself, be used to manipulate data.

The following is the syntax for defining a record type.

TYPE rectype IS RECORD (field_1 datatype_1
 [, field_2 datatype_2] ...);

rectype is an identifier assigned to the record type. field_1, field_2,... are
identifiers assigned to the fields of the record type. datatype_1, datatype_2,... are
the data types of field_1, field_2,... respectively.

A record variable or simply put, a record, is an instance of a record type. A record is
declared from a record type. The properties of the record such as its field names and
types are inherited from the record type.

The following is the syntax for a record declaration.

record rectype

record is an identifier assigned to the record variable. rectype is the identifier of a
previously defined record type. Once declared, a record can then be used to hold data.

Dot notation is used to make reference to the fields in the record.

record.field

record is a previously declared record variable and field is the identifier of a field
belonging to the record type from which record is defined.

The emp_sal_query is again modified – this time using a user-defined record type and
record variable.

CREATE OR REPLACE PROCEDURE emp_sal_query (
 p_empno IN emp.empno%TYPE
)
IS
 TYPE emp_typ IS RECORD (
 ename emp.ename%TYPE,
 job emp.job%TYPE,
 hiredate emp.hiredate%TYPE,

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

269

 sal emp.sal%TYPE,
 deptno emp.deptno%TYPE
);
 r_emp emp_typ;
 v_avgsal emp.sal%TYPE;
BEGIN
 SELECT ename, job, hiredate, sal, deptno
 INTO r_emp.ename, r_emp.job, r_emp.hiredate, r_emp.sal, r_emp.deptno
 FROM emp WHERE empno = p_empno;
 DBMS_OUTPUT.PUT_LINE('Employee # : ' || p_empno);
 DBMS_OUTPUT.PUT_LINE('Name : ' || r_emp.ename);
 DBMS_OUTPUT.PUT_LINE('Job : ' || r_emp.job);
 DBMS_OUTPUT.PUT_LINE('Hire Date : ' || r_emp.hiredate);
 DBMS_OUTPUT.PUT_LINE('Salary : ' || r_emp.sal);
 DBMS_OUTPUT.PUT_LINE('Dept # : ' || r_emp.deptno);

 SELECT AVG(sal) INTO v_avgsal
 FROM emp WHERE deptno = r_emp.deptno;
 IF r_emp.sal > v_avgsal THEN
 DBMS_OUTPUT.PUT_LINE('Employee''s salary is more than the '
 || 'department average of ' || v_avgsal);
 ELSE
 DBMS_OUTPUT.PUT_LINE('Employee''s salary does not exceed the '
 || 'department average of ' || v_avgsal);
 END IF;
END;

Note that instead of specifying data type names, the %TYPE attribute can be used for the
field data types in the record type definition.

The following is the output from executing this stored procedure.

EXEC emp_sal_query(7698);

Employee # : 7698
Name : BLAKE
Job : MANAGER
Hire Date : 01-MAY-81 00:00:00
Salary : 2850.00
Dept # : 30
Employee's salary is more than the department average of 1566.67

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

270

4.4 Basic Statements

This section begins the discussion of the programming statements that can be used in an
SPL program.

4.4.1 NULL

The simplest statement is the NULL statement. This statement is an executable statement
that does nothing.

NULL;

The following is the simplest, possible valid SPL program.

BEGIN
 NULL;
END;

The NULL statement can act as a placeholder where an executable statement is required
such as in a branch of an IF-THEN-ELSE statement.

For example:

CREATE OR REPLACE PROCEDURE divide_it (
 p_numerator IN NUMBER,
 p_denominator IN NUMBER,
 p_result OUT NUMBER
)
IS
BEGIN
 IF p_denominator = 0 THEN
 NULL;
 ELSE
 p_result := p_numerator / p_denominator;
 END IF;
END;

4.4.2 Assignment

The assignment statement sets a variable or a formal parameter of mode OUT or IN OUT
specified on the left side of the assignment, :=, to the evaluated expression specified on
the right side of the assignment.

variable := expression;

variable is an identifier for a previously declared variable, OUT formal parameter, or
IN OUT formal parameter. expression is an expression that produces a single value.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

271

The value produced by the expression must have a compatible data type with that of
variable.

While the dept_salary_rpt example in Section 4.3 showed assignment statements
used in variable declarations, a variation of this example shows the typical use of
assignment statements in the executable section of the procedure.

CREATE OR REPLACE PROCEDURE dept_salary_rpt (
 p_deptno NUMBER
)
IS
 todays_date DATE;
 rpt_title VARCHAR2(60);
 base_sal INTEGER;
 base_comm_rate NUMBER;
 base_annual NUMBER;
BEGIN
 todays_date := SYSDATE;
 rpt_title := 'Report For Department # ' || p_deptno || ' on '
 || todays_date;
 base_sal := 35525;
 base_comm_rate := 1.33333;
 base_annual := ROUND(base_sal * base_comm_rate, 2);

 DBMS_OUTPUT.PUT_LINE(rpt_title);
 DBMS_OUTPUT.PUT_LINE('Base Annual Salary: ' || base_annual);
END;

4.4.3 SELECT INTO

The SELECT INTO statement is an SPL variation of the SQL SELECT command, the
differences being:

• That SELECT INTO is designed to assign the results to variables or records where
they can then be used in SPL program statements.

• The accessible result set of SELECT INTO is at most one row.

Other than the above, all of the clauses of the SELECT command such as WHERE, ORDER
BY, GROUP BY, HAVING, etc. are valid for SELECT INTO. The following are the two
variations of SELECT INTO.

SELECT select_expressions INTO target FROM ...;

target is a comma-separated list of simple variables. select_expressions and the
remainder of the statement are the same as for the

SELECT command. The selected values must exactly match in data type, number, and
order the structure of the target or a runtime error occurs.

SELECT * INTO record FROM table ...;

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

272

record is a record variable that has previously been declared.

If the query returns zero rows, null values are assigned to the target(s). If the query
returns multiple rows, the first row is assigned to the target(s) and the rest are discarded.
(Note that "the first row" is not well-defined unless you’ve used ORDER BY.)

Note: In either cases, where no row is returned or more than one row is returned, SPL
throws an exception.

Note: There is a variation of SELECT INTO using the BULK COLLECT clause that allows
a result set of more than one row that is returned into a collection. See Section 4.10.5.1
for more information on using the BULK COLLECT clause with the SELECT INTO
statement.

You can use the WHEN NO_DATA_FOUND clause in an EXCEPTION block to determine
whether the assignment was successful (that is, at least one row was returned by the
query).

This version of the emp_sal_query procedure uses the variation of SELECT INTO that
returns the result set into a record. Also note the addition of the EXCEPTION block
containing the WHEN NO_DATA_FOUND conditional expression.

CREATE OR REPLACE PROCEDURE emp_sal_query (
 p_empno IN emp.empno%TYPE
)
IS
 r_emp emp%ROWTYPE;
 v_avgsal emp.sal%TYPE;
BEGIN
 SELECT * INTO r_emp
 FROM emp WHERE empno = p_empno;
 DBMS_OUTPUT.PUT_LINE('Employee # : ' || p_empno);
 DBMS_OUTPUT.PUT_LINE('Name : ' || r_emp.ename);
 DBMS_OUTPUT.PUT_LINE('Job : ' || r_emp.job);
 DBMS_OUTPUT.PUT_LINE('Hire Date : ' || r_emp.hiredate);
 DBMS_OUTPUT.PUT_LINE('Salary : ' || r_emp.sal);
 DBMS_OUTPUT.PUT_LINE('Dept # : ' || r_emp.deptno);

 SELECT AVG(sal) INTO v_avgsal
 FROM emp WHERE deptno = r_emp.deptno;
 IF r_emp.sal > v_avgsal THEN
 DBMS_OUTPUT.PUT_LINE('Employee''s salary is more than the '
 || 'department average of ' || v_avgsal);
 ELSE
 DBMS_OUTPUT.PUT_LINE('Employee''s salary does not exceed the '
 || 'department average of ' || v_avgsal);
 END IF;
EXCEPTION
 WHEN NO_DATA_FOUND THEN
 DBMS_OUTPUT.PUT_LINE('Employee # ' || p_empno || ' not found');
END;

If the query is executed with a non-existent employee number the results appear as
follows.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

273

EXEC emp_sal_query(0);

Employee # 0 not found

Another conditional clause of use in the EXCEPTION section with SELECT INTO is the
TOO_MANY_ROWS exception. If more than one row is selected by the SELECT INTO
statement an exception is thrown by SPL.

When the following block is executed, the TOO_MANY_ROWS exception is thrown since
there are many employees in the specified department.

DECLARE
 v_ename emp.ename%TYPE;
BEGIN
 SELECT ename INTO v_ename FROM emp WHERE deptno = 20 ORDER BY ename;
EXCEPTION
 WHEN TOO_MANY_ROWS THEN
 DBMS_OUTPUT.PUT_LINE('More than one employee found');
 DBMS_OUTPUT.PUT_LINE('First employee returned is ' || v_ename);
END;

More than one employee found
First employee returned is ADAMS

Note: See Section 4.5.5 or more information on exception handling.

4.4.4 INSERT

The INSERT command available in the SQL language can also be used in SPL programs.

An expression in the SPL language can be used wherever an expression is allowed in the
SQL INSERT command. Thus, SPL variables and parameters can be used to supply
values to the insert operation.

The following is an example of a procedure that performs an insert of a new employee
using data passed from a calling program.

CREATE OR REPLACE PROCEDURE emp_insert (
 p_empno IN emp.empno%TYPE,
 p_ename IN emp.ename%TYPE,
 p_job IN emp.job%TYPE,
 p_mgr IN emp.mgr%TYPE,
 p_hiredate IN emp.hiredate%TYPE,
 p_sal IN emp.sal%TYPE,
 p_comm IN emp.comm%TYPE,
 p_deptno IN emp.deptno%TYPE
)
IS
BEGIN
 INSERT INTO emp VALUES (
 p_empno,
 p_ename,
 p_job,
 p_mgr,
 p_hiredate,

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

274

 p_sal,
 p_comm,
 p_deptno);

 DBMS_OUTPUT.PUT_LINE('Added employee...');
 DBMS_OUTPUT.PUT_LINE('Employee # : ' || p_empno);
 DBMS_OUTPUT.PUT_LINE('Name : ' || p_ename);
 DBMS_OUTPUT.PUT_LINE('Job : ' || p_job);
 DBMS_OUTPUT.PUT_LINE('Manager : ' || p_mgr);
 DBMS_OUTPUT.PUT_LINE('Hire Date : ' || p_hiredate);
 DBMS_OUTPUT.PUT_LINE('Salary : ' || p_sal);
 DBMS_OUTPUT.PUT_LINE('Commission : ' || p_comm);
 DBMS_OUTPUT.PUT_LINE('Dept # : ' || p_deptno);
 DBMS_OUTPUT.PUT_LINE('----------------------');
EXCEPTION
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE('OTHERS exception on INSERT of employee # '
 || p_empno);
 DBMS_OUTPUT.PUT_LINE('SQLCODE : ' || SQLCODE);
 DBMS_OUTPUT.PUT_LINE('SQLERRM : ' || SQLERRM);
END;

If an exception occurs all database changes made in the procedure are automatically
rolled back. In this example the EXCEPTION section with the WHEN OTHERS clause
catches all exceptions. Two variables are displayed. SQLCODE is a number that identifies
the specific exception that occurred. SQLERRM is a text message explaining the error. See
Section 4.5.5 for more information on exception handling.

The following shows the output when this procedure is executed.

EXEC emp_insert(9503,'PETERSON','ANALYST',7902,'31-MAR-05',5000,NULL,40);

Added employee...
Employee # : 9503
Name : PETERSON
Job : ANALYST
Manager : 7902
Hire Date : 31-MAR-05 00:00:00
Salary : 5000
Dept # : 40

SELECT * FROM emp WHERE empno = 9503;

 empno | ename | job | mgr | hiredate | sal | comm | deptno
-------+----------+---------+------+--------------------+---------+------+--------
 9503 | PETERSON | ANALYST | 7902 | 31-MAR-05 00:00:00 | 5000.00 | | 40
(1 row)

Note: The INSERT command can be included in a FORALL statement. A FORALL
statement allows a single INSERT command to insert multiple rows from values supplied
in one or more collections. See Section 4.10.4 for more information on the FORALL
statement.

4.4.5 UPDATE

The UPDATE command available in the SQL language can also be used in SPL programs.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

275

An expression in the SPL language can be used wherever an expression is allowed in the
SQL UPDATE command. Thus, SPL variables and parameters can be used to supply
values to the update operation.

CREATE OR REPLACE PROCEDURE emp_comp_update (
 p_empno IN emp.empno%TYPE,
 p_sal IN emp.sal%TYPE,
 p_comm IN emp.comm%TYPE
)
IS
BEGIN
 UPDATE emp SET sal = p_sal, comm = p_comm WHERE empno = p_empno;

 IF SQL%FOUND THEN
 DBMS_OUTPUT.PUT_LINE('Updated Employee # : ' || p_empno);
 DBMS_OUTPUT.PUT_LINE('New Salary : ' || p_sal);
 DBMS_OUTPUT.PUT_LINE('New Commission : ' || p_comm);
 ELSE
 DBMS_OUTPUT.PUT_LINE('Employee # ' || p_empno || ' not found');
 END IF;
END;

The SQL%FOUND conditional expression returns “true” if a row is updated, “false”
otherwise. See Section 4.4.8 for a discussion of SQL%FOUND and other similar
expressions.

The following shows the update on the employee using this procedure.

EXEC emp_comp_update(9503, 6540, 1200);

Updated Employee # : 9503
New Salary : 6540
New Commission : 1200

SELECT * FROM emp WHERE empno = 9503;

 empno | ename | job | mgr | hiredate | sal | comm | deptno
-------+----------+---------+------+--------------------+---------+---------+--------
 9503 | PETERSON | ANALYST | 7902 | 31-MAR-05 00:00:00 | 6540.00 | 1200.00 | 40
(1 row)

Note: The UPDATE command can be included in a FORALL statement. A FORALL
statement allows a single UPDATE command to update multiple rows from values
supplied in one or more collections. See Section 4.10.4 for more information on the
FORALL statement.

4.4.6 DELETE

The DELETE command (available in the SQL language) can also be used in SPL
programs.

An expression in the SPL language can be used wherever an expression is allowed in the
SQL DELETE command. Thus, SPL variables and parameters can be used to supply
values to the delete operation.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

276

CREATE OR REPLACE PROCEDURE emp_delete (
 p_empno IN emp.empno%TYPE
)
IS
BEGIN
 DELETE FROM emp WHERE empno = p_empno;

 IF SQL%FOUND THEN
 DBMS_OUTPUT.PUT_LINE('Deleted Employee # : ' || p_empno);
 ELSE
 DBMS_OUTPUT.PUT_LINE('Employee # ' || p_empno || ' not found');
 END IF;
END;

The SQL%FOUND conditional expression returns “true” if a row is deleted, “false”
otherwise. See Section 4.4.8 a discussion of SQL%FOUND and other similar expressions.

The following shows the deletion of an employee using this procedure.

EXEC emp_delete(9503);

Deleted Employee # : 9503

SELECT * FROM emp WHERE empno = 9503;

 empno | ename | job | mgr | hiredate | sal | comm | deptno
-------+-------+-----+-----+----------+-----+------+--------
(0 rows)

Note: The DELETE command can be included in a FORALL statement. A FORALL
statement allows a single DELETE command to delete multiple rows from values supplied
in one or more collections. See Section 4.10.4 for more information on the FORALL
statement.

4.4.7 Using the RETURNING INTO Clause

The INSERT, UPDATE, and DELETE commands may be appended by the optional
RETURNING INTO clause. This clause allows the SPL program to capture the newly
added, modified, or deleted values from the results of an INSERT, UPDATE, or DELETE
command, respectively.

The following is the syntax.

{ insert | update | delete }
 RETURNING { * | expr_1 [, expr_2] ...}
 INTO { record | field_1 [, field_2] ...};

insert is a valid INSERT command. update is a valid UPDATE command. delete is a
valid DELETE command. If * is specified, then the values from the row affected by the
INSERT, UPDATE, or DELETE command are made available for assignment to the
record or fields to the right of the INTO keyword. (Note that the use of * is a Postgres
Plus Advanced Server extension and is not Oracle compatible.) expr_1, expr_2... are

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

277

expressions evaluated upon the row affected by the INSERT, UPDATE, or DELETE
command. The evaluated results are assigned to the record or fields to the right of the
INTO keyword. record is the identifier of a record that must contain fields that match in
number and order, and are data type compatible with the values in the RETURNING
clause. field_1, field_2,... are variables that must match in number and order, and are
data type compatible with the set of values in the RETURNING clause.

If the INSERT, UPDATE, or DELETE command returns a result set with more than one
row, then an exception is thrown with SQLCODE 01422, query returned more than
one row. If no rows are in the result set, then the variables following the INTO keyword
are set to null.

Note: There is a variation of RETURNING INTO using the BULK COLLECT clause that
allows a result set of more than one row that is returned into a collection. See Section
4.10.5 for more information on the BULK COLLECT clause.

The following example is a modification of the emp_comp_update procedure
introduced in Section 4.4.5 with the addition of the RETURNING INTO clause.

CREATE OR REPLACE PROCEDURE emp_comp_update (
 p_empno IN emp.empno%TYPE,
 p_sal IN emp.sal%TYPE,
 p_comm IN emp.comm%TYPE
)
IS
 v_empno emp.empno%TYPE;
 v_ename emp.ename%TYPE;
 v_job emp.job%TYPE;
 v_sal emp.sal%TYPE;
 v_comm emp.comm%TYPE;
 v_deptno emp.deptno%TYPE;
BEGIN
 UPDATE emp SET sal = p_sal, comm = p_comm WHERE empno = p_empno
 RETURNING
 empno,
 ename,
 job,
 sal,
 comm,
 deptno
 INTO
 v_empno,
 v_ename,
 v_job,
 v_sal,
 v_comm,
 v_deptno;

 IF SQL%FOUND THEN
 DBMS_OUTPUT.PUT_LINE('Updated Employee # : ' || v_empno);
 DBMS_OUTPUT.PUT_LINE('Name : ' || v_ename);
 DBMS_OUTPUT.PUT_LINE('Job : ' || v_job);
 DBMS_OUTPUT.PUT_LINE('Department : ' || v_deptno);
 DBMS_OUTPUT.PUT_LINE('New Salary : ' || v_sal);
 DBMS_OUTPUT.PUT_LINE('New Commission : ' || v_comm);

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

278

 ELSE
 DBMS_OUTPUT.PUT_LINE('Employee # ' || p_empno || ' not found');
 END IF;
END;

The following is the output from this procedure assuming employee 9503 created by the
emp_insert procedure of Section 4.4.4 still exists in the table.

EXEC emp_comp_update(9503, 6540, 1200);

Updated Employee # : 9503
Name : PETERSON
Job : ANALYST
Department : 40
New Salary : 6540.00
New Commission : 1200.00

The following example is a modification of the emp_delete procedure of Section 4.4.6
with the addition of the RETURNING INTO clause using record types.

CREATE OR REPLACE PROCEDURE emp_delete (
 p_empno IN emp.empno%TYPE
)
IS
 r_emp emp%ROWTYPE;
BEGIN
 DELETE FROM emp WHERE empno = p_empno
 RETURNING
 *
 INTO
 r_emp;

 IF SQL%FOUND THEN
 DBMS_OUTPUT.PUT_LINE('Deleted Employee # : ' || r_emp.empno);
 DBMS_OUTPUT.PUT_LINE('Name : ' || r_emp.ename);
 DBMS_OUTPUT.PUT_LINE('Job : ' || r_emp.job);
 DBMS_OUTPUT.PUT_LINE('Manager : ' || r_emp.mgr);
 DBMS_OUTPUT.PUT_LINE('Hire Date : ' || r_emp.hiredate);
 DBMS_OUTPUT.PUT_LINE('Salary : ' || r_emp.sal);
 DBMS_OUTPUT.PUT_LINE('Commission : ' || r_emp.comm);
 DBMS_OUTPUT.PUT_LINE('Department : ' || r_emp.deptno);
 ELSE
 DBMS_OUTPUT.PUT_LINE('Employee # ' || p_empno || ' not found');
 END IF;
END;

The following is the output from this procedure.

EXEC emp_delete(9503);

Deleted Employee # : 9503
Name : PETERSON
Job : ANALYST
Manager : 7902
Hire Date : 31-MAR-05 00:00:00
Salary : 6540.00
Commission : 1200.00
Department : 40

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

279

4.4.8 Obtaining the Result Status

There are several attributes that can be used to determine the effect of a command.
SQL%FOUND is a Boolean that returns true if at least one row was affected by an INSERT,
UPDATE or DELETE command or a SELECT INTO command retrieved one or more rows.

The following anonymous block inserts a row and then displays the fact that the row has
been inserted.

BEGIN
 INSERT INTO emp (empno,ename,job,sal,deptno) VALUES (
 9001, 'JONES', 'CLERK', 850.00, 40);
 IF SQL%FOUND THEN
 DBMS_OUTPUT.PUT_LINE('Row has been inserted');
 END IF;
END;

Row has been inserted

SQL%ROWCOUNT provides the number of rows affected by an INSERT, UPDATE or
DELETE command. The following example updates the row that was just inserted and
displays SQL%ROWCOUNT.

BEGIN
 UPDATE emp SET hiredate = '03-JUN-07' WHERE empno = 9001;
 DBMS_OUTPUT.PUT_LINE('# rows updated: ' || SQL%ROWCOUNT);
END;

rows updated: 1

SQL%NOTFOUND is the opposite of SQL%FOUND. SQL%NOTFOUND returns true if no rows
were affected by an INSERT, UPDATE or DELETE command or a SELECT INTO
command retrieved no rows.

BEGIN
 UPDATE emp SET hiredate = '03-JUN-07' WHERE empno = 9000;
 IF SQL%NOTFOUND THEN
 DBMS_OUTPUT.PUT_LINE('No rows were updated');
 END IF;
END;

No rows were updated

4.5 Control Structures

The programming statements in SPL that make it a full procedural complement to SQL
are described in this section.

4.5.1 IF Statement

IF statements let you execute commands based on certain conditions. SPL has four forms
of IF:

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

280

• IF ... THEN
• IF ... THEN ... ELSE
• IF ... THEN ... ELSE IF
• IF ... THEN ... ELSIF ... THEN ... ELSE

4.5.1.1 IF-THEN
IF boolean-expression THEN
 statements
END IF;

IF-THEN statements are the simplest form of IF. The statements between THEN and END
IF will be executed if the condition is true. Otherwise, they are skipped.

In the following example an IF-THEN statement is used to test and display employees
who have a commission.

DECLARE
 v_empno emp.empno%TYPE;
 v_comm emp.comm%TYPE;
 CURSOR emp_cursor IS SELECT empno, comm FROM emp;
BEGIN
 OPEN emp_cursor;
 DBMS_OUTPUT.PUT_LINE('EMPNO COMM');
 DBMS_OUTPUT.PUT_LINE('----- -------');
 LOOP
 FETCH emp_cursor INTO v_empno, v_comm;
 EXIT WHEN emp_cursor%NOTFOUND;
--
-- Test whether or not the employee gets a commission
--
 IF v_comm IS NOT NULL AND v_comm > 0 THEN
 DBMS_OUTPUT.PUT_LINE(v_empno || ' ' ||
 TO_CHAR(v_comm,'$99999.99'));
 END IF;
 END LOOP;
 CLOSE emp_cursor;
END;

The following is the output from this program.

EMPNO COMM
----- -------
7499 $300.00
7521 $500.00
7654 $1400.00

4.5.1.2 IF-THEN-ELSE
IF boolean-expression THEN
 statements
ELSE
 statements
END IF;

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

281

IF-THEN-ELSE statements add to IF-THEN by letting you specify an alternative set of
statements that should be executed if the condition evaluates to false.

The previous example is modified so an IF-THEN-ELSE statement is used to display the
text Non-commission if the employee does not get a commission.

DECLARE
 v_empno emp.empno%TYPE;
 v_comm emp.comm%TYPE;
 CURSOR emp_cursor IS SELECT empno, comm FROM emp;
BEGIN
 OPEN emp_cursor;
 DBMS_OUTPUT.PUT_LINE('EMPNO COMM');
 DBMS_OUTPUT.PUT_LINE('----- -------');
 LOOP
 FETCH emp_cursor INTO v_empno, v_comm;
 EXIT WHEN emp_cursor%NOTFOUND;
--
-- Test whether or not the employee gets a commission
--
 IF v_comm IS NOT NULL AND v_comm > 0 THEN
 DBMS_OUTPUT.PUT_LINE(v_empno || ' ' ||
 TO_CHAR(v_comm,'$99999.99'));
 ELSE
 DBMS_OUTPUT.PUT_LINE(v_empno || ' ' || 'Non-commission');
 END IF;
 END LOOP;
 CLOSE emp_cursor;
END;

The following is the output from this program.

EMPNO COMM
----- -------
7369 Non-commission
7499 $ 300.00
7521 $ 500.00
7566 Non-commission
7654 $ 1400.00
7698 Non-commission
7782 Non-commission
7788 Non-commission
7839 Non-commission
7844 Non-commission
7876 Non-commission
7900 Non-commission
7902 Non-commission
7934 Non-commission

4.5.1.3 IF-THEN-ELSE IF

IF statements can be nested so that alternative IF statements can be invoked once it is
determined whether or not the conditional of an outer IF statement is true or false.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

282

In the following example the outer IF-THEN-ELSE statement tests whether or not an
employee has a commission. The inner IF-THEN-ELSE statements then test whether the
employee’s total compensation exceeds or is less than the company average.

DECLARE
 v_empno emp.empno%TYPE;
 v_sal emp.sal%TYPE;
 v_comm emp.comm%TYPE;
 v_avg NUMBER(7,2);
 CURSOR emp_cursor IS SELECT empno, sal, comm FROM emp;
BEGIN
--
-- Calculate the average yearly compensation in the company
--
 SELECT AVG((sal + NVL(comm,0)) * 24) INTO v_avg FROM emp;
 DBMS_OUTPUT.PUT_LINE('Average Yearly Compensation: ' ||
 TO_CHAR(v_avg,'$999,999.99'));
 OPEN emp_cursor;
 DBMS_OUTPUT.PUT_LINE('EMPNO YEARLY COMP');
 DBMS_OUTPUT.PUT_LINE('----- -----------');
 LOOP
 FETCH emp_cursor INTO v_empno, v_sal, v_comm;
 EXIT WHEN emp_cursor%NOTFOUND;
--
-- Test whether or not the employee gets a commission
--
 IF v_comm IS NOT NULL AND v_comm > 0 THEN
--
-- Test if the employee's compensation with commission exceeds the average
--
 IF (v_sal + v_comm) * 24 > v_avg THEN
 DBMS_OUTPUT.PUT_LINE(v_empno || ' ' ||
 TO_CHAR((v_sal + v_comm) * 24,'$999,999.99') ||
 ' Exceeds Average');
 ELSE
 DBMS_OUTPUT.PUT_LINE(v_empno || ' ' ||
 TO_CHAR((v_sal + v_comm) * 24,'$999,999.99') ||
 ' Below Average');
 END IF;
 ELSE
--
-- Test if the employee's compensation without commission exceeds the
average
--
 IF v_sal * 24 > v_avg THEN
 DBMS_OUTPUT.PUT_LINE(v_empno || ' ' ||
 TO_CHAR(v_sal * 24,'$999,999.99') || ' Exceeds Average');
 ELSE
 DBMS_OUTPUT.PUT_LINE(v_empno || ' ' ||
 TO_CHAR(v_sal * 24,'$999,999.99') || ' Below Average');
 END IF;
 END IF;
 END LOOP;
 CLOSE emp_cursor;
END;

Note: The logic in this program can be simplified considerably by calculating the
employee’s yearly compensation using the NVL function within the SELECT command of
the cursor declaration, however, the purpose of this example is to demonstrate how IF
statements can be used.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

283

The following is the output from this program.

Average Yearly Compensation: $ 53,528.57
EMPNO YEARLY COMP
----- -----------
7369 $ 19,200.00 Below Average
7499 $ 45,600.00 Below Average
7521 $ 42,000.00 Below Average
7566 $ 71,400.00 Exceeds Average
7654 $ 63,600.00 Exceeds Average
7698 $ 68,400.00 Exceeds Average
7782 $ 58,800.00 Exceeds Average
7788 $ 72,000.00 Exceeds Average
7839 $ 120,000.00 Exceeds Average
7844 $ 36,000.00 Below Average
7876 $ 26,400.00 Below Average
7900 $ 22,800.00 Below Average
7902 $ 72,000.00 Exceeds Average
7934 $ 31,200.00 Below Average

When you use this form, you are actually nesting an IF statement inside the ELSE part of
an outer IF statement. Thus you need one END IF statement for each nested IF and one
for the parent IF-ELSE.

4.5.1.4 IF-THEN-ELSIF-ELSE
 IF boolean-expression THEN
 statements
[ELSIF boolean-expression THEN
 statements
[ELSIF boolean-expression THEN
 statements] ...]
[ELSE
 statements]
 END IF;

IF-THEN-ELSIF-ELSE provides a method of checking many alternatives in one
statement. Formally it is equivalent to nested IF-THEN-ELSE-IF-THEN commands, but
only one END IF is needed.

The following example uses an IF-THEN-ELSIF-ELSE statement to count the number
of employees by compensation ranges of $25,000.

DECLARE
 v_empno emp.empno%TYPE;
 v_comp NUMBER(8,2);
 v_lt_25K SMALLINT := 0;
 v_25K_50K SMALLINT := 0;
 v_50K_75K SMALLINT := 0;
 v_75K_100K SMALLINT := 0;
 v_ge_100K SMALLINT := 0;
 CURSOR emp_cursor IS SELECT empno, (sal + NVL(comm,0)) * 24 FROM emp;
BEGIN
 OPEN emp_cursor;
 LOOP

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

284

 FETCH emp_cursor INTO v_empno, v_comp;
 EXIT WHEN emp_cursor%NOTFOUND;
 IF v_comp < 25000 THEN
 v_lt_25K := v_lt_25K + 1;
 ELSIF v_comp < 50000 THEN
 v_25K_50K := v_25K_50K + 1;
 ELSIF v_comp < 75000 THEN
 v_50K_75K := v_50K_75K + 1;
 ELSIF v_comp < 100000 THEN
 v_75K_100K := v_75K_100K + 1;
 ELSE
 v_ge_100K := v_ge_100K + 1;
 END IF;
 END LOOP;
 CLOSE emp_cursor;
 DBMS_OUTPUT.PUT_LINE('Number of employees by yearly compensation');
 DBMS_OUTPUT.PUT_LINE('Less than 25,000 : ' || v_lt_25K);
 DBMS_OUTPUT.PUT_LINE('25,000 - 49,9999 : ' || v_25K_50K);
 DBMS_OUTPUT.PUT_LINE('50,000 - 74,9999 : ' || v_50K_75K);
 DBMS_OUTPUT.PUT_LINE('75,000 - 99,9999 : ' || v_75K_100K);
 DBMS_OUTPUT.PUT_LINE('100,000 and over : ' || v_ge_100K);
END;

The following is the output from this program.

Number of employees by yearly compensation
Less than 25,000 : 2
25,000 - 49,9999 : 5
50,000 - 74,9999 : 6
75,000 - 99,9999 : 0
100,000 and over : 1

4.5.2 CASE Expression

The CASE expression returns a value that is substituted where the CASE expression is
located within an expression.

There are two formats of the CASE expression - one that is called a searched CASE and
the other that uses a selector.

4.5.2.1 Selector CASE Expression

The selector CASE expression attempts to match an expression called the selector to the
expression specified in one or more WHEN clauses. result is an expression that is type-
compatible in the context where the CASE expression is used. If a match is found, the
value given in the corresponding THEN clause is returned by the CASE expression. If there
are no matches, the value following ELSE is returned. If ELSE is omitted, the CASE
expression returns null.

CASE selector-expression
 WHEN match-expression THEN
 result
[WHEN match-expression THEN
 result

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

285

[WHEN match-expression THEN
 result] ...]
[ELSE
 result]
END;

match-expression is evaluated in the order in which it appears within the CASE
expression. result is an expression that is type-compatible in the context where the
CASE expression is used. When the first match-expression is encountered that equals
selector-expression, result in the corresponding THEN clause is returned as the
value of the CASE expression. If none of match-expression equals selector-
expression then result following ELSE is returned. If no ELSE is specified, the CASE
expression returns null.

The following example uses a selector CASE expression to assign the department name to
a variable based upon the department number.

DECLARE
 v_empno emp.empno%TYPE;
 v_ename emp.ename%TYPE;
 v_deptno emp.deptno%TYPE;
 v_dname dept.dname%TYPE;
 CURSOR emp_cursor IS SELECT empno, ename, deptno FROM emp;
BEGIN
 OPEN emp_cursor;
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME DEPTNO DNAME');
 DBMS_OUTPUT.PUT_LINE('----- ------- ------ ----------');
 LOOP
 FETCH emp_cursor INTO v_empno, v_ename, v_deptno;
 EXIT WHEN emp_cursor%NOTFOUND;
 v_dname :=
 CASE v_deptno
 WHEN 10 THEN 'Accounting'
 WHEN 20 THEN 'Research'
 WHEN 30 THEN 'Sales'
 WHEN 40 THEN 'Operations'
 ELSE 'unknown'
 END;
 DBMS_OUTPUT.PUT_LINE(v_empno || ' ' || RPAD(v_ename, 10) ||
 ' ' || v_deptno || ' ' || v_dname);
 END LOOP;
 CLOSE emp_cursor;
END;

The following is the output from this program.

EMPNO ENAME DEPTNO DNAME
----- ------- ------ ----------
7369 SMITH 20 Research
7499 ALLEN 30 Sales
7521 WARD 30 Sales
7566 JONES 20 Research
7654 MARTIN 30 Sales
7698 BLAKE 30 Sales
7782 CLARK 10 Accounting
7788 SCOTT 20 Research

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

286

7839 KING 10 Accounting
7844 TURNER 30 Sales
7876 ADAMS 20 Research
7900 JAMES 30 Sales
7902 FORD 20 Research
7934 MILLER 10 Accounting

4.5.2.2 Searched CASE Expression

A searched CASE expression uses one or more Boolean expressions to determine the
resulting value to return.

CASE WHEN boolean-expression THEN
 result
[WHEN boolean-expression THEN
 result
 [WHEN boolean-expression THEN
 result] ...]
[ELSE
 result]
END;

boolean-expression is evaluated in the order in which it appears within the CASE
expression. result is an expression that is type-compatible in the context where the
CASE expression is used. When the first boolean-expression is encountered that
evaluates to true, result in the corresponding THEN clause is returned as the value of
the CASE expression. If none of boolean-expression evaluates to true then result
following ELSE is returned. If no ELSE is specified, the CASE expression returns null.

The following example uses a searched CASE expression to assign the department name
to a variable based upon the department number.

DECLARE
 v_empno emp.empno%TYPE;
 v_ename emp.ename%TYPE;
 v_deptno emp.deptno%TYPE;
 v_dname dept.dname%TYPE;
 CURSOR emp_cursor IS SELECT empno, ename, deptno FROM emp;
BEGIN
 OPEN emp_cursor;
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME DEPTNO DNAME');
 DBMS_OUTPUT.PUT_LINE('----- ------- ------ ----------');
 LOOP
 FETCH emp_cursor INTO v_empno, v_ename, v_deptno;
 EXIT WHEN emp_cursor%NOTFOUND;
 v_dname :=
 CASE
 WHEN v_deptno = 10 THEN 'Accounting'
 WHEN v_deptno = 20 THEN 'Research'
 WHEN v_deptno = 30 THEN 'Sales'
 WHEN v_deptno = 40 THEN 'Operations'
 ELSE 'unknown'
 END;
 DBMS_OUTPUT.PUT_LINE(v_empno || ' ' || RPAD(v_ename, 10) ||

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

287

 ' ' || v_deptno || ' ' || v_dname);
 END LOOP;
 CLOSE emp_cursor;
END;

The following is the output from this program.

EMPNO ENAME DEPTNO DNAME
----- ------- ------ ----------
7369 SMITH 20 Research
7499 ALLEN 30 Sales
7521 WARD 30 Sales
7566 JONES 20 Research
7654 MARTIN 30 Sales
7698 BLAKE 30 Sales
7782 CLARK 10 Accounting
7788 SCOTT 20 Research
7839 KING 10 Accounting
7844 TURNER 30 Sales
7876 ADAMS 20 Research
7900 JAMES 30 Sales
7902 FORD 20 Research
7934 MILLER 10 Accounting

4.5.3 CASE Statement

The CASE statement executes a set of one or more statements when a specified search
condition is true. The CASE statement is a stand-alone statement in itself while the
previously discussed CASE expression must appear as part of an expression.

There are two formats of the CASE statement - one that is called a searched CASE and the
other that uses a selector.

4.5.3.1 Selector CASE Statement

The selector CASE statement attempts to match an expression called the selector to the
expression specified in one or more WHEN clauses. When a match is found one or more
corresponding statements are executed.

 CASE selector-expression
 WHEN match-expression THEN
 statements
[WHEN match-expression THEN
 statements
[WHEN match-expression THEN
 statements] ...]
[ELSE
 statements]
 END CASE;

selector-expression returns a value type-compatible with each match-
expression. match-expression is evaluated in the order in which it appears within

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

288

the CASE statement. statements are one or more SPL statements, each terminated by a
semi-colon. When the value of selector-expression equals the first match-
expression, the statement(s) in the corresponding THEN clause are executed and
control continues following the END CASE keywords. If there are no matches, the
statement(s) following ELSE are executed. If there are no matches and there is no ELSE
clause, an exception is thrown.

The following example uses a selector CASE statement to assign a department name and
location to a variable based upon the department number.

DECLARE
 v_empno emp.empno%TYPE;
 v_ename emp.ename%TYPE;
 v_deptno emp.deptno%TYPE;
 v_dname dept.dname%TYPE;
 v_loc dept.loc%TYPE;
 CURSOR emp_cursor IS SELECT empno, ename, deptno FROM emp;
BEGIN
 OPEN emp_cursor;
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME DEPTNO DNAME '
 || ' LOC');
 DBMS_OUTPUT.PUT_LINE('----- ------- ------ ----------'
 || ' ---------');
 LOOP
 FETCH emp_cursor INTO v_empno, v_ename, v_deptno;
 EXIT WHEN emp_cursor%NOTFOUND;
 CASE v_deptno
 WHEN 10 THEN v_dname := 'Accounting';
 v_loc := 'New York';
 WHEN 20 THEN v_dname := 'Research';
 v_loc := 'Dallas';
 WHEN 30 THEN v_dname := 'Sales';
 v_loc := 'Chicago';
 WHEN 40 THEN v_dname := 'Operations';
 v_loc := 'Boston';
 ELSE v_dname := 'unknown';
 v_loc := '';
 END CASE;
 DBMS_OUTPUT.PUT_LINE(v_empno || ' ' || RPAD(v_ename, 10) ||
 ' ' || v_deptno || ' ' || RPAD(v_dname, 14) || ' ' ||
 v_loc);
 END LOOP;
 CLOSE emp_cursor;
END;

The following is the output from this program.

EMPNO ENAME DEPTNO DNAME LOC
----- ------- ------ ---------- ---------
7369 SMITH 20 Research Dallas
7499 ALLEN 30 Sales Chicago
7521 WARD 30 Sales Chicago
7566 JONES 20 Research Dallas
7654 MARTIN 30 Sales Chicago
7698 BLAKE 30 Sales Chicago
7782 CLARK 10 Accounting New York
7788 SCOTT 20 Research Dallas
7839 KING 10 Accounting New York

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

289

7844 TURNER 30 Sales Chicago
7876 ADAMS 20 Research Dallas
7900 JAMES 30 Sales Chicago
7902 FORD 20 Research Dallas
7934 MILLER 10 Accounting New York

4.5.3.2 Searched CASE statement

A searched CASE statement uses one or more Boolean expressions to determine the
resulting set of statements to execute.

 CASE WHEN boolean-expression THEN
 statements
[WHEN boolean-expression THEN
 statements
[WHEN boolean-expression THEN
 statements] ...]
[ELSE
 statements]
 END CASE;

boolean-expression is evaluated in the order in which it appears within the CASE
statement. When the first boolean-expression is encountered that evaluates to “true”,
the statement(s) in the corresponding THEN clause are executed and control continues
following the END CASE keywords. If none of boolean-expression evaluates to
“true”, the statement(s) following ELSE are executed. If none of boolean-expression
evaluates to “true” and there is no ELSE clause, an exception is thrown.

The following example uses a searched CASE statement to assign a department name and
location to a variable based upon the department number.

DECLARE
 v_empno emp.empno%TYPE;
 v_ename emp.ename%TYPE;
 v_deptno emp.deptno%TYPE;
 v_dname dept.dname%TYPE;
 v_loc dept.loc%TYPE;
 CURSOR emp_cursor IS SELECT empno, ename, deptno FROM emp;
BEGIN
 OPEN emp_cursor;
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME DEPTNO DNAME '
 || ' LOC');
 DBMS_OUTPUT.PUT_LINE('----- ------- ------ ----------'
 || ' ---------');
 LOOP
 FETCH emp_cursor INTO v_empno, v_ename, v_deptno;
 EXIT WHEN emp_cursor%NOTFOUND;
 CASE
 WHEN v_deptno = 10 THEN v_dname := 'Accounting';
 v_loc := 'New York';
 WHEN v_deptno = 20 THEN v_dname := 'Research';
 v_loc := 'Dallas';
 WHEN v_deptno = 30 THEN v_dname := 'Sales';
 v_loc := 'Chicago';

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

290

 WHEN v_deptno = 40 THEN v_dname := 'Operations';
 v_loc := 'Boston';
 ELSE v_dname := 'unknown';
 v_loc := '';
 END CASE;
 DBMS_OUTPUT.PUT_LINE(v_empno || ' ' || RPAD(v_ename, 10) ||
 ' ' || v_deptno || ' ' || RPAD(v_dname, 14) || ' ' ||
 v_loc);
 END LOOP;
 CLOSE emp_cursor;
END;

The following is the output from this program.

EMPNO ENAME DEPTNO DNAME LOC
----- ------- ------ ---------- ---------
7369 SMITH 20 Research Dallas
7499 ALLEN 30 Sales Chicago
7521 WARD 30 Sales Chicago
7566 JONES 20 Research Dallas
7654 MARTIN 30 Sales Chicago
7698 BLAKE 30 Sales Chicago
7782 CLARK 10 Accounting New York
7788 SCOTT 20 Research Dallas
7839 KING 10 Accounting New York
7844 TURNER 30 Sales Chicago
7876 ADAMS 20 Research Dallas
7900 JAMES 30 Sales Chicago
7902 FORD 20 Research Dallas
7934 MILLER 10 Accounting New York

4.5.4 Loops

With the LOOP, EXIT, CONTINUE, WHILE, and FOR statements, you can arrange for your
SPL program to repeat a series of commands.

4.5.4.1 LOOP
LOOP
 statements
END LOOP;

LOOP defines an unconditional loop that is repeated indefinitely until terminated by an
EXIT or RETURN statement.

4.5.4.2 EXIT
EXIT [WHEN expression];

The innermost loop is terminated and the statement following END LOOP is executed
next.

If WHEN is present, loop exit occurs only if the specified condition is true, otherwise
control passes to the statement after EXIT.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

291

EXIT can be used to cause early exit from all types of loops; it is not limited to use with
unconditional loops.

The following is a simple example of a loop that iterates ten times and then uses the EXIT
statement to terminate.

DECLARE
 v_counter NUMBER(2);
BEGIN
 v_counter := 1;
 LOOP
 EXIT WHEN v_counter > 10;
 DBMS_OUTPUT.PUT_LINE('Iteration # ' || v_counter);
 v_counter := v_counter + 1;
 END LOOP;
END;

The following is the output from this program.

Iteration # 1
Iteration # 2
Iteration # 3
Iteration # 4
Iteration # 5
Iteration # 6
Iteration # 7
Iteration # 8
Iteration # 9
Iteration # 10

4.5.4.3 CONTINUE

The CONTINUE statement provides a way to proceed with the next iteration of a loop
while skipping intervening statements.

When the CONTINUE statement is encountered, the next iteration of the innermost loop is
begun, skipping all statements following the CONTINUE statement until the end of the
loop. That is, control is passed back to the loop control expression, if any, and the body
of the loop is re-evaluated.

If the WHEN clause is used, then the next iteration of the loop is begun only if the specified
expression in the WHEN clause evaluates to true. Otherwise, control is passed to the next
statement following the CONTINUE statement.

The CONTINUE statement may not be used outside of a loop.

The following is a variation of the previous example that uses the CONTINUE statement to
skip the display of the odd numbers.

DECLARE
 v_counter NUMBER(2);
BEGIN

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

292

 v_counter := 0;
 LOOP
 v_counter := v_counter + 1;
 EXIT WHEN v_counter > 10;
 CONTINUE WHEN MOD(v_counter,2) = 1;
 DBMS_OUTPUT.PUT_LINE('Iteration # ' || v_counter);
 END LOOP;
END;

The following is the output from above program.

Iteration # 2
Iteration # 4
Iteration # 6
Iteration # 8
Iteration # 10

4.5.4.4 WHILE
WHILE expression LOOP
 statements
END LOOP;

The WHILE statement repeats a sequence of statements so long as the condition
expression evaluates to “true”. The condition is checked just before each entry to the loop
body.

The following example contains the same logic as in the previous example except the
WHILE statement is used to take the place of the EXIT statement to determine when to
exit the loop.

Note: The conditional expression used to determine when to exit the loop must be
altered. The EXIT statement terminates the loop when its conditional expression is true.
The WHILE statement terminates (or never begins the loop) when its conditional
expression is false.

DECLARE
 v_counter NUMBER(2);
BEGIN
 v_counter := 1;
 WHILE v_counter <= 10 LOOP
 DBMS_OUTPUT.PUT_LINE('Iteration # ' || v_counter);
 v_counter := v_counter + 1;
 END LOOP;
END;

The same result is generated by this example as in the prior example.

Iteration # 1
Iteration # 2
Iteration # 3
Iteration # 4
Iteration # 5
Iteration # 6
Iteration # 7

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

293

Iteration # 8
Iteration # 9
Iteration # 10

4.5.4.5 FOR (integer variant)
FOR name IN expression .. expression LOOP
 statements
END LOOP;

This form of FOR creates a loop that iterates over a range of integer values. The variable
name is automatically defined as type INTEGER and exists only inside the loop. The two
expressions giving the loop range are evaluated once when entering the loop. The
iteration step is +1 and name begins with the value of expression to the left of .. and
terminates once name exceeds the value of expression to the right of ... Thus the two
expressions take on the following roles: start-value .. end-value

The following example simplifies the WHILE loop example even further by using a FOR
loop that iterates from 1 to 10.

BEGIN
 FOR i IN 1 .. 10 LOOP
 DBMS_OUTPUT.PUT_LINE('Iteration # ' || i);
 END LOOP;
END;

Here is the output using the FOR statement.

Iteration # 1
Iteration # 2
Iteration # 3
Iteration # 4
Iteration # 5
Iteration # 6
Iteration # 7
Iteration # 8
Iteration # 9
Iteration # 10

If the start value is greater than the end value the loop body is not executed at all. No
error is raised as shown by the following example.

BEGIN
 FOR i IN 10 .. 1 LOOP
 DBMS_OUTPUT.PUT_LINE('Iteration # ' || i);
 END LOOP;
END;

There is no output from this example as the loop body is never executed.

Note: SPL also supports CURSOR FOR loops (see Section 4.8.7).

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

294

4.5.5 Exception Handling

By default, any error occurring in an SPL program aborts execution of the program. You
can trap errors and recover from them by using a BEGIN block with an EXCEPTION
section. The syntax is an extension of the normal syntax for a BEGIN block:

[DECLARE
 declarations]
 BEGIN
 statements
 EXCEPTION
 WHEN condition [OR condition]... THEN
 handler_statements
 [WHEN condition [OR condition]... THEN
 handler_statements]...
 END;

If no error occurs, this form of block simply executes all the statements, and then
control passes to the next statement after END. But if an error occurs within the
statements, further processing of the statements is abandoned, and control passes to
the EXCEPTION list. The list is searched for the first condition matching the error that
occurred. If a match is found, the corresponding handler_statements are executed,
and then control passes to the next statement after END. If no match is found, the error
propagates out as though the EXCEPTION clause were not there at all: the error can be
caught by an enclosing block with EXCEPTION, or if there is none it aborts processing of
the subprogram.

The special condition name OTHERS matches every error type. Condition names are not
case-sensitive.

If a new error occurs within the selected handler_statements, it cannot be caught by
this EXCEPTION clause, but is propagated out. A surrounding EXCEPTION clause could
catch it.

The following table lists the condition names that may be used.

Table 4-34 Exception Condition Names

Condition Name Description

CASE_NOT_FOUND None of the cases in a CASE statement evaluates to “true” and there is
no ELSE condition.

CURSOR_ALREADY_OPEN Attempt made to open a cursor that is already open.
INVALID_CURSOR Attempt made to access an unopened cursor.
NO_DATA_FOUND No rows satisfied the selection criteria.

OTHERS Catches any exception that hasn’t been caught by a prior condition in
the exception section.

TOO_MANY_ROWS More than one row satisfied the selection criteria where only one row is
allowed to be returned.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

295

Condition Name Description
ZERO_DIVIDE Division by zero was attempted.

4.5.6 Raise Application Error

The procedure, RAISE_APPLICATION_ERROR, provides the capability to intentionally
abort processing within an SPL program from which it is called by causing an exception.
The exception is handled in the same manner as described in Section 4.5.5. In addition,
the RAISE_APPLICATION_ERROR procedure makes a user-defined code and error
message available to the program which can then be used to identify the exception.

RAISE_APPLICATION_ERROR(error_number, message);

error_number is an integer value or expression that is returned in a variable named,
SQLCODE, when the procedure is executed. message is a string literal or expression that
is returned in a variable named, SQLERRM. For additional information on the SQLCODE
and SQLERRM variables, see Section 4.11.

The following example uses the RAISE_APPLICATION_ERROR procedure to display a
different code and message depending upon the information missing from an employee.

CREATE OR REPLACE PROCEDURE verify_emp (
 p_empno NUMBER
)
IS
 v_ename emp.ename%TYPE;
 v_job emp.job%TYPE;
 v_mgr emp.mgr%TYPE;
 v_hiredate emp.hiredate%TYPE;
BEGIN
 SELECT ename, job, mgr, hiredate
 INTO v_ename, v_job, v_mgr, v_hiredate FROM emp
 WHERE empno = p_empno;
 IF v_ename IS NULL THEN
 RAISE_APPLICATION_ERROR(20010, 'No name for ' || p_empno);
 END IF;
 IF v_job IS NULL THEN
 RAISE_APPLICATION_ERROR(20020, 'No job for' || p_empno);
 END IF;
 IF v_mgr IS NULL THEN
 RAISE_APPLICATION_ERROR(20030, 'No manager for ' || p_empno);
 END IF;
 IF v_hiredate IS NULL THEN
 RAISE_APPLICATION_ERROR(20040, 'No hire date for ' || p_empno);
 END IF;
 DBMS_OUTPUT.PUT_LINE('Employee ' || p_empno ||
 ' validated without errors');
EXCEPTION
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE('SQLCODE: ' || SQLCODE);
 DBMS_OUTPUT.PUT_LINE('SQLERRM: ' || SQLERRM);
END;

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

296

The following shows the output in a case where the manager number is missing from an
employee record.

EXEC verify_emp(7839);

SQLCODE: 20030
SQLERRM: EDB-20030: No manager for 7839

4.6 Transaction Control

There may be circumstances where it is desired that all updates to a database are to occur
successfully, or none are to occur at all if any error occurs. A set of database updates that
are to all occur successfully as a single unit, or are not to occur at all, is said to be a
transaction.

A common example in banking is a funds transfer between two accounts. The two parts
of the transaction are the withdrawal of funds from one account, and the deposit of the
funds in another account. Both parts of this transaction must occur otherwise the bank’s
books will be out of balance. The deposit and withdrawal are one transaction.

An SPL application can be created that uses an Oracle compatible style of transaction
control if the following conditions are met:

• The edb_stmt_level_tx parameter must be set to “true”. This prevents the
action of unconditionally rolling back all database updates within the BEGIN/END
block if any exception occurs. See Section 1.3.3 for more information on the
edb_stmt_level_tx parameter.

• The application must not be running in autocommit mode. If autocommit mode is
on, each successful database update is immediately committed and cannot be
undone. The manner in which autocommit mode is turned on or off is application
dependent.

A transaction begins when the first SQL command is encountered in the SPL program.
All subsequent SQL commands are included as part of that transaction. The transaction
ends when one of the following occurs:

• An unhandled exception occurs in which case the effects of all database updates
made during the transaction are rolled back and the transaction is aborted.

• A COMMIT command is encountered in which case the effect of all database
updates made during the transaction become permanent.

• A ROLLBACK command is encountered in which case the effects of all database
updates made during the transaction are rolled back and the transaction is aborted.
If a new SQL command is encountered, a new transaction begins.

• Control returns to the calling application (such as Java, PSQL, etc.) in which case
the action of the application determines whether the transaction is committed or
rolled back.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

297

Note: Unlike Oracle, DDL commands such as CREATE TABLE do not implicitly occur
within their own transaction. Therefore, DDL commands do not automatically cause an
immediate database commit as in Oracle, and DDL commands may be rolled back just
like DML commands.

A transaction may span one or more BEGIN/END blocks, or a single BEGIN/END block
may contain one or more transactions.

The following sections discuss the COMMIT and ROLLBACK commands in more detail.

4.6.1 COMMIT

The COMMIT command makes all database updates made during the current transaction
permanent, and ends the current transaction.

COMMIT [WORK];

The COMMIT command may be used within anonymous blocks, stored procedures, or
functions. Within an SPL program, it may appear in the executable section and/or the
exception section.

In the following example, the third INSERT command in the anonymous block results in
an error. The effect of the first two INSERT commands are retained as shown by the first
SELECT command. Even after issuing a ROLLBACK command, the two rows remain in the
table as shown by the second SELECT command verifying that they were indeed
committed.

Note: The edb_stmt_level_tx configuration parameter shown in the example below
can be set for the entire database using the ALTER DATABASE command, or it can be set
for the entire database server by changing it in the postgresql.conf file.

\set AUTOCOMMIT off
SET edb_stmt_level_tx TO on;

BEGIN
 INSERT INTO dept VALUES (50, 'FINANCE', 'DALLAS');
 INSERT INTO dept VALUES (60, 'MARKETING', 'CHICAGO');
 COMMIT;
 INSERT INTO dept VALUES (70, 'HUMAN RESOURCES', 'CHICAGO');
EXCEPTION
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE('SQLERRM: ' || SQLERRM);
 DBMS_OUTPUT.PUT_LINE('SQLCODE: ' || SQLCODE);
END;

SQLERRM: value too long for type character varying(14)
SQLCODE: 22001

SELECT * FROM dept;

deptno | dname | loc

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

298

--------+------------+----------
 10 | ACCOUNTING | NEW YORK
 20 | RESEARCH | DALLAS
 30 | SALES | CHICAGO
 40 | OPERATIONS | BOSTON
 50 | FINANCE | DALLAS
 60 | MARKETING | CHICAGO
(6 rows)

ROLLBACK;

SELECT * FROM dept;

deptno | dname | loc
--------+------------+----------
 10 | ACCOUNTING | NEW YORK
 20 | RESEARCH | DALLAS
 30 | SALES | CHICAGO
 40 | OPERATIONS | BOSTON
 50 | FINANCE | DALLAS
 60 | MARKETING | CHICAGO
(6 rows)

4.6.2 ROLLBACK

The ROLLBACK command undoes all database updates made during the current
transaction, and ends the current transaction.

ROLLBACK [WORK];

The ROLLBACK command may be used within anonymous blocks, stored procedures, or
functions. Within an SPL program, it may appear in the executable section and/or the
exception section.

In the following example, the exception section contains a ROLLBACK command. Even
though the first two INSERT commands are executed successfully, the third results in an
exception that results in the rollback of all the INSERT commands in the anonymous
block.

\set AUTOCOMMIT off
SET edb_stmt_level_tx TO on;

BEGIN
 INSERT INTO dept VALUES (50, 'FINANCE', 'DALLAS');
 INSERT INTO dept VALUES (60, 'MARKETING', 'CHICAGO');
 INSERT INTO dept VALUES (70, 'HUMAN RESOURCES', 'CHICAGO');
EXCEPTION
 WHEN OTHERS THEN
 ROLLBACK;
 DBMS_OUTPUT.PUT_LINE('SQLERRM: ' || SQLERRM);
 DBMS_OUTPUT.PUT_LINE('SQLCODE: ' || SQLCODE);
END;

SQLERRM: value too long for type character varying(14)
SQLCODE: 22001

SELECT * FROM dept;

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

299

deptno | dname | loc
--------+------------+----------
 10 | ACCOUNTING | NEW YORK
 20 | RESEARCH | DALLAS
 30 | SALES | CHICAGO
 40 | OPERATIONS | BOSTON
(4 rows)

The following is a more complex example using both COMMIT and ROLLBACK. First, the
following stored procedure is created which inserts a new employee.

\set AUTOCOMMIT off
SET edb_stmt_level_tx TO on;

CREATE OR REPLACE PROCEDURE emp_insert (
 p_empno IN emp.empno%TYPE,
 p_ename IN emp.ename%TYPE,
 p_job IN emp.job%TYPE,
 p_mgr IN emp.mgr%TYPE,
 p_hiredate IN emp.hiredate%TYPE,
 p_sal IN emp.sal%TYPE,
 p_comm IN emp.comm%TYPE,
 p_deptno IN emp.deptno%TYPE
)
IS
BEGIN
 INSERT INTO emp VALUES (
 p_empno,
 p_ename,
 p_job,
 p_mgr,
 p_hiredate,
 p_sal,
 p_comm,
 p_deptno);

 DBMS_OUTPUT.PUT_LINE('Added employee...');
 DBMS_OUTPUT.PUT_LINE('Employee # : ' || p_empno);
 DBMS_OUTPUT.PUT_LINE('Name : ' || p_ename);
 DBMS_OUTPUT.PUT_LINE('Job : ' || p_job);
 DBMS_OUTPUT.PUT_LINE('Manager : ' || p_mgr);
 DBMS_OUTPUT.PUT_LINE('Hire Date : ' || p_hiredate);
 DBMS_OUTPUT.PUT_LINE('Salary : ' || p_sal);
 DBMS_OUTPUT.PUT_LINE('Commission : ' || p_comm);
 DBMS_OUTPUT.PUT_LINE('Dept # : ' || p_deptno);
 DBMS_OUTPUT.PUT_LINE('----------------------');
END;

Note that this procedure has no exception section so any error that may occur is
propagated up to the calling program.

The following anonymous block is run. Note the use of the COMMIT command after all
calls to the emp_insert procedure and the ROLLBACK command in the exception
section.

BEGIN
 emp_insert(9601,'FARRELL','ANALYST',7902,'03-MAR-08',5000,NULL,40);
 emp_insert(9602,'TYLER','ANALYST',7900,'25-JAN-08',4800,NULL,40);

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

300

 COMMIT;
EXCEPTION
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE('SQLERRM: ' || SQLERRM);
 DBMS_OUTPUT.PUT_LINE('An error occurred - roll back inserts');
 ROLLBACK;
END;

Added employee...
Employee # : 9601
Name : FARRELL
Job : ANALYST
Manager : 7902
Hire Date : 03-MAR-08 00:00:00
Salary : 5000
Commission :
Dept # : 40

Added employee...
Employee # : 9602
Name : TYLER
Job : ANALYST
Manager : 7900
Hire Date : 25-JAN-08 00:00:00
Salary : 4800
Commission :
Dept # : 40

The following SELECT command shows that employees Farrell and Tyler were
successfully added.

SELECT * FROM emp WHERE empno > 9600;

empno | ename | job | mgr | hiredate | sal | comm | deptno
-------+---------+---------+------+--------------------+---------+------+--------
 9601 | FARRELL | ANALYST | 7902 | 03-MAR-08 00:00:00 | 5000.00 | | 40
 9602 | TYLER | ANALYST | 7900 | 25-JAN-08 00:00:00 | 4800.00 | | 40
(2 rows)

Now, execute the following anonymous block:

BEGIN
 emp_insert(9603,'HARRISON','SALESMAN',7902,'13-DEC-07',5000,3000,20);
 emp_insert(9604,'JARVIS','SALESMAN',7902,'05-MAY-08',4800,4100,11);
 COMMIT;
EXCEPTION
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE('SQLERRM: ' || SQLERRM);
 DBMS_OUTPUT.PUT_LINE('An error occurred - roll back inserts');
 ROLLBACK;
END;

Added employee...
Employee # : 9603
Name : HARRISON
Job : SALESMAN
Manager : 7902
Hire Date : 13-DEC-07 00:00:00
Salary : 5000
Commission : 3000

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

301

Dept # : 20

SQLERRM: insert or update on table "emp" violates foreign key constraint
"emp_ref_dept_fk"
An error occurred - roll back inserts

A SELECT command run against the table yields the following:

SELECT * FROM emp WHERE empno > 9600;

empno | ename | job | mgr | hiredate | sal | comm | deptno
-------+---------+---------+------+--------------------+---------+------+--------
 9601 | FARRELL | ANALYST | 7902 | 03-MAR-08 00:00:00 | 5000.00 | | 40
 9602 | TYLER | ANALYST | 7900 | 25-JAN-08 00:00:00 | 4800.00 | | 40
(2 rows)

The ROLLBACK command in the exception section successfully undoes the insert of
employee Harrison. Also note that employees Farrell and Tyler are still in the table as
their inserts were made permanent by the COMMIT command in the first anonymous
block.

4.7 Dynamic SQL

Dynamic SQL is a technique that provides the ability to execute SQL commands that are
not known until the commands are about to be executed. Up to this point, the SQL
commands that have been illustrated in SPL programs have been static SQL - the full
command (with the exception of variables) must be known and coded into the program
before the program, itself, can begin to execute. Thus using dynamic SQL, the executed
SQL can change during program runtime.

In addition, dynamic SQL is the only method by which data definition commands, such
as CREATE TABLE, can be executed from within an SPL program.

Note, however, that the runtime performance of dynamic SQL will be slower than static
SQL.

The EXECUTE IMMEDIATE command is used to run SQL commands dynamically.

EXECUTE IMMEDIATE sql_expression;
 [INTO { variable [, ...] | record }]
 [USING expression [, ...]]

sql_expression is a string expression containing the SQL command to be
dynamically executed. variable receives the output of the result set, typically from a
SELECT command, created as a result of executing the SQL command in
sql_expression. The number, order, and type of variables must match the number,
order, and be type-compatible with the fields of the result set. Alternatively, a record can
be specified as long as the record’s fields match the number, order, and are type-
compatible with the result set. When using the INTO clause, exactly one row must be
returned in the result set, otherwise an exception occurs. When using the USING clause

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

302

the value of expression is passed to a placeholder. Placeholders appear embedded
within the SQL command in sql_expression where variables may be used.
Placeholders are denoted by an identifier with a colon (:) prefix - :name. The number,
order, and resultant data types of the evaluated expressions must match the number, order
and be type-compatible with the placeholders in sql_expression. Note that
placeholders are not declared anywhere in the SPL program – they only appear in
sql_expression.

The following example shows basic dynamic SQL commands as string literals.

DECLARE
 v_sql VARCHAR2(50);
BEGIN
 EXECUTE IMMEDIATE 'CREATE TABLE job (jobno NUMBER(3),' ||
 ' jname VARCHAR2(9))';
 v_sql := 'INSERT INTO job VALUES (100, ''ANALYST'')';
 EXECUTE IMMEDIATE v_sql;
 v_sql := 'INSERT INTO job VALUES (200, ''CLERK'')';
 EXECUTE IMMEDIATE v_sql;
END;

The following example illustrates the USING clause to pass values to placeholders in the
SQL string.

DECLARE
 v_sql VARCHAR2(50) := 'INSERT INTO job VALUES ' ||
 '(:p_jobno, :p_jname)';
 v_jobno job.jobno%TYPE;
 v_jname job.jname%TYPE;
BEGIN
 v_jobno := 300;
 v_jname := 'MANAGER';
 EXECUTE IMMEDIATE v_sql USING v_jobno, v_jname;
 v_jobno := 400;
 v_jname := 'SALESMAN';
 EXECUTE IMMEDIATE v_sql USING v_jobno, v_jname;
 v_jobno := 500;
 v_jname := 'PRESIDENT';
 EXECUTE IMMEDIATE v_sql USING v_jobno, v_jname;
END;

The following example shows both the INTO and USING clauses. Note the last execution
of the SELECT command returns the results into a record instead of individual variables.

DECLARE
 v_sql VARCHAR2(60);
 v_jobno job.jobno%TYPE;
 v_jname job.jname%TYPE;
 r_job job%ROWTYPE;
BEGIN
 DBMS_OUTPUT.PUT_LINE('JOBNO JNAME');
 DBMS_OUTPUT.PUT_LINE('----- -------');
 v_sql := 'SELECT jobno, jname FROM job WHERE jobno = :p_jobno';
 EXECUTE IMMEDIATE v_sql INTO v_jobno, v_jname USING 100;
 DBMS_OUTPUT.PUT_LINE(v_jobno || ' ' || v_jname);
 EXECUTE IMMEDIATE v_sql INTO v_jobno, v_jname USING 200;

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

303

 DBMS_OUTPUT.PUT_LINE(v_jobno || ' ' || v_jname);
 EXECUTE IMMEDIATE v_sql INTO v_jobno, v_jname USING 300;
 DBMS_OUTPUT.PUT_LINE(v_jobno || ' ' || v_jname);
 EXECUTE IMMEDIATE v_sql INTO v_jobno, v_jname USING 400;
 DBMS_OUTPUT.PUT_LINE(v_jobno || ' ' || v_jname);
 EXECUTE IMMEDIATE v_sql INTO r_job USING 500;
 DBMS_OUTPUT.PUT_LINE(r_job.jobno || ' ' || r_job.jname);
END;

The following is the output from the previous anonymous block:

JOBNO JNAME
----- -------
100 ANALYST
200 CLERK
300 MANAGER
400 SALESMAN
500 PRESIDENT

4.8 Static Cursors

Rather than executing a whole query at once, it is possible to set up a cursor that
encapsulates the query, and then read the query result set one row at a time. This allows
the creation of SPL program logic that retrieves a row from the result set, does some
processing on the data in that row, and then retrieves the next row and repeats the
process.

Cursors are most often used in the context of a FOR or WHILE loop. A conditional test
should be included in the SPL logic that detects when the end of the result set has been
reached so the program can exit the loop.

4.8.1 Declaring a Cursor

In order to use a cursor, it must first be declared in the declaration section of the SPL
program. A cursor declaration appears as follows:

CURSOR name IS query;

name is an identifier that will be used to reference the cursor and its result set later in the
program. query is a SQL SELECT command that determines the result set retrievable by
the cursor.

Note: An extension of this syntax allows the use of parameters. This is discussed in more
detail in Section 4.8.8.

The following are some examples of cursor declarations:

CREATE OR REPLACE PROCEDURE cursor_example
IS
 CURSOR emp_cur_1 IS SELECT * FROM emp;
 CURSOR emp_cur_2 IS SELECT empno, ename FROM emp;

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

304

 CURSOR emp_cur_3 IS SELECT empno, ename FROM emp WHERE deptno = 10
 ORDER BY empno;
BEGIN
 ...
END;

4.8.2 Opening a Cursor

Before a cursor can be used to retrieve rows, it must first be opened. This is accomplished
with the OPEN statement.

OPEN name;

name is the identifier of a cursor that has been previously declared in the declaration
section of the SPL program. The OPEN statement must not be executed on a cursor that
has already been, and still is open.

The following shows an OPEN statement with its corresponding cursor declaration.

CREATE OR REPLACE PROCEDURE cursor_example
IS
 CURSOR emp_cur_3 IS SELECT empno, ename FROM emp WHERE deptno = 10
 ORDER BY empno;
BEGIN
 OPEN emp_cur_3;
 ...
END;

4.8.3 Fetching Rows From a Cursor

Once a cursor has been opened, rows can be retrieved from the cursor’s result set by
using the FETCH statement.

FETCH name INTO { record | variable [, variable_2]... };

name is the identifier of a previously opened cursor. record is the identifier of a
previously defined record (for example, using table%ROWTYPE). variable,
variable_2... are SPL variables that will receive the field data from the fetched row.
The fields in record or variable, variable_2... must match in number and order,
the fields returned in the SELECT list of the query given in the cursor declaration. The
data types of the fields in the SELECT list must match, or be implicitly convertible to the
data types of the fields in record or the data types of variable, variable_2...

Note: There is a variation of FETCH INTO using the BULK COLLECT clause that can
return multiple rows at a time into a collection. See Section 4.10.5.2 for more information
on using the BULK COLLECT clause with the FETCH INTO statement.

The following shows the FETCH statement.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

305

CREATE OR REPLACE PROCEDURE cursor_example
IS
 v_empno NUMBER(4);
 v_ename VARCHAR2(10);
 CURSOR emp_cur_3 IS SELECT empno, ename FROM emp WHERE deptno = 10
 ORDER BY empno;
BEGIN
 OPEN emp_cur_3;
 FETCH emp_cur_3 INTO v_empno, v_ename;
 ...
END;

Instead of explicitly declaring the data type of a target variable, %TYPE can be used
instead. In this way, if the data type of the database column is changed, the target variable
declaration in the SPL program does not have to be changed. %TYPE will automatically
pick up the new data type of the specified column.

CREATE OR REPLACE PROCEDURE cursor_example
IS
 v_empno emp.empno%TYPE;
 v_ename emp.ename%TYPE;
 CURSOR emp_cur_3 IS SELECT empno, ename FROM emp WHERE deptno = 10
 ORDER BY empno;
BEGIN
 OPEN emp_cur_3;
 FETCH emp_cur_3 INTO v_empno, v_ename;
 ...
END;

If all the columns in a table are retrieved in the order defined in the table, %ROWTYPE can
be used to define a record into which the FETCH statement will place the retrieved data.
Each field within the record can then be accessed using dot notation.

CREATE OR REPLACE PROCEDURE cursor_example
IS
 v_emp_rec emp%ROWTYPE;
 CURSOR emp_cur_1 IS SELECT * FROM emp;
BEGIN
 OPEN emp_cur_1;
 FETCH emp_cur_1 INTO v_emp_rec;
 DBMS_OUTPUT.PUT_LINE('Employee Number: ' || v_emp_rec.empno);
 DBMS_OUTPUT.PUT_LINE('Employee Name : ' || v_emp_rec.ename);
 ...
END;

4.8.4 Closing a Cursor

Once all the desired rows have been retrieved from the cursor result set, the cursor must
be closed. Once closed, the result set is no longer accessible. The CLOSE statement
appears as follows:

CLOSE name;

name is the identifier of a cursor that is currently open. Once a cursor is closed, it must
not be closed again. However, once the cursor is closed, the OPEN statement can be

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

306

issued again on the closed cursor and the query result set will be rebuilt after which the
FETCH statement can then be used to retrieve the rows of the new result set.

The following example illustrates the use of the CLOSE statement:

CREATE OR REPLACE PROCEDURE cursor_example
IS
 v_emp_rec emp%ROWTYPE;
 CURSOR emp_cur_1 IS SELECT * FROM emp;
BEGIN
 OPEN emp_cur_1;
 FETCH emp_cur_1 INTO v_emp_rec;
 DBMS_OUTPUT.PUT_LINE('Employee Number: ' || v_emp_rec.empno);
 DBMS_OUTPUT.PUT_LINE('Employee Name : ' || v_emp_rec.ename);
 CLOSE emp_cur_1;
END;

This procedure produces the following output when invoked. Employee number 7369,
SMITH is the first row of the result set.

EXEC cursor_example;

Employee Number: 7369
Employee Name : SMITH

4.8.5 Using %ROWTYPE With Cursors

Using the %ROWTYPE attribute, a record can be defined that contains fields corresponding
to all columns fetched from a cursor or cursor variable. Each field takes on the data type
of its corresponding column. The %ROWTYPE attribute is prefixed by a cursor name or
cursor variable name.

record cursor%ROWTYPE;

record is an identifier assigned to the record. cursor is an explicitly declared cursor
within the current scope.

The following example shows how you can use a cursor with %ROWTYPE to get
information about which employee works in which department.

CREATE OR REPLACE PROCEDURE emp_info
IS
 CURSOR empcur IS SELECT ename, deptno FROM emp;
 myvar empcur%ROWTYPE;
BEGIN
 OPEN empcur;
 LOOP
 FETCH empcur INTO myvar;
 EXIT WHEN empcur%NOTFOUND;
 DBMS_OUTPUT.PUT_LINE(myvar.ename || ' works in department '
 || myvar.deptno);
 END LOOP;
 CLOSE empcur;
END;

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

307

The following is the output from this procedure.

EXEC emp_info;

SMITH works in department 20
ALLEN works in department 30
WARD works in department 30
JONES works in department 20
MARTIN works in department 30
BLAKE works in department 30
CLARK works in department 10
SCOTT works in department 20
KING works in department 10
TURNER works in department 30
ADAMS works in department 20
JAMES works in department 30
FORD works in department 20
MILLER works in department 10

4.8.6 Cursor Attributes

Each cursor has a set of attributes associated with it that allows the program to test the
state of the cursor. These attributes are %ISOPEN, %FOUND, %NOTFOUND, and
%ROWCOUNT. These attributes are described in the following sections.

4.8.6.1 %ISOPEN

The %ISOPEN attribute is used to test whether or not a cursor is open.

cursor_name%ISOPEN

cursor_name is the name of the cursor for which a BOOLEAN data type of “true” will be
returned if the cursor is open, “false” otherwise.

The following is an example of using %ISOPEN.

CREATE OR REPLACE PROCEDURE cursor_example
IS
 ...
 CURSOR emp_cur_1 IS SELECT * FROM emp;
 ...
BEGIN
 ...
 IF emp_cur_1%ISOPEN THEN
 NULL;
 ELSE
 OPEN emp_cur_1;
 END IF;
 FETCH emp_cur_1 INTO ...
 ...
END;

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

308

4.8.6.2 %FOUND

The %FOUND attribute is used to test whether or not a row is retrieved from the result set
of the specified cursor after a FETCH on the cursor.

cursor_name%FOUND

cursor_name is the name of the cursor for which a BOOLEAN data type of “true” will be
returned if a row is retrieved from the result set of the cursor after a FETCH.

After the last row of the result set has been FETCHed the next FETCH results in %FOUND
returning “false”. “false” is also returned after the first FETCH if there are no rows in the
result set to begin with.

Referencing %FOUND on a cursor before it is opened or after it is closed results in an
INVALID_CURSOR exception being thrown.

%FOUND returns null if it is referenced when the cursor is open, but before the first
FETCH.

The following example uses %FOUND.

CREATE OR REPLACE PROCEDURE cursor_example
IS
 v_emp_rec emp%ROWTYPE;
 CURSOR emp_cur_1 IS SELECT * FROM emp;
BEGIN
 OPEN emp_cur_1;
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME');
 DBMS_OUTPUT.PUT_LINE('----- -------');
 FETCH emp_cur_1 INTO v_emp_rec;
 WHILE emp_cur_1%FOUND LOOP
 DBMS_OUTPUT.PUT_LINE(v_emp_rec.empno || ' ' || v_emp_rec.ename);
 FETCH emp_cur_1 INTO v_emp_rec;
 END LOOP;
 CLOSE emp_cur_1;
END;

When the previous procedure is invoked, the output appears as follows:

EXEC cursor_example;

EMPNO ENAME
----- ------
7369 SMITH
7499 ALLEN
7521 WARD
7566 JONES
7654 MARTIN
7698 BLAKE
7782 CLARK
7788 SCOTT
7839 KING

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

309

7844 TURNER
7876 ADAMS
7900 JAMES
7902 FORD
7934 MILLER

4.8.6.3 %NOTFOUND

The %NOTFOUND attribute is the logical opposite of %FOUND.

cursor_name%NOTFOUND

cursor_name is the name of the cursor for which a BOOLEAN data type of “false” will
be returned if a row is retrieved from the result set of the cursor after a FETCH.

After the last row of the result set has been FETCHed the next FETCH results in
%NOTFOUND returning “true”. “true” is also returned after the first FETCH if there are no
rows in the result set to begin with.

Referencing %NOTFOUND on a cursor before it is opened or after it is closed, results in an
INVALID_CURSOR exception being thrown.

%NOTFOUND returns null if it is referenced when the cursor is open, but before the first
FETCH.

The following example uses %NOTFOUND.

CREATE OR REPLACE PROCEDURE cursor_example
IS
 v_emp_rec emp%ROWTYPE;
 CURSOR emp_cur_1 IS SELECT * FROM emp;
BEGIN
 OPEN emp_cur_1;
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME');
 DBMS_OUTPUT.PUT_LINE('----- -------');
 LOOP
 FETCH emp_cur_1 INTO v_emp_rec;
 EXIT WHEN emp_cur_1%NOTFOUND;
 DBMS_OUTPUT.PUT_LINE(v_emp_rec.empno || ' ' || v_emp_rec.ename);
 END LOOP;
 CLOSE emp_cur_1;
END;

Similar to the prior example, this procedure produces the same output when invoked.

EXEC cursor_example;

EMPNO ENAME
----- ------
7369 SMITH
7499 ALLEN
7521 WARD
7566 JONES

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

310

7654 MARTIN
7698 BLAKE
7782 CLARK
7788 SCOTT
7839 KING
7844 TURNER
7876 ADAMS
7900 JAMES
7902 FORD
7934 MILLER

4.8.6.4 %ROWCOUNT

The %ROWCOUNT attribute returns an integer showing the number of rows FETCHed so far
from the specified cursor.

cursor_name%ROWCOUNT

cursor_name is the name of the cursor for which %ROWCOUNT returns the number of
rows retrieved thus far. After the last row has been retrieved, %ROWCOUNT remains set to
the total number of rows returned until the cursor is closed at which point %ROWCOUNT
will throw an INVALID_CURSOR exception if referenced.

Referencing %ROWCOUNT on a cursor before it is opened or after it is closed, results in an
INVALID_CURSOR exception being thrown.

%ROWCOUNT returns 0 if it is referenced when the cursor is open, but before the first
FETCH. %ROWCOUNT also returns 0 after the first FETCH when there are no rows in the
result set to begin with.

The following example uses %ROWCOUNT.

CREATE OR REPLACE PROCEDURE cursor_example
IS
 v_emp_rec emp%ROWTYPE;
 CURSOR emp_cur_1 IS SELECT * FROM emp;
BEGIN
 OPEN emp_cur_1;
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME');
 DBMS_OUTPUT.PUT_LINE('----- -------');
 LOOP
 FETCH emp_cur_1 INTO v_emp_rec;
 EXIT WHEN emp_cur_1%NOTFOUND;
 DBMS_OUTPUT.PUT_LINE(v_emp_rec.empno || ' ' || v_emp_rec.ename);
 END LOOP;
 DBMS_OUTPUT.PUT_LINE('**********************');
 DBMS_OUTPUT.PUT_LINE(emp_cur_1%ROWCOUNT || ' rows were retrieved');
 CLOSE emp_cur_1;
END;

This procedure prints the total number of rows retrieved at the end of the employee list as
follows:

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

311

EXEC cursor_example;

EMPNO ENAME
----- -------
7369 SMITH
7499 ALLEN
7521 WARD
7566 JONES
7654 MARTIN
7698 BLAKE
7782 CLARK
7788 SCOTT
7839 KING
7844 TURNER
7876 ADAMS
7900 JAMES
7902 FORD
7934 MILLER

14 rows were retrieved

4.8.6.5 Summary of Cursor States and Attributes

The following table summarizes the possible cursor states and the values returned by the
cursor attributes.

Table 4-35 Cursor Attributes

Cursor State %ISOPEN %FOUND %NOTFOUND %ROWCOUNT

Before OPEN False
INVALID_CURSOR
Exception

INVALID_CURSOR
Exception

INVALID_CURSOR
Exception

After OPEN & Before
1st FETCH True Null Null 0

After 1st Successful
FETCH True True False 1

After nth Successful
FETCH (last row) True True False n

After n+1st FETCH
(after last row) True False True n

After CLOSE False
INVALID_CURSOR
Exception

INVALID_CURSOR
Exception

INVALID_CURSOR
Exception

4.8.7 Cursor FOR Loop

In the cursor examples presented so far, the programming logic required to process the
result set of a cursor included a statement to open the cursor, a loop construct to retrieve
each row of the result set, a test for the end of the result set, and finally a statement to
close the cursor. The cursor FOR loop is a loop construct that eliminates the need to
individually code the statements just listed.

The cursor FOR loop opens a previously declared cursor, fetches all rows in the cursor
result set, and then closes the cursor.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

312

The syntax for creating a cursor FOR loop is as follows.

FOR record IN cursor
LOOP
 statements
END LOOP;

record is an identifier assigned to an implicitly declared record with definition,
cursor%ROWTYPE. cursor is the name of a previously declared cursor. statements
are one or more SPL statements. There must be at least one statement.

The following example shows the example of Section 4.8.6.3 modified to use a cursor
FOR loop.

CREATE OR REPLACE PROCEDURE cursor_example
IS
 CURSOR emp_cur_1 IS SELECT * FROM emp;
BEGIN
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME');
 DBMS_OUTPUT.PUT_LINE('----- -------');
 FOR v_emp_rec IN emp_cur_1 LOOP
 DBMS_OUTPUT.PUT_LINE(v_emp_rec.empno || ' ' || v_emp_rec.ename);
 END LOOP;
END;

The same results are achieved as shown in the output below.

EXEC cursor_example;

EMPNO ENAME
----- -------
7369 SMITH
7499 ALLEN
7521 WARD
7566 JONES
7654 MARTIN
7698 BLAKE
7782 CLARK
7788 SCOTT
7839 KING
7844 TURNER
7876 ADAMS
7900 JAMES
7902 FORD
7934 MILLER

4.8.8 Parameterized Cursors

A user can also declare a static cursor that accepts parameters, and can pass values for
those parameters when opening that cursor. In the following example we have created a
parameterized cursor which will display the name and salary of all employees from the
emp table that have a salary less then a specified value which is passed as a parameter.

DECLARE

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

313

 my_record emp%ROWTYPE;
 CURSOR c1 (max_wage NUMBER) IS
 SELECT * FROM emp WHERE sal < max_wage;
BEGIN
 OPEN c1(2000);
 LOOP
 FETCH c1 INTO my_record;
 EXIT WHEN c1%NOTFOUND;
 DBMS_OUTPUT.PUT_LINE('Name = ' || my_record.ename || ', salary = '
 || my_record.sal);
 END LOOP;
 CLOSE c1;
END;

So for example if we pass the value 2000 as max_wage, then we will only be shown the
name and salary of all employees that have a salary less than 2000. The result of the
above query is the following:

Name = SMITH, salary = 800.00
Name = ALLEN, salary = 1600.00
Name = WARD, salary = 1250.00
Name = MARTIN, salary = 1250.00
Name = TURNER, salary = 1500.00
Name = ADAMS, salary = 1100.00
Name = JAMES, salary = 950.00
Name = MILLER, salary = 1300.00

4.9 REF CURSORs and Cursor Variables

This section discusses another type of cursor that provides far greater flexibility than the
previously discussed static cursors.

4.9.1 REF CURSOR Overview

A cursor variable is a cursor that actually contains a pointer to a query result set. The
result set is determined by the execution of the OPEN FOR statement using the cursor
variable.

A cursor variable is not tied to a single particular query like a static cursor. The same
cursor variable may be opened a number of times with OPEN FOR statements containing
different queries. Each time, a new result set is created from that query and made
available via the cursor variable.

REF CURSOR types may be passed as parameters to or from stored procedures and
functions. The return type of a function may also be a REF CURSOR type. This provides
the capability to modularize the operations on a cursor into separate programs by passing
a cursor variable between programs.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

314

4.9.2 Declaring a Cursor Variable

SPL supports the declaration of a cursor variable using both the SYS_REFCURSOR built-
in data type as well as creating a type of REF CURSOR and then declaring a variable of
that type. SYS_REFCURSOR is a REF CURSOR type that allows any result set to be
associated with it. This is known as a weakly-typed REF CURSOR.

Only the declaration of SYS_REFCURSOR and user-defined REF CURSOR variables are
different. The remaining usage like opening the cursor, selecting into the cursor and
closing the cursor is the same across both the cursor types. For the rest of this chapter our
examples will primarily be making use of the SYS_REFCURSOR cursors. All you need to
change in the examples to make them work for user defined REF CURSORs is the
declaration section.

Note: Strongly-typed REF CURSORs require the result set to conform to a declared
number and order of fields with compatible data types and can also optionally return a
result set.

4.9.2.1 Declaring a SYS_REFCURSOR Cursor Variable

The following is the syntax for declaring a SYS_REFCURSOR cursor variable:

name SYS_REFCURSOR;

name is an identifier assigned to the cursor variable.

The following is an example of a SYS_REFCURSOR variable declaration.

DECLARE
 emp_refcur SYS_REFCURSOR;
 ...

4.9.2.2 Declaring a User Defined REF CURSOR Type Variable

You must perform two distinct declaration steps in order to use a user defined REF
CURSOR variable:

• Create a referenced cursor TYPE
• Declare the actual cursor variable based on that TYPE

The syntax for creating a user defined REF CURSOR type is as follows:

TYPE cursor_type_name IS REF CURSOR [RETURN return_type];

The following is an example of a cursor variable declaration.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

315

DECLARE
 TYPE emp_cur_type IS REF CURSOR RETURN emp%ROWTYPE;
 my_rec emp_cur_type;
 ...

4.9.3 Opening a Cursor Variable

Once a cursor variable is declared, it must be opened with an associated SELECT
command. The OPEN FOR statement specifies the SELECT command to be used to create
the result set.

OPEN name FOR query;

name is the identifier of a previously declared cursor variable. query is a SELECT
command that determines the result set when the statement is executed. The value of the
cursor variable after the OPEN FOR statement is executed identifies the result set.

In the following example, the result set is a list of employee numbers and names from a
selected department. Note that a variable or parameter can be used in the SELECT
command anywhere an expression can normally appear. In this case a parameter is used
in the equality test for department number.

CREATE OR REPLACE PROCEDURE emp_by_dept (
 p_deptno emp.deptno%TYPE
)
IS
 emp_refcur SYS_REFCURSOR;
BEGIN
 OPEN emp_refcur FOR SELECT empno, ename FROM emp WHERE deptno = p_deptno;
 ...

4.9.4 Fetching Rows From a Cursor Variable

After a cursor variable is opened, rows may be retrieved from the result set using the
FETCH statement. See Section 4.8.3 for details on using the FETCH statement to retrieve
rows from a result set.

In the example below, a FETCH statement has been added to the previous example so now
the result set is returned into two variables and then displayed. Note that the cursor
attributes used to determine cursor state of static cursors can also be used with cursor
variables. See Section 4.8.6 for details on cursor attributes.

CREATE OR REPLACE PROCEDURE emp_by_dept (
 p_deptno emp.deptno%TYPE
)
IS
 emp_refcur SYS_REFCURSOR;
 v_empno emp.empno%TYPE;
 v_ename emp.ename%TYPE;
BEGIN
 OPEN emp_refcur FOR SELECT empno, ename FROM emp WHERE deptno = p_deptno;
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME');

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

316

 DBMS_OUTPUT.PUT_LINE('----- -------');
 LOOP
 FETCH emp_refcur INTO v_empno, v_ename;
 EXIT WHEN emp_refcur%NOTFOUND;
 DBMS_OUTPUT.PUT_LINE(v_empno || ' ' || v_ename);
 END LOOP;
 ...

4.9.5 Closing a Cursor Variable

Use the CLOSE statement described in Section 4.8.4 to release the result set.

Note: Unlike static cursors, a cursor variable does not have to be closed before it can be
re-opened again. The result set from the previous open will be lost.

The example is completed with the addition of the CLOSE statement.

CREATE OR REPLACE PROCEDURE emp_by_dept (
 p_deptno emp.deptno%TYPE
)
IS
 emp_refcur SYS_REFCURSOR;
 v_empno emp.empno%TYPE;
 v_ename emp.ename%TYPE;
BEGIN
 OPEN emp_refcur FOR SELECT empno, ename FROM emp WHERE deptno = p_deptno;
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME');
 DBMS_OUTPUT.PUT_LINE('----- -------');
 LOOP
 FETCH emp_refcur INTO v_empno, v_ename;
 EXIT WHEN emp_refcur%NOTFOUND;
 DBMS_OUTPUT.PUT_LINE(v_empno || ' ' || v_ename);
 END LOOP;
 CLOSE emp_refcur;
END;

The following is the output when this procedure is executed.

EXEC emp_by_dept(20)

EMPNO ENAME
----- -------
7369 SMITH
7566 JONES
7788 SCOTT
7876 ADAMS
7902 FORD

4.9.6 Usage Restrictions

The following are restrictions on cursor variable usage.

• Comparison operators cannot be used to test cursor variables for equality,
inequality, null, or not null

• Null cannot be assigned to a cursor variable

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

317

• The value of a cursor variable cannot be stored in a database column
• Static cursors and cursor variables are not interchangeable. For example, a static

cursor cannot be used in an OPEN FOR statement.

In addition the following table shows the permitted parameter modes for a cursor variable
used as a procedure or function parameter depending upon the operations on the cursor
variable within the procedure or function.

Table 4-36 Permitted Cursor Variable Parameter Modes

Operation IN IN OUT OUT
OPEN No Yes No
FETCH Yes Yes No
CLOSE Yes Yes No

So for example, if a procedure performs all three operations, OPEN FOR, FETCH, and
CLOSE on a cursor variable declared as the procedure’s formal parameter, then that
parameter must be declared with IN OUT mode.

4.9.7 Examples

The following are examples of cursor variable usage.

4.9.7.1 Returning a REF CURSOR From a Function

In the following example the cursor variable is opened with a query that selects
employees with a given job. Note also that the cursor variable is specified in this
function’s RETURN statement so the result set is made available to the caller of the
function.

CREATE OR REPLACE FUNCTION emp_by_job (p_job VARCHAR2)
RETURN SYS_REFCURSOR
IS
 emp_refcur SYS_REFCURSOR;
BEGIN
 OPEN emp_refcur FOR SELECT empno, ename FROM emp WHERE job = p_job;
 RETURN emp_refcur;
END;

This function is invoked in the following anonymous block by assigning the function’s
return value to a cursor variable declared in the anonymous block’s declaration section.
The result set is fetched using this cursor variable and then it is closed.

DECLARE
 v_empno emp.empno%TYPE;
 v_ename emp.ename%TYPE;
 v_job emp.job%TYPE := 'SALESMAN';
 v_emp_refcur SYS_REFCURSOR;
BEGIN
 DBMS_OUTPUT.PUT_LINE('EMPLOYEES WITH JOB ' || v_job);
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME');

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

318

 DBMS_OUTPUT.PUT_LINE('----- -------');
 v_emp_refcur := emp_by_job(v_job);
 LOOP
 FETCH v_emp_refcur INTO v_empno, v_ename;
 EXIT WHEN v_emp_refcur%NOTFOUND;
 DBMS_OUTPUT.PUT_LINE(v_empno || ' ' || v_ename);
 END LOOP;
 CLOSE v_emp_refcur;
END;

The following is the output when the anonymous block is executed.

EMPLOYEES WITH JOB SALESMAN
EMPNO ENAME
----- -------
7499 ALLEN
7521 WARD
7654 MARTIN
7844 TURNER

4.9.7.2 Modularizing Cursor Operations

The following example illustrates how the various operations on cursor variables can be
modularized into separate programs.

The following procedure opens the given cursor variable with a SELECT command that
retrieves all rows.

CREATE OR REPLACE PROCEDURE open_all_emp (
 p_emp_refcur IN OUT SYS_REFCURSOR
)
IS
BEGIN
 OPEN p_emp_refcur FOR SELECT empno, ename FROM emp;
END;

This variation opens the given cursor variable with a SELECT command that retrieves all
rows, but of a given department.

CREATE OR REPLACE PROCEDURE open_emp_by_dept (
 p_emp_refcur IN OUT SYS_REFCURSOR,
 p_deptno emp.deptno%TYPE
)
IS
BEGIN
 OPEN p_emp_refcur FOR SELECT empno, ename FROM emp
 WHERE deptno = p_deptno;
END;

This third variation opens the given cursor variable with a SELECT command that
retrieves all rows, but from a different table. Also note that the function’s return value is
the opened cursor variable.

CREATE OR REPLACE FUNCTION open_dept (
 p_dept_refcur IN OUT SYS_REFCURSOR

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

319

) RETURN SYS_REFCURSOR
IS
 v_dept_refcur SYS_REFCURSOR;
BEGIN
 v_dept_refcur := p_dept_refcur;
 OPEN v_dept_refcur FOR SELECT deptno, dname FROM dept;
 RETURN v_dept_refcur;
END;

This procedure fetches and displays a cursor variable result set consisting of employee
number and name.

CREATE OR REPLACE PROCEDURE fetch_emp (
 p_emp_refcur IN OUT SYS_REFCURSOR
)
IS
 v_empno emp.empno%TYPE;
 v_ename emp.ename%TYPE;
BEGIN
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME');
 DBMS_OUTPUT.PUT_LINE('----- -------');
 LOOP
 FETCH p_emp_refcur INTO v_empno, v_ename;
 EXIT WHEN p_emp_refcur%NOTFOUND;
 DBMS_OUTPUT.PUT_LINE(v_empno || ' ' || v_ename);
 END LOOP;
END;

This procedure fetches and displays a cursor variable result set consisting of department
number and name.

CREATE OR REPLACE PROCEDURE fetch_dept (
 p_dept_refcur IN SYS_REFCURSOR
)
IS
 v_deptno dept.deptno%TYPE;
 v_dname dept.dname%TYPE;
BEGIN
 DBMS_OUTPUT.PUT_LINE('DEPT DNAME');
 DBMS_OUTPUT.PUT_LINE('---- ---------');
 LOOP
 FETCH p_dept_refcur INTO v_deptno, v_dname;
 EXIT WHEN p_dept_refcur%NOTFOUND;
 DBMS_OUTPUT.PUT_LINE(v_deptno || ' ' || v_dname);
 END LOOP;
END;

This procedure closes the given cursor variable.

CREATE OR REPLACE PROCEDURE close_refcur (
 p_refcur IN OUT SYS_REFCURSOR
)
IS
BEGIN
 CLOSE p_refcur;
END;

The following anonymous block executes all the previously described programs.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

320

DECLARE
 gen_refcur SYS_REFCURSOR;
BEGIN
 DBMS_OUTPUT.PUT_LINE('ALL EMPLOYEES');
 open_all_emp(gen_refcur);
 fetch_emp(gen_refcur);
 DBMS_OUTPUT.PUT_LINE('****************');

 DBMS_OUTPUT.PUT_LINE('EMPLOYEES IN DEPT #10');
 open_emp_by_dept(gen_refcur, 10);
 fetch_emp(gen_refcur);
 DBMS_OUTPUT.PUT_LINE('****************');

 DBMS_OUTPUT.PUT_LINE('DEPARTMENTS');
 fetch_dept(open_dept(gen_refcur));
 DBMS_OUTPUT.PUT_LINE('*****************');

 close_refcur(gen_refcur);
END;

The following is the output from the anonymous block.

ALL EMPLOYEES
EMPNO ENAME
----- -------
7369 SMITH
7499 ALLEN
7521 WARD
7566 JONES
7654 MARTIN
7698 BLAKE
7782 CLARK
7788 SCOTT
7839 KING
7844 TURNER
7876 ADAMS
7900 JAMES
7902 FORD
7934 MILLER

EMPLOYEES IN DEPT #10
EMPNO ENAME
----- -------
7782 CLARK
7839 KING
7934 MILLER

DEPARTMENTS
DEPT DNAME
---- ---------
10 ACCOUNTING
20 RESEARCH
30 SALES
40 OPERATIONS

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

321

4.9.8 Dynamic Queries With REF CURSORs

Postgres Plus Advanced Server also supports dynamic queries via the OPEN FOR USING
statement. A string literal or string variable is supplied in the OPEN FOR USING
statement to the SELECT command.

OPEN name FOR dynamic_string
 [USING bind_arg [, bind_arg_2] ...];

name is the identifier of a previously declared cursor variable. dynamic_string is a
string literal or string variable containing a SELECT command (without the terminating
semi-colon). bind_arg, bind_arg_2... are bind arguments that are used to pass
variables to corresponding placeholders in the SELECT command when the cursor
variable is opened. The placeholders are identifiers prefixed by a colon character.

The following is an example of a dynamic query using a string literal.

CREATE OR REPLACE PROCEDURE dept_query
IS
 emp_refcur SYS_REFCURSOR;
 v_empno emp.empno%TYPE;
 v_ename emp.ename%TYPE;
BEGIN
 OPEN emp_refcur FOR 'SELECT empno, ename FROM emp WHERE deptno = 30' ||
 ' AND sal >= 1500';
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME');
 DBMS_OUTPUT.PUT_LINE('----- -------');
 LOOP
 FETCH emp_refcur INTO v_empno, v_ename;
 EXIT WHEN emp_refcur%NOTFOUND;
 DBMS_OUTPUT.PUT_LINE(v_empno || ' ' || v_ename);
 END LOOP;
 CLOSE emp_refcur;
END;

The following is the output when the procedure is executed.

EXEC dept_query;

EMPNO ENAME
----- -------
7499 ALLEN
7698 BLAKE
7844 TURNER

In the next example, the previous query is modified to use bind arguments to pass the
query parameters.

CREATE OR REPLACE PROCEDURE dept_query (
 p_deptno emp.deptno%TYPE,
 p_sal emp.sal%TYPE
)
IS
 emp_refcur SYS_REFCURSOR;

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

322

 v_empno emp.empno%TYPE;
 v_ename emp.ename%TYPE;
BEGIN
 OPEN emp_refcur FOR 'SELECT empno, ename FROM emp WHERE deptno = :dept'
 || ' AND sal >= :sal' USING p_deptno, p_sal;
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME');
 DBMS_OUTPUT.PUT_LINE('----- -------');
 LOOP
 FETCH emp_refcur INTO v_empno, v_ename;
 EXIT WHEN emp_refcur%NOTFOUND;
 DBMS_OUTPUT.PUT_LINE(v_empno || ' ' || v_ename);
 END LOOP;
 CLOSE emp_refcur;
END;

The following is the resulting output.

EXEC dept_query(30, 1500);

EMPNO ENAME
----- -------
7499 ALLEN
7698 BLAKE
7844 TURNER

Finally, a string variable is used to pass the SELECT providing the most flexibility.

CREATE OR REPLACE PROCEDURE dept_query (
 p_deptno emp.deptno%TYPE,
 p_sal emp.sal%TYPE
)
IS
 emp_refcur SYS_REFCURSOR;
 v_empno emp.empno%TYPE;
 v_ename emp.ename%TYPE;
 p_query_string VARCHAR2(100);
BEGIN
 p_query_string := 'SELECT empno, ename FROM emp WHERE ' ||
 'deptno = :dept AND sal >= :sal';
 OPEN emp_refcur FOR p_query_string USING p_deptno, p_sal;
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME');
 DBMS_OUTPUT.PUT_LINE('----- -------');
 LOOP
 FETCH emp_refcur INTO v_empno, v_ename;
 EXIT WHEN emp_refcur%NOTFOUND;
 DBMS_OUTPUT.PUT_LINE(v_empno || ' ' || v_ename);
 END LOOP;
 CLOSE emp_refcur;
END;
EXEC dept_query(20, 1500);

EMPNO ENAME
----- -------
7566 JONES
7788 SCOTT
7902 FORD

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

323

4.10 Collections

A collection is a set of ordered data items with the same data type. Generally, the data
item is a scalar field, but may also be a user-defined type such as a record type or object
type (see Chapter 8 for a description of object types) as long as the structure and the data
types that comprise each field of the user-defined type are the same for each element in
the set. Each particular data item in the set is referenced by using subscript notation
within a pair of parenthesis.

The most commonly known type of collection is an array. In Postgres Plus Advanced
Server, the supported collection types are what was formerly called an index-by table in
Oracle, now called an associative array, and a nested table.

4.10.1 Associative Arrays

An associative array is a type of collection that associates a unique key with a value. The
key does not have to be numeric, but can be character data as well.

An associative array has the following characteristics:

• An associative array type must be defined after which array variables can be
declared of that array type. Data manipulation occurs in the array variable.

• The array does not have to be initialized - just start assigning values to array
elements.

• The key can be any negative integer, positive integer, or zero if INDEX BY
BINARY_INTEGER is specified.

• There is no pre-defined limit on the number of elements in the array - it grows
dynamically as elements are added.

• The array can be sparse - there may be gaps in the assignment of values to keys.
• An attempt to reference an array element that has not been assigned a value will

result in an exception with SQLCODE 1403, access of uninitialized
index.

The TYPE IS TABLE INDEX BY statement is used to define an associative array type.

TYPE assoctype IS TABLE OF { datatype | rectype | objtype }
 INDEX BY { BINARY_INTEGER | VARCHAR2(n) };

assoctype is an identifier assigned to the array type. datatype is a scalar data type
such as VARCHAR2 or NUMBER. rectype is a previously defined record type. objtype is
a previously defined object type. n is the maximum length of a character key.

In order to make use of the array, a variable must be declared with that array type. The
following is the syntax for declaring an array variable.

array assoctype

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

324

array is an identifier assigned to the associative array. assoctype is the identifier of a
previously declared array type.

An element of the array is referenced using the following syntax.

array(n)[.field]

array is the identifier of a previously declared array. n is an integer. If the array type of
array is defined from a record type or object type, then [.field] must reference an
individual field within the record type or attribute within the object type from which the
array type is defined. Alternatively, the entire record can be referenced by omitting
[.field].

The following example reads the first ten employee names from the emp table, stores
them in an array, then displays the results from the array.

DECLARE
 TYPE emp_arr_typ IS TABLE OF VARCHAR2(10) INDEX BY BINARY_INTEGER;
 emp_arr emp_arr_typ;
 CURSOR emp_cur IS SELECT ename FROM emp WHERE ROWNUM <= 10;
 i INTEGER := 0;
BEGIN
 FOR r_emp IN emp_cur LOOP
 i := i + 1;
 emp_arr(i) := r_emp.ename;
 END LOOP;
 FOR j IN 1..10 LOOP
 DBMS_OUTPUT.PUT_LINE(emp_arr(j));
 END LOOP;
END;

The above example produces the following output:

SMITH
ALLEN
WARD
JONES
MARTIN
BLAKE
CLARK
SCOTT
KING
TURNER

The previous example in now modified to use a record type in the array definition.

DECLARE
 TYPE emp_rec_typ IS RECORD (
 empno NUMBER(4),
 ename VARCHAR2(10)
);
 TYPE emp_arr_typ IS TABLE OF emp_rec_typ INDEX BY BINARY_INTEGER;
 emp_arr emp_arr_typ;
 CURSOR emp_cur IS SELECT empno, ename FROM emp WHERE ROWNUM <= 10;
 i INTEGER := 0;

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

325

BEGIN
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME');
 DBMS_OUTPUT.PUT_LINE('----- -------');
 FOR r_emp IN emp_cur LOOP
 i := i + 1;
 emp_arr(i).empno := r_emp.empno;
 emp_arr(i).ename := r_emp.ename;
 END LOOP;
 FOR j IN 1..10 LOOP
 DBMS_OUTPUT.PUT_LINE(emp_arr(j).empno || ' ' ||
 emp_arr(j).ename);
 END LOOP;
END;

The following is the output from this anonymous block.

EMPNO ENAME
----- -------
7369 SMITH
7499 ALLEN
7521 WARD
7566 JONES
7654 MARTIN
7698 BLAKE
7782 CLARK
7788 SCOTT
7839 KING
7844 TURNER

The emp%ROWTYPE attribute could be used to define emp_arr_typ instead of using the
emp_rec_typ record type as shown in the following.

DECLARE
 TYPE emp_arr_typ IS TABLE OF emp%ROWTYPE INDEX BY BINARY_INTEGER;
 emp_arr emp_arr_typ;
 CURSOR emp_cur IS SELECT empno, ename FROM emp WHERE ROWNUM <= 10;
 i INTEGER := 0;
BEGIN
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME');
 DBMS_OUTPUT.PUT_LINE('----- -------');
 FOR r_emp IN emp_cur LOOP
 i := i + 1;
 emp_arr(i).empno := r_emp.empno;
 emp_arr(i).ename := r_emp.ename;
 END LOOP;
 FOR j IN 1..10 LOOP
 DBMS_OUTPUT.PUT_LINE(emp_arr(j).empno || ' ' ||
 emp_arr(j).ename);
 END LOOP;
END;

The results are the same as in the prior example.

Instead of assigning each field of the record individually, a record level assignment can
be made from r_emp to emp_arr.

DECLARE
 TYPE emp_rec_typ IS RECORD (

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

326

 empno NUMBER(4),
 ename VARCHAR2(10)
);
 TYPE emp_arr_typ IS TABLE OF emp_rec_typ INDEX BY BINARY_INTEGER;
 emp_arr emp_arr_typ;
 CURSOR emp_cur IS SELECT empno, ename FROM emp WHERE ROWNUM <= 10;
 i INTEGER := 0;
BEGIN
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME');
 DBMS_OUTPUT.PUT_LINE('----- -------');
 FOR r_emp IN emp_cur LOOP
 i := i + 1;
 emp_arr(i) := r_emp;
 END LOOP;
 FOR j IN 1..10 LOOP
 DBMS_OUTPUT.PUT_LINE(emp_arr(j).empno || ' ' ||
 emp_arr(j).ename);
 END LOOP;
END;

The key of an associative array can be character data as shown in the following example.

DECLARE
 TYPE job_arr_typ IS TABLE OF NUMBER INDEX BY VARCHAR2(9);
 job_arr job_arr_typ;
BEGIN
 job_arr('ANALYST') := 100;
 job_arr('CLERK') := 200;
 job_arr('MANAGER') := 300;
 job_arr('SALESMAN') := 400;
 job_arr('PRESIDENT') := 500;
 DBMS_OUTPUT.PUT_LINE('ANALYST : ' || job_arr('ANALYST'));
 DBMS_OUTPUT.PUT_LINE('CLERK : ' || job_arr('CLERK'));
 DBMS_OUTPUT.PUT_LINE('MANAGER : ' || job_arr('MANAGER'));
 DBMS_OUTPUT.PUT_LINE('SALESMAN : ' || job_arr('SALESMAN'));
 DBMS_OUTPUT.PUT_LINE('PRESIDENT: ' || job_arr('PRESIDENT'));
END;

ANALYST : 100
CLERK : 200
MANAGER : 300
SALESMAN : 400
PRESIDENT: 500

4.10.2 Nested Tables

A nested table is a type of collection that associates a positive integer with a value. In
many respects, it is similar to an associative array.

A nested table has the following characteristics:

• A nested table type must be defined after which nested table variables can be
declared of that nested table type. Data manipulation occurs in the nested table
variable, or simply, “table” for short.

• The table does not have to be initialized - just start assigning values to table
elements. Note: In Oracle, a nested table must be initialized with a constructor
function. SPL does not currently support nested table constructors.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

327

• The key is a positive integer.
• There is no pre-defined limit on the number of elements in the table - it grows

dynamically as elements are added. Note: In Oracle, the constructor function
must establish the number of elements in the table, or the EXTEND function must
be used to add additional elements to the table. SPL does not currently support the
constructor function or the EXTEND function.

• The table can be sparse - there may be gaps in the assignment of values to keys.
• An attempt to reference a table element that has not been assigned a value will

result in an exception with SQLCODE 1403, access of uninitialized
index.

The TYPE IS TABLE statement is used to define a nested table type within the
declaration section of an SPL program.

TYPE tbltype IS TABLE OF { datatype | rectype | objtype };

tbltype is an identifier assigned to the nested table type. datatype is a scalar data
type such as VARCHAR2 or NUMBER. rectype is a previously defined record type.
objtype is a previously defined object type.

Note: The CREATE TYPE command can be used to define a nested table type that is
available to all SPL programs in the database. See the

 CREATE TYPE command.

In order to make use of the table, a variable must be declared of that nested table type.
The following is the syntax for declaring a table variable.

table tbltype

table is an identifier assigned to the nested table. tbltype is the identifier of a
previously declared nested table type.

An element of the table is referenced using the following syntax.

table(n)[.element]

table is the identifier of a previously declared table. n is a positive integer. If the table
type of table is defined from a record type or object type, then [.element] must
reference an individual field within the record type or attribute within the object type
from which the nested table type is defined. Alternatively, the entire record or object can
be referenced by omitting [.element].

The following example is a modification of the first example in the section on associative
arrays that reads the first ten employee names from the emp table, stores them in a nested
table, then displays the results from the table.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

328

DECLARE
 TYPE dname_tbl_typ IS TABLE OF VARCHAR2(14);
 dname_tbl dname_tbl_typ;
 CURSOR dept_cur IS SELECT dname FROM dept ORDER BY dname;
 i INTEGER := 0;
BEGIN
 FOR r_dept IN dept_cur LOOP
 i := i + 1;
 dname_tbl(i) := r_dept.dname;
 END LOOP;
 DBMS_OUTPUT.PUT_LINE('DNAME');
 DBMS_OUTPUT.PUT_LINE('----------');
 FOR j IN 1..i LOOP
 DBMS_OUTPUT.PUT_LINE(dname_tbl(j));
 END LOOP;
END;

The above example produces the following output:

DNAME

ACCOUNTING
OPERATIONS
RESEARCH
SALES

Note: In order to run the above anonymous block in Oracle, the following assignment
statement must be added as the first statement in the executable section. This statement
executes the constructor function for dname_tbl_typ, allocating four elements in the
table.

dname_tbl := dname_tbl_typ(NULL, NULL, NULL, NULL);

A modification of the prior example shows how a nested table of an object type can be
used. See Chapter 8 for information on object types and objects. First, an object type is
created with attributes for the department name and location.

CREATE TYPE dept_obj_typ AS OBJECT (
 dname VARCHAR2(14),
 loc VARCHAR2(13)
);

The following anonymous block declares a nested table whose element consists of the
dept_obj_typ object type. The nested table is populated by the dept table, and then
the elements from the nested table are displayed.

DECLARE
 TYPE dept_tbl_typ IS TABLE OF dept_obj_typ;
 dept_tbl dept_tbl_typ;
 CURSOR dept_cur IS SELECT dname, loc FROM dept ORDER BY dname;
 i INTEGER := 0;
BEGIN
 FOR r_dept IN dept_cur LOOP
 i := i + 1;
 dept_tbl(i).dname := r_dept.dname;
 dept_tbl(i).loc := r_dept.loc;

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

329

 END LOOP;
 DBMS_OUTPUT.PUT_LINE('DNAME LOC');
 DBMS_OUTPUT.PUT_LINE('---------- ----------');
 FOR j IN 1..i LOOP
 DBMS_OUTPUT.PUT_LINE(RPAD(dept_tbl(j).dname,14) || ' ' ||
 dept_tbl(j).loc);
 END LOOP;
END;

The following is the output from the anonymous block.

DNAME LOC
---------- ----------
ACCOUNTING NEW YORK
OPERATIONS BOSTON
RESEARCH DALLAS
SALES CHICAGO

Note: The following assignment statement must be added as the first executable
statement in order to run the above anonymous block in Oracle. This statement executes
the constructor function for dept_tbl_typ, allocating four elements in the table. Each
table element requires the execution of the constructor function for the dept_obj_typ
object type.

dept_tbl := dept_tbl_typ(
 dept_obj_typ(NULL,NULL),
 dept_obj_typ(NULL,NULL),
 dept_obj_typ(NULL,NULL),
 dept_obj_typ(NULL,NULL)
);

4.10.3 Collection Methods

Collection methods are functions that provide useful information about a collection that
can aid in the processing of data in the collection. The following sections discuss these
methods.

4.10.3.1 COUNT

COUNT is a method that returns the number of elements in a collection. The syntax for
using COUNT is as follows.

collection.COUNT

collection is the identifier of a collection variable.

The following example shows that an associative array can be sparsely populated (i.e.,
there are “gaps” in the sequence of assigned elements). COUNT includes only the elements
that have been assigned a value.

DECLARE
 TYPE sparse_arr_typ IS TABLE OF NUMBER INDEX BY BINARY_INTEGER;

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

330

 sparse_arr sparse_arr_typ;
BEGIN
 sparse_arr(-100) := -100;
 sparse_arr(-10) := -10;
 sparse_arr(0) := 0;
 sparse_arr(10) := 10;
 sparse_arr(100) := 100;
 DBMS_OUTPUT.PUT_LINE('COUNT: ' || sparse_arr.COUNT);
END;

The following output shows that only the five populated elements are included in COUNT.

COUNT: 5

4.10.3.2 FIRST

FIRST is a method that returns the index of the first element in a collection. The syntax
for using FIRST is as follows.

collection.FIRST

collection is the identifier of a collection variable.

The following example displays the first element of the associative array.

DECLARE
 TYPE sparse_arr_typ IS TABLE OF NUMBER INDEX BY BINARY_INTEGER;
 sparse_arr sparse_arr_typ;
BEGIN
 sparse_arr(-100) := -100;
 sparse_arr(-10) := -10;
 sparse_arr(0) := 0;
 sparse_arr(10) := 10;
 sparse_arr(100) := 100;
 DBMS_OUTPUT.PUT_LINE('FIRST element: ' || sparse_arr(sparse_arr.FIRST));
END;

FIRST element: -100

4.10.3.3 LAST

LAST is a method that returns the index of the last element in a collection. The syntax for
using LAST is a follows.

collection.LAST

collection is the identifier of a collection variable.

The following example displays the last element of the associative array.

DECLARE
 TYPE sparse_arr_typ IS TABLE OF NUMBER INDEX BY BINARY_INTEGER;

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

331

 sparse_arr sparse_arr_typ;
BEGIN
 sparse_arr(-100) := -100;
 sparse_arr(-10) := -10;
 sparse_arr(0) := 0;
 sparse_arr(10) := 10;
 sparse_arr(100) := 100;
 DBMS_OUTPUT.PUT_LINE('LAST element: ' || sparse_arr(sparse_arr.LAST));
END;

LAST element: 100

4.10.4 Using the FORALL Statement

Collections can be used to more efficiently process DML commands by passing all the
values to be used for repetitive execution of a DELETE, INSERT, or UPDATE command in
one pass to the database server rather than re-iteratively invoking the DML command
with new values. The DML command to be processed in such a manner is specified with
the FORALL statement. In addition, one or more collections are given in the DML
command where different values are to be substituted each time the command is
executed.

FORALL index IN lower_bound .. upper_bound
 { insert | update | delete };

index is the position in the collection given in the insert, update, or delete DML
command that iterates from the integer value given as lower_bound up to and including
upper_bound.

Note: If an exception occurs during any iteration of the FORALL statement, all updates
that occurred since the start of the execution of the FORALL statement are automatically
rolled back. This behavior is not Oracle compatible. Oracle allows explicit use of the
COMMIT or ROLLBACK commands to control whether or not to commit or roll back
updates that occurred prior to the exception.

The following example uses an INSERT command with the FORALL statement to insert
three new employees into the emp table.

DECLARE
 TYPE empno_tbl IS TABLE OF emp.empno%TYPE INDEX BY BINARY_INTEGER;
 TYPE ename_tbl IS TABLE OF emp.ename%TYPE INDEX BY BINARY_INTEGER;
 TYPE job_tbl IS TABLE OF emp.ename%TYPE INDEX BY BINARY_INTEGER;
 TYPE sal_tbl IS TABLE OF emp.ename%TYPE INDEX BY BINARY_INTEGER;
 TYPE deptno_tbl IS TABLE OF emp.deptno%TYPE INDEX BY BINARY_INTEGER;
 t_empno EMPNO_TBL;
 t_ename ENAME_TBL;
 t_job JOB_TBL;
 t_sal SAL_TBL;
 t_deptno DEPTNO_TBL;
BEGIN
 t_empno(1) := 9001;
 t_ename(1) := 'JONES';
 t_job(1) := 'ANALYST';

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

332

 t_sal(1) := 3200.00;
 t_deptno(1) := 40;
 t_empno(2) := 9002;
 t_ename(2) := 'LARSEN';
 t_job(2) := 'CLERK';
 t_sal(2) := 1400.00;
 t_deptno(2) := 40;
 t_empno(3) := 9003;
 t_ename(3) := 'WILSON';
 t_job(3) := 'MANAGER';
 t_sal(3) := 4000.00;
 t_deptno(3) := 40;
 FORALL i IN t_empno.FIRST..t_empno.LAST
 INSERT INTO emp (empno,ename,job,sal,deptno)
 VALUES (t_empno(i),t_ename(i),t_job(i),t_sal(i),t_deptno(i));
END;

SELECT * FROM emp WHERE empno > 9000;

 empno | ename | job | mgr | hiredate | sal | comm | deptno
-------+--------+---------+-----+----------+---------+------+--------
 9001 | JONES | ANALYST | | | 3200.00 | | 40
 9002 | LARSEN | CLERK | | | 1400.00 | | 40
 9003 | WILSON | MANAGER | | | 4000.00 | | 40
(3 rows)

The following example updates the salary of these three employees in a FORALL
statement.

DECLARE
 TYPE empno_tbl IS TABLE OF emp.empno%TYPE INDEX BY BINARY_INTEGER;
 TYPE sal_tbl IS TABLE OF emp.ename%TYPE INDEX BY BINARY_INTEGER;
 t_empno EMPNO_TBL;
 t_sal SAL_TBL;
BEGIN
 t_empno(1) := 9001;
 t_sal(1) := 3350.00;
 t_empno(2) := 9002;
 t_sal(2) := 2000.00;
 t_empno(3) := 9003;
 t_sal(3) := 4100.00;
 FORALL i IN t_empno.FIRST..t_empno.LAST
 UPDATE emp SET sal = t_sal(i) WHERE empno = t_empno(i);
END;

SELECT * FROM emp WHERE empno > 9000;

 empno | ename | job | mgr | hiredate | sal | comm | deptno
-------+--------+---------+-----+----------+---------+------+--------
 9001 | JONES | ANALYST | | | 3350.00 | | 40
 9002 | LARSEN | CLERK | | | 2000.00 | | 40
 9003 | WILSON | MANAGER | | | 4100.00 | | 40
(3 rows)

The final example deletes these three employees in a FORALL statement.

DECLARE
 TYPE empno_tbl IS TABLE OF emp.empno%TYPE INDEX BY BINARY_INTEGER;
 t_empno EMPNO_TBL;
BEGIN

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

333

 t_empno(1) := 9001;
 t_empno(2) := 9002;
 t_empno(3) := 9003;
 FORALL i IN t_empno.FIRST..t_empno.LAST
 DELETE FROM emp WHERE empno = t_empno(i);
END;

SELECT * FROM emp WHERE empno > 9000;

 empno | ename | job | mgr | hiredate | sal | comm | deptno
-------+-------+-----+-----+----------+-----+------+--------
(0 rows)

4.10.5 Using the BULK COLLECT Clause

SQL commands that return a result set consisting of a large number of rows may not be
operating as efficiently as possible due to the constant context switching that must occur
between the database server and the client in order to transfer the entire result set. This
inefficiency can be mitigated by using a collection to gather the entire result set in
memory which the client can then access. The BULK COLLECT clause is used to specify
the aggregation of the result set into a collection.

The BULK COLLECT clause can be used with the SELECT INTO and FETCH INTO
commands, and with the RETURNING INTO clause of the DELETE, INSERT, and UPDATE
commands. Each of these is illustrated in the following sections.

4.10.5.1 SELECT BULK COLLECT

The BULK COLLECT clause can be used with the SELECT INTO statement as follows.
(Refer to Section 4.4.3 for additional information on the SELECT INTO statement.)

SELECT select_expressions BULK COLLECT INTO collection
 [, ...] FROM ...;

If a single collection is specified, then collection may be a collection of a single field,
or it may be a collection of a record type. If more than one collection is specified, then
each collection must consist of a single field. select_expressions must match in
number, order, and type-compatibility all fields in the target collections.

The following example shows the use of the BULK COLLECT clause where the target
collections are associative arrays consisting of a single field.

DECLARE
 TYPE empno_tbl IS TABLE OF emp.empno%TYPE INDEX BY BINARY_INTEGER;
 TYPE ename_tbl IS TABLE OF emp.ename%TYPE INDEX BY BINARY_INTEGER;
 TYPE job_tbl IS TABLE OF emp.job%TYPE INDEX BY BINARY_INTEGER;
 TYPE hiredate_tbl IS TABLE OF emp.hiredate%TYPE INDEX BY BINARY_INTEGER;
 TYPE sal_tbl IS TABLE OF emp.sal%TYPE INDEX BY BINARY_INTEGER;
 TYPE comm_tbl IS TABLE OF emp.comm%TYPE INDEX BY BINARY_INTEGER;
 TYPE deptno_tbl IS TABLE OF emp.deptno%TYPE INDEX BY BINARY_INTEGER;
 t_empno EMPNO_TBL;
 t_ename ENAME_TBL;

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

334

 t_job JOB_TBL;
 t_hiredate HIREDATE_TBL;
 t_sal SAL_TBL;
 t_comm COMM_TBL;
 t_deptno DEPTNO_TBL;
BEGIN
 SELECT empno, ename, job, hiredate, sal, comm, deptno BULK COLLECT
 INTO t_empno, t_ename, t_job, t_hiredate, t_sal, t_comm, t_deptno
 FROM emp;
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME JOB HIREDATE ' ||
 'SAL ' || 'COMM DEPTNO');
 DBMS_OUTPUT.PUT_LINE('----- ------- --------- --------- ' ||
 '-------- ' || '-------- ------');
 FOR i IN 1..t_empno.COUNT LOOP
 DBMS_OUTPUT.PUT_LINE(t_empno(i) || ' ' ||
 RPAD(t_ename(i),8) || ' ' ||
 RPAD(t_job(i),10) || ' ' ||
 TO_CHAR(t_hiredate(i),'DD-MON-YY') || ' ' ||
 TO_CHAR(t_sal(i),'99,999.99') || ' ' ||
 TO_CHAR(NVL(t_comm(i),0),'99,999.99') || ' ' ||
 t_deptno(i));
 END LOOP;
END;

EMPNO ENAME JOB HIREDATE SAL COMM DEPTNO
----- ------- --------- --------- -------- -------- ------
7369 SMITH CLERK 17-DEC-80 800.00 .00 20
7499 ALLEN SALESMAN 20-FEB-81 1,600.00 300.00 30
7521 WARD SALESMAN 22-FEB-81 1,250.00 500.00 30
7566 JONES MANAGER 02-APR-81 2,975.00 .00 20
7654 MARTIN SALESMAN 28-SEP-81 1,250.00 1,400.00 30
7698 BLAKE MANAGER 01-MAY-81 2,850.00 .00 30
7782 CLARK MANAGER 09-JUN-81 2,450.00 .00 10
7788 SCOTT ANALYST 19-APR-87 3,000.00 .00 20
7839 KING PRESIDENT 17-NOV-81 5,000.00 .00 10
7844 TURNER SALESMAN 08-SEP-81 1,500.00 .00 30
7876 ADAMS CLERK 23-MAY-87 1,100.00 .00 20
7900 JAMES CLERK 03-DEC-81 950.00 .00 30
7902 FORD ANALYST 03-DEC-81 3,000.00 .00 20
7934 MILLER CLERK 23-JAN-82 1,300.00 .00 10

The following example produces the same result, but uses an associative array on a
record type defined with the %ROWTYPE attribute.

DECLARE
 TYPE emp_tbl IS TABLE OF emp%ROWTYPE INDEX BY BINARY_INTEGER;
 t_emp EMP_TBL;
BEGIN
 SELECT * BULK COLLECT INTO t_emp FROM emp;
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME JOB HIREDATE ' ||
 'SAL ' || 'COMM DEPTNO');
 DBMS_OUTPUT.PUT_LINE('----- ------- --------- --------- ' ||
 '-------- ' || '-------- ------');
 FOR i IN 1..t_emp.COUNT LOOP
 DBMS_OUTPUT.PUT_LINE(t_emp(i).empno || ' ' ||
 RPAD(t_emp(i).ename,8) || ' ' ||
 RPAD(t_emp(i).job,10) || ' ' ||
 TO_CHAR(t_emp(i).hiredate,'DD-MON-YY') || ' ' ||
 TO_CHAR(t_emp(i).sal,'99,999.99') || ' ' ||
 TO_CHAR(NVL(t_emp(i).comm,0),'99,999.99') || ' ' ||
 t_emp(i).deptno);
 END LOOP;

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

335

END;

EMPNO ENAME JOB HIREDATE SAL COMM DEPTNO
----- ------- --------- --------- -------- -------- ------
7369 SMITH CLERK 17-DEC-80 800.00 .00 20
7499 ALLEN SALESMAN 20-FEB-81 1,600.00 300.00 30
7521 WARD SALESMAN 22-FEB-81 1,250.00 500.00 30
7566 JONES MANAGER 02-APR-81 2,975.00 .00 20
7654 MARTIN SALESMAN 28-SEP-81 1,250.00 1,400.00 30
7698 BLAKE MANAGER 01-MAY-81 2,850.00 .00 30
7782 CLARK MANAGER 09-JUN-81 2,450.00 .00 10
7788 SCOTT ANALYST 19-APR-87 3,000.00 .00 20
7839 KING PRESIDENT 17-NOV-81 5,000.00 .00 10
7844 TURNER SALESMAN 08-SEP-81 1,500.00 .00 30
7876 ADAMS CLERK 23-MAY-87 1,100.00 .00 20
7900 JAMES CLERK 03-DEC-81 950.00 .00 30
7902 FORD ANALYST 03-DEC-81 3,000.00 .00 20
7934 MILLER CLERK 23-JAN-82 1,300.00 .00 10

4.10.5.2 FETCH BULK COLLECT

The BULK COLLECT clause can be used with a FETCH statement. (See Section 4.8.3 for
information on the FETCH statement.) Instead of returning a single row at a time from the
result set, the FETCH BULK COLLECT will return all rows at once from the result set into
the specified collection unless restricted by the LIMIT clause.

FETCH name BULK COLLECT INTO collection [, ...] [LIMIT n];

If a single collection is specified, then collection may be a collection of a single field,
or it may be a collection of a record type. If more than one collection is specified, then
each collection must consist of a single field. The expressions in the SELECT list of
the cursor identified by name must match in number, order, and type-compatibility all
fields in the target collections. If LIMIT n is specified, the number of rows returned into
the collection on each FETCH will not exceed n.

The following example uses the FETCH BULK COLLECT statement to retrieve rows into
an associative array.

DECLARE
 TYPE emp_tbl IS TABLE OF emp%ROWTYPE INDEX BY BINARY_INTEGER;
 t_emp EMP_TBL;
 CURSOR emp_cur IS SELECT * FROM emp;
BEGIN
 OPEN emp_cur;
 FETCH emp_cur BULK COLLECT INTO t_emp;
 CLOSE emp_cur;
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME JOB HIREDATE ' ||
 'SAL ' || 'COMM DEPTNO');
 DBMS_OUTPUT.PUT_LINE('----- ------- --------- --------- ' ||
 '-------- ' || '-------- ------');
 FOR i IN 1..t_emp.COUNT LOOP
 DBMS_OUTPUT.PUT_LINE(t_emp(i).empno || ' ' ||
 RPAD(t_emp(i).ename,8) || ' ' ||
 RPAD(t_emp(i).job,10) || ' ' ||
 TO_CHAR(t_emp(i).hiredate,'DD-MON-YY') || ' ' ||

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

336

 TO_CHAR(t_emp(i).sal,'99,999.99') || ' ' ||
 TO_CHAR(NVL(t_emp(i).comm,0),'99,999.99') || ' ' ||
 t_emp(i).deptno);
 END LOOP;
END;

EMPNO ENAME JOB HIREDATE SAL COMM DEPTNO
----- ------- --------- --------- -------- -------- ------
7369 SMITH CLERK 17-DEC-80 800.00 .00 20
7499 ALLEN SALESMAN 20-FEB-81 1,600.00 300.00 30
7521 WARD SALESMAN 22-FEB-81 1,250.00 500.00 30
7566 JONES MANAGER 02-APR-81 2,975.00 .00 20
7654 MARTIN SALESMAN 28-SEP-81 1,250.00 1,400.00 30
7698 BLAKE MANAGER 01-MAY-81 2,850.00 .00 30
7782 CLARK MANAGER 09-JUN-81 2,450.00 .00 10
7788 SCOTT ANALYST 19-APR-87 3,000.00 .00 20
7839 KING PRESIDENT 17-NOV-81 5,000.00 .00 10
7844 TURNER SALESMAN 08-SEP-81 1,500.00 .00 30
7876 ADAMS CLERK 23-MAY-87 1,100.00 .00 20
7900 JAMES CLERK 03-DEC-81 950.00 .00 30
7902 FORD ANALYST 03-DEC-81 3,000.00 .00 20
7934 MILLER CLERK 23-JAN-82 1,300.00 .00 10

4.10.5.3 RETURNING BULK COLLECT

The BULK COLLECT clause can be added to the RETURNING INTO clause of a DELETE,
INSERT, or UPDATE command. (See Section 4.4.7 for information on the RETURNING
INTO clause.)

{ insert | update | delete }
 RETURNING { * | expr_1 [, expr_2] ...}
 BULK COLLECT INTO collection [, ...];

insert, update, and delete are INSERT, UPDATE, and DELETE commands as
described in Sections 4.4.4, 4.4.5, and 4.4.6, respectively. If a single collection is
specified, then collection may be a collection of a single field, or it may be a
collection of a record type. If more than one collection is specified, then each
collection must consist of a single field. The expressions following the RETURNING
keyword must match in number, order, and type-compatibility all fields in the target
collections. If * is specified, then all columns in the affected table are returned. (Note that
the use of * is a Postgres Plus Advanced Server extension and is not Oracle compatible.)

The clerkemp table created by copying the emp table is used in the remaining examples
in this section as shown below.

CREATE TABLE clerkemp AS SELECT * FROM emp WHERE job = 'CLERK';

SELECT * FROM clerkemp;

 empno | ename | job | mgr | hiredate | sal | comm | deptno
-------+--------+-------+------+--------------------+---------+------+-------
-
 7369 | SMITH | CLERK | 7902 | 17-DEC-80 00:00:00 | 800.00 | | 20
 7876 | ADAMS | CLERK | 7788 | 23-MAY-87 00:00:00 | 1100.00 | | 20
 7900 | JAMES | CLERK | 7698 | 03-DEC-81 00:00:00 | 950.00 | | 30

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

337

 7934 | MILLER | CLERK | 7782 | 23-JAN-82 00:00:00 | 1300.00 | | 10
(4 rows)

The following example increases everyone’s salary by 1.5, stores the employees’
numbers, names, and new salaries in three associative arrays, and finally, displays the
contents of these arrays.

DECLARE
 TYPE empno_tbl IS TABLE OF emp.empno%TYPE INDEX BY BINARY_INTEGER;
 TYPE ename_tbl IS TABLE OF emp.ename%TYPE INDEX BY BINARY_INTEGER;
 TYPE sal_tbl IS TABLE OF emp.sal%TYPE INDEX BY BINARY_INTEGER;
 t_empno EMPNO_TBL;
 t_ename ENAME_TBL;
 t_sal SAL_TBL;
BEGIN
 UPDATE clerkemp SET sal = sal * 1.5 RETURNING empno, ename, sal
 BULK COLLECT INTO t_empno, t_ename, t_sal;
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME SAL ');
 DBMS_OUTPUT.PUT_LINE('----- ------- -------- ');
 FOR i IN 1..t_empno.COUNT LOOP
 DBMS_OUTPUT.PUT_LINE(t_empno(i) || ' ' || RPAD(t_ename(i),8) ||
 ' ' || TO_CHAR(t_sal(i),'99,999.99'));
 END LOOP;
END;

EMPNO ENAME SAL
----- ------- --------
7369 SMITH 1,200.00
7876 ADAMS 1,650.00
7900 JAMES 1,425.00
7934 MILLER 1,950.00

The following example performs the same functionality as the previous example, but uses
a single collection defined with a record type to store the employees’ numbers, names,
and new salaries.

DECLARE
 TYPE emp_rec IS RECORD (
 empno emp.empno%TYPE,
 ename emp.ename%TYPE,
 sal emp.sal%TYPE
);
 TYPE emp_tbl IS TABLE OF emp_rec INDEX BY BINARY_INTEGER;
 t_emp EMP_TBL;
BEGIN
 UPDATE clerkemp SET sal = sal * 1.5 RETURNING empno, ename, sal
 BULK COLLECT INTO t_emp;
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME SAL ');
 DBMS_OUTPUT.PUT_LINE('----- ------- -------- ');
 FOR i IN 1..t_emp.COUNT LOOP
 DBMS_OUTPUT.PUT_LINE(t_emp(i).empno || ' ' ||
 RPAD(t_emp(i).ename,8) || ' ' ||
 TO_CHAR(t_emp(i).sal,'99,999.99'));
 END LOOP;
END;

EMPNO ENAME SAL
----- ------- --------
7369 SMITH 1,200.00

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

338

7876 ADAMS 1,650.00
7900 JAMES 1,425.00
7934 MILLER 1,950.00

The following example deletes all rows from the clerkemp table, and returns
information on the deleted rows into an associative array, which is then displayed.

DECLARE
 TYPE emp_rec IS RECORD (
 empno emp.empno%TYPE,
 ename emp.ename%TYPE,
 job emp.job%TYPE,
 hiredate emp.hiredate%TYPE,
 sal emp.sal%TYPE,
 comm emp.comm%TYPE,
 deptno emp.deptno%TYPE
);
 TYPE emp_tbl IS TABLE OF emp_rec INDEX BY BINARY_INTEGER;
 r_emp EMP_TBL;
BEGIN
 DELETE FROM clerkemp RETURNING empno, ename, job, hiredate, sal,
 comm, deptno BULK COLLECT INTO r_emp;
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME JOB HIREDATE ' ||
 'SAL ' || 'COMM DEPTNO');
 DBMS_OUTPUT.PUT_LINE('----- ------- --------- --------- ' ||
 '-------- ' || '-------- ------');
 FOR i IN 1..r_emp.COUNT LOOP
 DBMS_OUTPUT.PUT_LINE(r_emp(i).empno || ' ' ||
 RPAD(r_emp(i).ename,8) || ' ' ||
 RPAD(r_emp(i).job,10) || ' ' ||
 TO_CHAR(r_emp(i).hiredate,'DD-MON-YY') || ' ' ||
 TO_CHAR(r_emp(i).sal,'99,999.99') || ' ' ||
 TO_CHAR(NVL(r_emp(i).comm,0),'99,999.99') || ' ' ||
 r_emp(i).deptno);
 END LOOP;
END;

EMPNO ENAME JOB HIREDATE SAL COMM DEPTNO
----- ------- --------- --------- -------- -------- ------
7369 SMITH CLERK 17-DEC-80 1,200.00 .00 20
7876 ADAMS CLERK 23-MAY-87 1,650.00 .00 20
7900 JAMES CLERK 03-DEC-81 1,425.00 .00 30
7934 MILLER CLERK 23-JAN-82 1,950.00 .00 10

4.11 Errors and Messages

Use the DBMS_OUTPUT.PUT_LINE statement to report messages.

DBMS_OUTPUT.PUT_LINE (message);

message is any expression evaluating to a string.

This example displays the message on the user’s output display:

DBMS_OUTPUT.PUT_LINE('My name is John');

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

339

The special variables SQLCODE and SQLERRM contain a numeric code and a text message,
respectively, that describe the outcome of the last SQL command issued. If any other
error occurs in the program such as division by zero, these variables contain information
pertaining to the error.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

340

5 Triggers
This chapter describes triggers in Postgres Plus Advanced Server. As with procedures
and functions, triggers are written in the SPL language.

5.1 Overview

A trigger is a named SPL code block that is associated with a table and stored in the
database. When a specified event occurs on the associated table, the SPL code block is
executed. The trigger is said to be fired when the code block is executed.

The event that causes a trigger to fire can be any combination of an insert, update, or
deletion carried out on the table, either directly or indirectly. If the table is the object of a
SQL INSERT, UPDATE, or DELETE command the trigger is directly fired assuming that
the corresponding insert, update, or deletion event is defined as a triggering event. The
events that fire the trigger are defined in the CREATE TRIGGER command.

A trigger can be fired indirectly if a triggering event occurs on the table as a result of an
event initiated on another table. For example, if a trigger is defined on a table containing
a foreign key defined with the ON DELETE CASCADE clause and a row in the parent
table is deleted, all children of the parent would be deleted as well. If deletion is a
triggering event on the child table, deletion of the children will cause the trigger to fire.

5.2 Types of Triggers

Postgres Plus Advanced Server supports both row-level and statement-level triggers. A
row-level trigger fires once for each row that is affected by a triggering event. For
example, if deletion is defined as a triggering event on a table and a single DELETE
command is issued that deletes five rows from the table, then the trigger will fire five
times, once for each row.

In contrast, a statement-level trigger fires once per triggering statement regardless of the
number of rows affected by the triggering event. In the prior example of a single DELETE
command deleting five rows, a statement-level trigger would fire only once.

The sequence of actions can be defined regarding whether the trigger code block is
executed before or after the triggering statement, itself, in the case of statement-level
triggers; or before or after each row is affected by the triggering statement in the case of
row-level triggers.

In a before row-level trigger, the trigger code block is executed before the triggering
action is carried out on each affected row. In a before statement-level trigger, the trigger
code block is executed before the action of the triggering statement is carried out.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

341

In an after row-level trigger, the trigger code block is executed after the triggering action
is carried out on each affected row. In an after statement-level trigger, the trigger code
block is executed after the action of the triggering statement is carried out.

5.3 Creating Triggers

The CREATE TRIGGER command defines and names a trigger that will be stored in the
database.

CREATE [OR REPLACE] TRIGGER name
 { BEFORE | AFTER }
 { INSERT | UPDATE | DELETE } [OR ...]
 ON table
[FOR EACH ROW]
[DECLARE
 declarations]
 BEGIN
 statements
 END;

name is the name of the trigger. If [OR REPLACE] is specified and a trigger with the
same name already exists in the schema, the new trigger replaces the existing one. If [OR
REPLACE] is not specified, the new trigger will not be allowed to replace an existing one
with the same name in the same schema. If BEFORE is specified, the trigger is defined as
a before trigger. If AFTER is specified, the trigger is defined as an after trigger. One of
INSERT, UPDATE, or DELETE must be specified defining the triggering event as an insert,
update, or deletion, respectively. One or both of the remaining triggering event keywords
may also be specified separated by the keyword, OR, in which case these are also defined
as triggering events. table is the name of the table on which a triggering event will
cause the trigger to fire. If [FOR EACH ROW] is specified, the trigger is defined as a row-
level trigger. If [FOR EACH ROW] is omitted, the trigger is defined as a statement-level
trigger. declarations are variable, cursor, or type declarations. statements are SPL
program statements. The BEGIN - END block may contain an EXCEPTION section.

See the

 CREATE TRIGGER command for additional information on creating triggers.

5.4 Trigger Variables

In the trigger code block, several special variables are available for use.

NEW

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

342

NEW is a pseudo-record name that refers to the new table row for insert and update
operations in row-level triggers. This variable is not applicable in statement-level
triggers and in delete operations of row-level triggers.

Its usage is: :NEW.column where column is the name of a column in the table on
which the trigger is defined.

The initial content of :NEW.column is the value in the named column of the new
row to be inserted or of the new row that is to replace the old one when used in a
before row-level trigger. When used in an after row-level trigger, this value has
already been stored in the table since the action has already occurred on the
affected row.

In the trigger code block, :NEW.column can be used like any other variable. If a
value is assigned to :NEW.column, in the code block of a before row-level trigger,
the assigned value will be used in the new inserted or updated row.

OLD

OLD is a pseudo-record name that refers to the old table row for update and delete
operations in row-level triggers. This variable is not applicable in statement-level
triggers and in insert operations of row-level triggers.

Its usage is: :OLD.column where column is the name of a column in the table on
which the trigger is defined.

The initial content of :OLD.column is the value in the named column of the row
to be deleted or of the old row that is to replaced by the new one when used in a
before row-level trigger. When used in an after row-level trigger, this value is no
longer stored in the table since the action has already occurred on the affected
row.

In the trigger code block, :OLD.column can be used like any other variable.
Assigning a value to :OLD.column, has no affect on the action of the trigger.

INSERTING

INSERTING is a conditional expression that returns true if an insert operation
fired the trigger, otherwise it returns false.

UPDATING

UPDATING is a conditional expression that returns true if an update operation
fired the trigger, otherwise it returns false.

DELETING

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

343

DELETING is a conditional expression that returns true if a delete operation fired
the trigger, otherwise it returns false.

5.5 Transactions and Exceptions

A trigger is always executed as part of the same transaction within which the triggering
statement is executing. When no exceptions occur within the trigger code block, the
effects of any DML commands within the trigger are committed if and only if the
transaction containing the triggering statement is committed. Therefore, if the transaction
is rolled back, the effects of any DML commands within the trigger are also rolled back.

If an exception does occur within the trigger code block, but it is caught and handled in
an exception section, the effects of any DML commands within the trigger are still rolled
back nonetheless. The triggering statement itself, however, is not rolled back unless the
application forces a roll back of the encapsulating transaction.

If an unhandled exception occurs within the trigger code block, the transaction that
encapsulates the trigger is aborted and rolled back. Therefore the effects of any DML
commands within the trigger and the triggering statement, itself are all rolled back.

5.6 Trigger Examples

The following sections illustrate an example of each type of trigger.

5.6.1 Before Statement-Level Trigger

The following is an example of a simple before statement-level trigger that displays a
message prior to an insert operation on the emp table.

CREATE OR REPLACE TRIGGER emp_alert_trig
 BEFORE INSERT ON emp
BEGIN
 DBMS_OUTPUT.PUT_LINE('New employees are about to be added');
END;

The following INSERT is constructed so that several new rows are inserted upon a single
execution of the command. For each row that has an employee id between 7900 and
7999, a new row is inserted with an employee id incremented by 1000. The following are
the results of executing the command when three new rows are inserted.

INSERT INTO emp (empno, ename, deptno) SELECT empno + 1000, ename, 40
 FROM emp WHERE empno BETWEEN 7900 AND 7999;

New employees are about to be added

SELECT empno, ename, deptno FROM emp WHERE empno BETWEEN 8900 AND 8999;

 EMPNO ENAME DEPTNO
---------- ---------- ----------
 8900 JAMES 40

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

344

 8902 FORD 40
 8934 MILLER 40

The message, New employees are about to be added, is displayed once by the
firing of the trigger even though the result is the addition of three new rows.

5.6.2 After Statement-Level Trigger

The following is an example of an after statement-level trigger. Whenever an insert,
update, or delete operation occurs on the emp table, a row is added to the empauditlog
table recording the date, user, and action.

CREATE TABLE empauditlog (
 audit_date DATE,
 audit_user VARCHAR2(20),
 audit_desc VARCHAR2(20)
);
CREATE OR REPLACE TRIGGER emp_audit_trig
 AFTER INSERT OR UPDATE OR DELETE ON emp
DECLARE
 v_action VARCHAR2(20);
BEGIN
 IF INSERTING THEN
 v_action := 'Added employee(s)';
 ELSIF UPDATING THEN
 v_action := 'Updated employee(s)';
 ELSIF DELETING THEN
 v_action := 'Deleted employee(s)';
 END IF;
 INSERT INTO empauditlog VALUES (SYSDATE, USER,
 v_action);
END;

In the following sequence of commands, two rows are inserted into the emp table using
two INSERT commands. The sal and comm columns of both rows are updated with one
UPDATE command. Finally, both rows are deleted with one DELETE command.

INSERT INTO emp VALUES (9001,'SMITH','ANALYST',7782,SYSDATE,NULL,NULL,10);

INSERT INTO emp VALUES (9002,'JONES','CLERK',7782,SYSDATE,NULL,NULL,10);

UPDATE emp SET sal = 4000.00, comm = 1200.00 WHERE empno IN (9001, 9002);

DELETE FROM emp WHERE empno IN (9001, 9002);

SELECT TO_CHAR(AUDIT_DATE,'DD-MON-YY HH24:MI:SS') AS "AUDIT DATE",
 audit_user, audit_desc FROM empauditlog ORDER BY 1 ASC;

AUDIT DATE AUDIT_USER AUDIT_DESC
------------------ -------------------- --------------------
31-MAR-05 14:59:48 SYSTEM Added employee(s)
31-MAR-05 15:00:07 SYSTEM Added employee(s)
31-MAR-05 15:00:19 SYSTEM Updated employee(s)
31-MAR-05 15:00:34 SYSTEM Deleted employee(s)

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

345

The contents of the empauditlog table show how many times the trigger was fired -
once each for the two inserts, once for the update (even though two rows were changed)
and once for the deletion (even though two rows were deleted).

5.6.3 Before Row-Level Trigger

The following example is a before row-level trigger that calculates the commission of
every new employee belonging to department 30 that is inserted into the emp table.

CREATE OR REPLACE TRIGGER emp_comm_trig
 BEFORE INSERT ON emp
 FOR EACH ROW
BEGIN
 IF :NEW.deptno = 30 THEN
 :NEW.comm := :NEW.sal * .4;
 END IF;
END;

The listing following the addition of the two employees shows that the trigger computed
their commissions and inserted it as part of the new employee rows.

INSERT INTO emp VALUES (9005,'ROBERS','SALESMAN',7782,SYSDATE,3000.00,NULL,30);

INSERT INTO emp VALUES (9006,'ALLEN','SALESMAN',7782,SYSDATE,4500.00,NULL,30);

SELECT * FROM emp WHERE empno IN (9005, 9006);

 EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO
---------- ---------- --------- ---------- --------- ---------- ---------- ----------
 9005 ROBERS SALESMAN 7782 01-APR-05 3000 1200 30
 9006 ALLEN SALESMAN 7782 01-APR-05 4500 1800 30

5.6.4 After Row-Level Trigger

The following example is an after row-level trigger. When a new employee row is
inserted, the trigger adds a new row to the jobhist table for that employee. When an
existing employee is updated, the trigger sets the enddate column of the latest jobhist
row (assumed to be the one with a null enddate) to the current date and inserts a new
jobhist row with the employee’s new information.

Finally, trigger adds a row to the empchglog table with a description of the action.

CREATE TABLE empchglog (
 chg_date DATE,
 chg_desc VARCHAR2(30)
);
CREATE OR REPLACE TRIGGER emp_chg_trig
 AFTER INSERT OR UPDATE OR DELETE ON emp
 FOR EACH ROW
DECLARE
 v_empno emp.empno%TYPE;
 v_deptno emp.deptno%TYPE;
 v_dname dept.dname%TYPE;
 v_action VARCHAR2(7);
 v_chgdesc jobhist.chgdesc%TYPE;

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

346

BEGIN
 IF INSERTING THEN
 v_action := 'Added';
 v_empno := :NEW.empno;
 v_deptno := :NEW.deptno;
 INSERT INTO jobhist VALUES (:NEW.empno, SYSDATE, NULL,
 :NEW.job, :NEW.sal, :NEW.comm, :NEW.deptno, 'New Hire');
 ELSIF UPDATING THEN
 v_action := 'Updated';
 v_empno := :NEW.empno;
 v_deptno := :NEW.deptno;
 v_chgdesc := '';
 IF NVL(:OLD.ename, '-null-') != NVL(:NEW.ename, '-null-') THEN
 v_chgdesc := v_chgdesc || 'name, ';
 END IF;
 IF NVL(:OLD.job, '-null-') != NVL(:NEW.job, '-null-') THEN
 v_chgdesc := v_chgdesc || 'job, ';
 END IF;
 IF NVL(:OLD.sal, -1) != NVL(:NEW.sal, -1) THEN
 v_chgdesc := v_chgdesc || 'salary, ';
 END IF;
 IF NVL(:OLD.comm, -1) != NVL(:NEW.comm, -1) THEN
 v_chgdesc := v_chgdesc || 'commission, ';
 END IF;
 IF NVL(:OLD.deptno, -1) != NVL(:NEW.deptno, -1) THEN
 v_chgdesc := v_chgdesc || 'department, ';
 END IF;
 v_chgdesc := 'Changed ' || RTRIM(v_chgdesc, ', ');
 UPDATE jobhist SET enddate = SYSDATE WHERE empno = :OLD.empno
 AND enddate IS NULL;
 INSERT INTO jobhist VALUES (:NEW.empno, SYSDATE, NULL,
 :NEW.job, :NEW.sal, :NEW.comm, :NEW.deptno, v_chgdesc);
 ELSIF DELETING THEN
 v_action := 'Deleted';
 v_empno := :OLD.empno;
 v_deptno := :OLD.deptno;
 END IF;

 INSERT INTO empchglog VALUES (SYSDATE,
 v_action || ' employee # ' || v_empno);
END;

In the first sequence of commands shown below, two employees are added using two
separate INSERT commands and then both are updated using a single UPDATE command.
The contents of the jobhist table shows the action of the trigger for each affected row -
two new hire entries for the two new employees and two changed commission records for
the updated commissions on the two employees. The empchglog table also shows the
trigger was fired a total of four times, once for each action on the two rows.

INSERT INTO emp VALUES (9003,'PETERS','ANALYST',7782,SYSDATE,5000.00,NULL,40);

INSERT INTO emp VALUES (9004,'AIKENS','ANALYST',7782,SYSDATE,4500.00,NULL,40);

UPDATE emp SET comm = sal * 1.1 WHERE empno IN (9003, 9004);

SELECT * FROM jobhist WHERE empno IN (9003, 9004);

 EMPNO STARTDATE ENDDATE JOB SAL COMM DEPTNO CHGDESC
---------- --------- --------- --------- ---------- ---------- ---------- -------------

 9003 31-MAR-05 31-MAR-05 ANALYST 5000 40 New Hire

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

347

 9004 31-MAR-05 31-MAR-05 ANALYST 4500 40 New Hire
 9003 31-MAR-05 ANALYST 5000 5500 40 Changed
commission
 9004 31-MAR-05 ANALYST 4500 4950 40 Changed
commission

SELECT * FROM empchglog;

CHG_DATE CHG_DESC
--------- ------------------------------
31-MAR-05 Added employee # 9003
31-MAR-05 Added employee # 9004
31-MAR-05 Updated employee # 9003
31-MAR-05 Updated employee # 9004

Finally, both employees are deleted with a single DELETE command. The empchglog
table now shows the trigger was fired twice, once for each deleted employee.

DELETE FROM emp WHERE empno IN (9003, 9004);

SELECT * FROM empchglog;

CHG_DATE CHG_DESC
--------- ------------------------------
31-MAR-05 Added employee # 9003
31-MAR-05 Added employee # 9004
31-MAR-05 Updated employee # 9003
31-MAR-05 Updated employee # 9004
31-MAR-05 Deleted employee # 9003
31-MAR-05 Deleted employee # 9004

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

348

6 Packages
This chapter discusses the concept of packages in Postgres Plus Advanced Server. A
package is a named collection of functions, procedures, variables, cursors, user-defined
record types, and records that are referenced using a common qualifier – the package
identifier. Packages have the following characteristics:

• Packages provide a convenient means of organizing the functions and procedures
that perform a related purpose. Permission to use the package functions and
procedures is dependent upon one privilege granted to the entire package. All of
the package programs must be referenced with a common name.

• Certain functions, procedures, variables, types, etc. in the package can be declared
as public. Public entities are visible and can be referenced by other programs that
are given EXECUTE privilege on the package. For public functions and
procedures, only their signatures are visible - the program names, parameters if
any, and return types of functions). The SPL code of these function and
procedures is not accessible to others, therefore applications that utilize a package
are dependent only upon the information available in the signature – not in the
procedural logic, itself.

• Other functions, procedures, variables, types, etc. in the package can be declared
as private. Private entities can be referenced and using by function and procedures
within the package, but not by other external applications. Private entities are for
use only by programs within the package.

• Function and procedure names can be overloaded within a package. One or more
functions/procedures can be defined with the same name, but with different
signatures. This provides the capability to create identically named programs that
perform the same job, but on different types of input.

6.1 Package Components

Packages consist of two main components:

• The package specification: This is the public interface, (these are the elements
which can be referenced outside the package). We declare all database objects
that are to be a part of our package within the specification.

• The package body: This contains the actual implementation of all the database
objects declared within the package specification.

The package body implements the specifications in the package specification. It holds
implementation details and private declarations which are invisible to the application. So
we can debug, enhance or replace a package body without changing the specifications.
Similarly we can change the body without recompiling the calling programs because the
implementation details are invisible to the application.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

349

6.1.1 Package Specification Syntax

The following is the syntax of the package specification:

CREATE [OR REPLACE] PACKAGE package_name
 [AUTHID { DEFINER | CURRENT_USER }]
 { IS | AS }
 [declaration;] ...
 [{ PROCEDURE proc_name
 [(parm1 [IN | IN OUT | OUT] datatype1
 [, parm2 [IN | IN OUT | OUT] datatype2] ...)];
 |
 FUNCTION func_name
 [(parm1 [IN | IN OUT | OUT] datatype1
 [, parm2 [IN | IN OUT | OUT] datatype2] ...)]
 RETURN return_type; } ...]
END [package_name];

package_name is an identifier assigned to the package. If the AUTHID clause is omitted
or DEFINER is specified, the rights and search path of the package owner are used to
determine access privileges to database objects and resolve unqualified database object
references, respectively. If CURRENT_USER is specified, the rights and search path of the
current user executing a program in the package are used to determine access privileges
and resolve unqualified object references. declaration is an identifier of a public
variable. A public variable can be accessed from outside of the package using the syntax
package_name.variable. There can be none, one, or more public variables. Public
variable definitions must come before procedure or function declarations. declaration
can be any of the following:

• Variable Declaration (see Section 4.3)
• Record Declaration (see Section 4.3.4)
• Collection Declaration (see Section 4.10)
• REF CURSOR and Cursor Variable Declaration (see Section 4.9)
• TYPE Definitions for Records, Collections, and REF CURSORs
• Object Variable Declaration (see Section 8.3)

proc_name is an identifier of a public procedure. Public procedures can be invoked from
outside of the package using the syntax package_name.proc_name[(...)]. If
specified, parm1, parm2,... are the formal parameters of the procedure. datatype1,
datatype2,... are the data types of parm1, parm2,... respectively. IN, IN OUT, and OUT
are the possible parameter modes for each formal parameter. If none are specified, the
default is IN.

func_name is an identifier of a public function. Public functions can be invoked from
outside of the package using the syntax package_name.func_name[(...)]. If
specified, parm1, parm2,... are the formal parameters of the function. datatype1,
datatype2 ,... are the data types of parm1, parm2, ... respectively. IN, IN OUT, and

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

350

OUT are the possible parameter modes for each formal parameter. If none are specified,
the default is IN. return_type is the data type of the value the function returns. IN
parameters can also be initialized with a default value which is used in place of any IN
parameter you miss.

6.1.2 Package Body Syntax

The following is the syntax for the package body:

CREATE [OR REPLACE] PACKAGE BODY package_name
 { IS | AS }
 [private_declaration;] ...
 [{ PROCEDURE proc_name
 [(parm1 [IN | IN OUT | OUT] datatype1
 [, parm2 [IN | IN OUT | OUT] datatype2] ...)]
 { IS | AS }
 [proc_declaration;] ...
 BEGIN
 statement; ...
 [EXCEPTION
 WHEN ... THEN
 statement; ...]
 END;
 |
 FUNCTION func_name
 [(parm1 [IN | IN OUT | OUT] datatype1
 [, parm2 [IN | IN OUT | OUT] datatype2] ...)]
 RETURN return_type
 {IS | AS }
 [func_declaration;]...
 BEGIN
 statement; ...
 [EXCEPTION
 WHEN ... THEN
 statement; ...]
 END; }...]
 [BEGIN
 init_statement; ...]
END [package_name];

package_name is the name of the package for which this is the package body. There
must be an existing package specification with the same name.

private_declaration is an identifier of a private variable that can be accessed by
any procedure or function within the package. There can be none, one, or more private
variables. private_declaration can be any of the following:

• Variable Declaration (see Section 4.3)
• Record Declaration (see Section 4.3.4)

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

351

• Collection Declaration (see Section 4.10)
• REF CURSOR and Cursor Variable Declaration (see Section 4.9)
• TYPE Definitions for Records, Collections, and REF CURSORs
• Object Variable Declaration (see Section 8.3)

If proc_name is the same as the identifier of a public procedure declared in the package
specification and the signature of proc_name (i.e., formal parameter names (parm1,
parm2,...), data types (datatype1, datatype2,...), parameter modes, order of formal
parameters, and number of formal parameters) exactly matches the signature of the public
procedure’s declaration, then proc_name defines the body of this public procedure.

If the conditions described in the prior paragraph are not true, then proc_name defines a
private procedure.

parm1, parm2,... are the formal parameters of the procedure. datatype1,
datatype2,... are the data types of parm1, parm2,... respectively. IN, IN OUT, and OUT
are the possible parameter modes for each formal parameter. If none are specified, the
default is IN. IN parameters can also be initialized with a default value which is used in
place of any IN parameter you miss.

proc_variable is an identifier of a variable that can be accessed only from within
procedure, proc_name. There can be none, one, or more variables. datatype is the data
type of proc_variable. statement is an SPL program statement.

If func_name is the same as the identifier of a public function declared in the package
specification and the signature of func_name (i.e., formal parameter names (parm1,
parm2,...), data types (datatype1, datatype2,...), parameter modes, order of formal
parameters, and number of formal parameters) exactly matches the signature of the public
function’s declaration, then func_name defines the body of this public function.

If the conditions described in the prior paragraph are not true, then func_name defines a
private function.

parm1, parm2,... are the formal parameters of the function. datatype1, datatype2,...
are the data types of parm1, parm2,... respectively. IN, IN OUT, and OUT are the
possible parameter modes for each formal parameter. If none are specified, the default is
IN. return_type is the data type of the value returned by the function.

func_variable is an identifier of a variable that can be accessed only from within
function, func_name. There can be none, one, or more variables. datatype is the data
type of func_variable. statement is an SPL program statement.

init_statement is a statement in the initialization section of the package body. The
initialization section, if specified, must contain at least one statement. The statements in

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

352

the initialization section are executed once per user’s session when the package is first
referenced.

6.2 Creating Packages

We will now try to create packages and store them in our database. One thing to
remember here is that packages are not executable piece of code. Rather they are a
repository of code that is used. When you use a package, you actually execute or make
reference to an element in a package. This information is contained in the package
specification.

6.2.1 Creating the Package Specification

The package specification contains definition of all the elements in the package that can
be referenced from outside it. These are called the public elements of the package and act
is the package interface. Following is a package specification.

--
-- Package specification for the 'emp_admin' package.
--
CREATE OR REPLACE PACKAGE emp_admin
IS

 FUNCTION get_dept_name (
 p_deptno NUMBER DEFAULT 10
)
 RETURN VARCHAR2;
 FUNCTION update_emp_sal (
 p_empno NUMBER,
 p_raise NUMBER
)
 RETURN NUMBER;
 PROCEDURE hire_emp (
 p_empno NUMBER,
 p_ename VARCHAR2,
 p_job VARCHAR2,
 p_sal NUMBER,
 p_hiredate DATE DEFAULT sysdate,
 p_comm NUMBER DEFAULT 0,
 p_mgr NUMBER,
 p_deptno NUMBER DEFAULT 10
);
 PROCEDURE fire_emp (
 p_empno NUMBER
);

END emp_admin;

Here we have created the emp_admin package specification. This package specification
consists of two functions and two stored procedures. We can also add the OR REPLACE
clause to the CREATE PACKAGE statement for convenience.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

353

6.2.2 Creating the Package Body

The body of the package contains the actual implementation behind the package
specification. For the above emp_admin package specification, we shall now create a
package body which will implement the specifications. The body will contain the
implementation of the functions and stored procedures in the specification.

--
-- Package body for the 'emp_admin' package.
--
CREATE OR REPLACE PACKAGE BODY emp_admin
IS
 --
 -- Function that queries the 'dept' table based on the department
 -- number and returns the corresponding department name.
 --
 FUNCTION get_dept_name (
 p_deptno IN NUMBER DEFAULT 10
)
 RETURN VARCHAR2
 IS
 v_dname VARCHAR2(14);
 BEGIN
 SELECT dname INTO v_dname FROM dept WHERE deptno = p_deptno;
 RETURN v_dname;
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 DBMS_OUTPUT.PUT_LINE('Invalid department number ' || p_deptno);
 RETURN '';
 END;
 --
 -- Function that updates an employee's salary based on the
 -- employee number and salary increment/decrement passed
 -- as IN parameters. Upon successful completion the function
 -- returns the new updated salary.
 --
 FUNCTION update_emp_sal (
 p_empno IN NUMBER,
 p_raise IN NUMBER
)
 RETURN NUMBER
 IS
 v_sal NUMBER := 0;
 BEGIN
 SELECT sal INTO v_sal FROM emp WHERE empno = p_empno;
 v_sal := v_sal + p_raise;
 UPDATE emp SET sal = v_sal WHERE empno = p_empno;
 RETURN v_sal;
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 DBMS_OUTPUT.PUT_LINE('Employee ' || p_empno || ' not found');
 RETURN -1;
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE('The following is SQLERRM:');
 DBMS_OUTPUT.PUT_LINE(SQLERRM);
 DBMS_OUTPUT.PUT_LINE('The following is SQLCODE:');
 DBMS_OUTPUT.PUT_LINE(SQLCODE);
 RETURN -1;
 END;
 --

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

354

 -- Procedure that inserts a new employee record into the 'emp' table.
 --
 PROCEDURE hire_emp (
 p_empno NUMBER,
 p_ename VARCHAR2,
 p_job VARCHAR2,
 p_sal NUMBER,
 p_hiredate DATE DEFAULT sysdate,
 p_comm NUMBER DEFAULT 0,
 p_mgr NUMBER,
 p_deptno NUMBER DEFAULT 10
)
 AS
 BEGIN
 INSERT INTO emp(empno, ename, job, sal, hiredate, comm, mgr, deptno)
 VALUES(p_empno, p_ename, p_job, p_sal,
 p_hiredate, p_comm, p_mgr, p_deptno);
 END;
 --
 -- Procedure that deletes an employee record from the 'emp' table based
 -- on the employee number.
 --
 PROCEDURE fire_emp (
 p_empno NUMBER
)
 AS
 BEGIN
 DELETE FROM emp WHERE empno = p_empno;
 END;
END;

6.3 Referencing a Package

To reference the types, items and subprograms that are declared within a package
specification, we use the dot notation. For example:

package_name.type_name
package_name.item_name
package_name.subprogram_name

To invoke a function from the emp_admin package specification, we will execute the
following SQL command.

SELECT emp_admin.get_dept_name(10) FROM DUAL;

Here we are invoking the get_dept_name function declared within the package
emp_admin. We are passing the department number as an argument to the function,
which will return the name of the department. Here the value returned should be
ACCOUNTING, which corresponds to department number 10.

6.4 Using Packages With User Defined Types

The following example incorporates the various user-defined types discussed in earlier
chapters within the context of a package.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

355

The package specification of emp_rpt shows the declaration of a record type,
emprec_typ, and a weakly-typed REF CURSOR, emp_refcur, as publicly accessible
along with two functions and two procedures. Function, open_emp_by_dept, returns
the REF CURSOR type, EMP_REFCUR. Procedures, fetch_emp and close_refcur,
both declare a weakly-typed REF CURSOR as a formal parameter. See Section 4.3.4 and
Section 4.9 for information on record types and REF CURSORs, respectively.

CREATE OR REPLACE PACKAGE emp_rpt
IS
 TYPE emprec_typ IS RECORD (
 empno NUMBER(4),
 ename VARCHAR(10)
);
 TYPE emp_refcur IS REF CURSOR;

 FUNCTION get_dept_name (
 p_deptno IN NUMBER
) RETURN VARCHAR2;
 FUNCTION open_emp_by_dept (
 p_deptno IN emp.deptno%TYPE
) RETURN EMP_REFCUR;
 PROCEDURE fetch_emp (
 p_refcur IN OUT SYS_REFCURSOR
);
 PROCEDURE close_refcur (
 p_refcur IN OUT SYS_REFCURSOR
);
END emp_rpt;

The package body shows the declaration of several private variables - a static cursor,
dept_cur, a table type, depttab_typ, a table variable, t_dept, an integer variable,
t_dept_max, and a record variable, r_emp. See Sections 4.8, 4.10, and 4.3.4 for
information on static cursors, arrays, and record variables, respectively.

CREATE OR REPLACE PACKAGE BODY emp_rpt
IS
 CURSOR dept_cur IS SELECT * FROM dept;
 TYPE depttab_typ IS TABLE of dept%ROWTYPE
 INDEX BY BINARY_INTEGER;
 t_dept DEPTTAB_TYP;
 t_dept_max INTEGER := 1;
 r_emp EMPREC_TYP;

 FUNCTION get_dept_name (
 p_deptno IN NUMBER
) RETURN VARCHAR2
 IS
 BEGIN
 FOR i IN 1..t_dept_max LOOP
 IF p_deptno = t_dept(i).deptno THEN
 RETURN t_dept(i).dname;
 END IF;
 END LOOP;
 RETURN 'Unknown';
 END;

 FUNCTION open_emp_by_dept(
 p_deptno IN emp.deptno%TYPE

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

356

) RETURN EMP_REFCUR
 IS
 emp_by_dept EMP_REFCUR;
 BEGIN
 OPEN emp_by_dept FOR SELECT empno, ename FROM emp
 WHERE deptno = p_deptno;
 RETURN emp_by_dept;
 END;

 PROCEDURE fetch_emp (
 p_refcur IN OUT SYS_REFCURSOR
)
 IS
 BEGIN
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME');
 DBMS_OUTPUT.PUT_LINE('----- -------');
 LOOP
 FETCH p_refcur INTO r_emp;
 EXIT WHEN p_refcur%NOTFOUND;
 DBMS_OUTPUT.PUT_LINE(r_emp.empno || ' ' || r_emp.ename);
 END LOOP;
 END;

 PROCEDURE close_refcur (
 p_refcur IN OUT SYS_REFCURSOR
)
 IS
 BEGIN
 CLOSE p_refcur;
 END;
BEGIN
 OPEN dept_cur;
 LOOP
 FETCH dept_cur INTO t_dept(t_dept_max);
 EXIT WHEN dept_cur%NOTFOUND;
 t_dept_max := t_dept_max + 1;
 END LOOP;
 CLOSE dept_cur;
 t_dept_max := t_dept_max - 1;
END emp_rpt;

This package contains an initialization section that loads the private table variable,
t_dept, using the private static cursor, dept_cur. t_dept serves as a department name
lookup table in function, get_dept_name.

Function, open_emp_by_dept returns a REF CURSOR variable for a result set of
employee numbers and names for a given department. This REF CURSOR variable can
then be passed to procedure, fetch_emp, to retrieve and list the individual rows of the
result set. Finally, procedure, close_refcur, can be used to close the REF CURSOR
variable associated with this result set.

The following anonymous block runs the package function and procedures. In the
anonymous block's declaration section, note the declaration of cursor variable,
v_emp_cur, using the package’s public REF CURSOR type, EMP_REFCUR. v_emp_cur
contains the pointer to the result set that is passed between the package function and
procedures.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

357

DECLARE
 v_deptno dept.deptno%TYPE DEFAULT 30;
 v_emp_cur emp_rpt.EMP_REFCUR;
BEGIN
 v_emp_cur := emp_rpt.open_emp_by_dept(v_deptno);
 DBMS_OUTPUT.PUT_LINE('EMPLOYEES IN DEPT #' || v_deptno ||
 ': ' || emp_rpt.get_dept_name(v_deptno));
 emp_rpt.fetch_emp(v_emp_cur);
 DBMS_OUTPUT.PUT_LINE('**********************');
 DBMS_OUTPUT.PUT_LINE(v_emp_cur%ROWCOUNT || ' rows were retrieved');
 emp_rpt.close_refcur(v_emp_cur);
END;

The following is the result of this anonymous block.

EMPLOYEES IN DEPT #30: SALES
EMPNO ENAME
----- -------
7499 ALLEN
7521 WARD
7654 MARTIN
7698 BLAKE
7844 TURNER
7900 JAMES

6 rows were retrieved

The following anonymous block illustrates another means of achieving the same result.
Instead of using the package procedures, fetch_emp and close_refcur, the logic of
these programs is coded directly into the anonymous block. In the anonymous block’s
declaration section, note the addition of record variable, r_emp, declared using the
package’s public record type, EMPREC_TYP.

DECLARE
 v_deptno dept.deptno%TYPE DEFAULT 30;
 v_emp_cur emp_rpt.EMP_REFCUR;
 r_emp emp_rpt.EMPREC_TYP;
BEGIN
 v_emp_cur := emp_rpt.open_emp_by_dept(v_deptno);
 DBMS_OUTPUT.PUT_LINE('EMPLOYEES IN DEPT #' || v_deptno ||
 ': ' || emp_rpt.get_dept_name(v_deptno));
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME');
 DBMS_OUTPUT.PUT_LINE('----- -------');
 LOOP
 FETCH v_emp_cur INTO r_emp;
 EXIT WHEN v_emp_cur%NOTFOUND;
 DBMS_OUTPUT.PUT_LINE(r_emp.empno || ' ' ||
 r_emp.ename);
 END LOOP;
 DBMS_OUTPUT.PUT_LINE('**********************');
 DBMS_OUTPUT.PUT_LINE(v_emp_cur%ROWCOUNT || ' rows were retrieved');
 CLOSE v_emp_cur;
END;

The following is the result of this anonymous block.

EMPLOYEES IN DEPT #30: SALES
EMPNO ENAME

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

358

----- -------
7499 ALLEN
7521 WARD
7654 MARTIN
7698 BLAKE
7844 TURNER
7900 JAMES

6 rows were retrieved

6.5 Dropping a Package

The syntax for deleting an entire package or just the package body is as follows:

DROP PACKAGE [BODY] package_name;

If the keyword, BODY, is omitted, both the package specification and the package body
are deleted - i.e., the entire package is dropped. If the keyword, BODY, is specified, then
only the package body is dropped. The package specification remains intact.
package_name is the identifier of the package to be dropped.

Following statement will destroy only the package body of emp_admin:

DROP PACKAGE BODY emp_admin;

The following statement will drop the entire emp_admin package:

DROP PACKAGE emp_admin;

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

359

7 Built-In Packages
This chapter describes the built-in packages that are provided with Postgres Plus
Advanced Server. For certain packages, non-superusers must be explicitly granted the
EXECUTE privilege on the package before using any of the package’s functions or
procedures. For most of the built-in packages, EXECUTE privilege has been granted to
PUBLIC by default. See the

GRANT command for granting privileges.

All built-in packages are owned by the special sys user which must be specified when
granting or revoking privileges on built-in packages:

GRANT EXECUTE ON PACKAGE SYS.UTL_FILE TO john;

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

360

7.1 DBMS_ALERT

The DBMS_ALERT package provides the capability to register for, send, and receive alerts.

The procedures and functions available in the DBMS_ALERT package are listed in the
following table.

Table 7-37 DBMS_ALERT Functions/Procedures

Function/Procedure Return
Type Description

REGISTER(name) n/a Register to be able to receive alerts named,
name.

REMOVE(name) n/a Remove registration for the alert named, name.
REMOVEALL n/a Remove registration for all alerts.
SIGNAL(name, message) n/a Signals the alert named, name, with message.
WAITANY(name OUT, message OUT,
status OUT, timeout) n/a Wait for any registered alert to occur.
WAITONE(name, message OUT, status
OUT, timeout) n/a Wait for the specified alert, name, to occur.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

361

7.1.1 REGISTER

The REGISTER procedure enables the current session to be notified of the specified alert.

REGISTER(name VARCHAR2)

Parameters

name

Name of the alert to be registered.

Examples

The following anonymous block registers for an alert named, alert_test, then waits
for the signal.

DECLARE
 v_name VARCHAR2(30) := 'alert_test';
 v_msg VARCHAR2(80);
 v_status INTEGER;
 v_timeout NUMBER(3) := 120;
BEGIN
 DBMS_ALERT.REGISTER(v_name);
 DBMS_OUTPUT.PUT_LINE('Registered for alert ' || v_name);
 DBMS_OUTPUT.PUT_LINE('Waiting for signal...');
 DBMS_ALERT.WAITONE(v_name,v_msg,v_status,v_timeout);
 DBMS_OUTPUT.PUT_LINE('Alert name : ' || v_name);
 DBMS_OUTPUT.PUT_LINE('Alert msg : ' || v_msg);
 DBMS_OUTPUT.PUT_LINE('Alert status : ' || v_status);
 DBMS_OUTPUT.PUT_LINE('Alert timeout: ' || v_timeout || ' seconds');
 DBMS_ALERT.REMOVE(v_name);
END;

Registered for alert alert_test
Waiting for signal...

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

362

7.1.2 REMOVE

The REMOVE procedure unregisters the session for the named alert.

REMOVE(name VARCHAR2)

Parameters

name

Name of the alert to be unregistered.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

363

7.1.3 REMOVEALL

The REMOVEALL procedure unregisters the session for all alerts.

REMOVEALL

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

364

7.1.4 SIGNAL

The SIGNAL procedure signals the occurrence of the named alert.

SIGNAL(name VARCHAR2, message VARCHAR2)

Parameters

name

Name of the alert.

message

Information to pass with this alert.

Examples

The following anonymous block signals an alert for alert_test.

DECLARE
 v_name VARCHAR2(30) := 'alert_test';
BEGIN
 DBMS_ALERT.SIGNAL(v_name,'This is the message from ' || v_name);
 DBMS_OUTPUT.PUT_LINE('Issued alert for ' || v_name);
END;

Issued alert for alert_test

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

365

7.1.5 WAITANY

The WAITANY procedure waits for any of the registered alerts to occur.

WAITANY(name OUT VARCHAR2, message OUT VARCHAR2,
 status OUT INTEGER, timeout NUMBER)

Parameters

name

Variable receiving the name of the alert.

message

Variable receiving the message sent by the SIGNAL procedure.

status

Status code returned by the operation. Possible values are: 0 – alert occurred; 1 –
timeout occurred.

timeout

Time to wait for an alert in seconds.

Examples

The following anonymous block uses the WAITANY procedure to receive an alert named,
alert_test or any_alert:

DECLARE
 v_name VARCHAR2(30);
 v_msg VARCHAR2(80);
 v_status INTEGER;
 v_timeout NUMBER(3) := 120;
BEGIN
 DBMS_ALERT.REGISTER('alert_test');
 DBMS_ALERT.REGISTER('any_alert');
 DBMS_OUTPUT.PUT_LINE('Registered for alert alert_test and any_alert');
 DBMS_OUTPUT.PUT_LINE('Waiting for signal...');
 DBMS_ALERT.WAITANY(v_name,v_msg,v_status,v_timeout);
 DBMS_OUTPUT.PUT_LINE('Alert name : ' || v_name);
 DBMS_OUTPUT.PUT_LINE('Alert msg : ' || v_msg);
 DBMS_OUTPUT.PUT_LINE('Alert status : ' || v_status);
 DBMS_OUTPUT.PUT_LINE('Alert timeout: ' || v_timeout || ' seconds');
 DBMS_ALERT.REMOVEALL;
END;

Registered for alert alert_test and any_alert

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

366

Waiting for signal...

An anonymous block in a second session issues a signal for any_alert:

DECLARE
 v_name VARCHAR2(30) := 'any_alert';
BEGIN
 DBMS_ALERT.SIGNAL(v_name,'This is the message from ' || v_name);
 DBMS_OUTPUT.PUT_LINE('Issued alert for ' || v_name);
END;

Issued alert for any_alert

Control returns to the first anonymous block and the remainder of the code is executed:

Registered for alert alert_test and any_alert
Waiting for signal...
Alert name : any_alert
Alert msg : This is the message from any_alert
Alert status : 0
Alert timeout: 120 seconds

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

367

7.1.6 WAITONE

The WAITONE procedure waits for the specified registered alert to occur.

WAITONE(name VARCHAR2, message OUT VARCHAR2,
 status OUT INTEGER, timeout NUMBER)

Parameters

name

Name of the alert.

message

Variable receiving the message sent by the SIGNAL procedure.

status

Status code returned by the operation. Possible values are: 0 – alert occurred; 1 –
timeout occurred.

timeout

Time to wait for an alert in seconds.

Examples

The following anonymous block is similar to the one used in the WAITANY example
except the WAITONE procedure is used to receive the alert named, alert_test.

DECLARE
 v_name VARCHAR2(30) := 'alert_test';
 v_msg VARCHAR2(80);
 v_status INTEGER;
 v_timeout NUMBER(3) := 120;
BEGIN
 DBMS_ALERT.REGISTER(v_name);
 DBMS_OUTPUT.PUT_LINE('Registered for alert ' || v_name);
 DBMS_OUTPUT.PUT_LINE('Waiting for signal...');
 DBMS_ALERT.WAITONE(v_name,v_msg,v_status,v_timeout);
 DBMS_OUTPUT.PUT_LINE('Alert name : ' || v_name);
 DBMS_OUTPUT.PUT_LINE('Alert msg : ' || v_msg);
 DBMS_OUTPUT.PUT_LINE('Alert status : ' || v_status);
 DBMS_OUTPUT.PUT_LINE('Alert timeout: ' || v_timeout || ' seconds');
 DBMS_ALERT.REMOVE(v_name);
END;

Registered for alert alert_test
Waiting for signal...

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

368

Signal sent for alert_test sent by an anonymous block in a second session:

DECLARE
 v_name VARCHAR2(30) := 'alert_test';
BEGIN
 DBMS_ALERT.SIGNAL(v_name,'This is the message from ' || v_name);
 DBMS_OUTPUT.PUT_LINE('Issued alert for ' || v_name);
END;

Issued alert for alert_test

First session is alerted, control returns to the anonymous block, and the remainder of the
code is executed:

Registered for alert alert_test
Waiting for signal...
Alert name : alert_test
Alert msg : This is the message from alert_test
Alert status : 0
Alert timeout: 120 seconds

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

369

7.1.7 Comprehensive Example

The following example uses two triggers to send alerts when the dept table or the emp
table is changed. An anonymous block listens for these alerts and displays messages
when an alert is received.

The following are the triggers on the dept and emp tables:

CREATE OR REPLACE TRIGGER dept_alert_trig
 AFTER INSERT OR UPDATE OR DELETE ON dept
DECLARE
 v_action VARCHAR2(25);
BEGIN
 IF INSERTING THEN
 v_action := ' added department(s) ';
 ELSIF UPDATING THEN
 v_action := ' updated department(s) ';
 ELSIF DELETING THEN
 v_action := ' deleted department(s) ';
 END IF;
 DBMS_ALERT.SIGNAL('dept_alert',USER || v_action || 'on ' ||
 SYSDATE);
END;

CREATE OR REPLACE TRIGGER emp_alert_trig
 AFTER INSERT OR UPDATE OR DELETE ON emp
DECLARE
 v_action VARCHAR2(25);
BEGIN
 IF INSERTING THEN
 v_action := ' added employee(s) ';
 ELSIF UPDATING THEN
 v_action := ' updated employee(s) ';
 ELSIF DELETING THEN
 v_action := ' deleted employee(s) ';
 END IF;
 DBMS_ALERT.SIGNAL('emp_alert',USER || v_action || 'on ' ||
 SYSDATE);
END;

The following anonymous block is executed in a session while updates to the dept and
emp tables occur in other sessions:

DECLARE
 v_dept_alert VARCHAR2(30) := 'dept_alert';
 v_emp_alert VARCHAR2(30) := 'emp_alert';
 v_name VARCHAR2(30);
 v_msg VARCHAR2(80);
 v_status INTEGER;
 v_timeout NUMBER(3) := 60;
BEGIN
 DBMS_ALERT.REGISTER(v_dept_alert);
 DBMS_ALERT.REGISTER(v_emp_alert);
 DBMS_OUTPUT.PUT_LINE('Registered for alerts dept_alert and emp_alert');
 DBMS_OUTPUT.PUT_LINE('Waiting for signal...');
 LOOP

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

370

 DBMS_ALERT.WAITANY(v_name,v_msg,v_status,v_timeout);
 EXIT WHEN v_status != 0;
 DBMS_OUTPUT.PUT_LINE('Alert name : ' || v_name);
 DBMS_OUTPUT.PUT_LINE('Alert msg : ' || v_msg);
 DBMS_OUTPUT.PUT_LINE('Alert status : ' || v_status);
 DBMS_OUTPUT.PUT_LINE('------------------------------------' ||
 '-------------------------');
 END LOOP;
 DBMS_OUTPUT.PUT_LINE('Alert status : ' || v_status);
 DBMS_ALERT.REMOVEALL;
END;

Registered for alerts dept_alert and emp_alert
Waiting for signal...

The following changes are made by user, mary:

INSERT INTO dept VALUES (50,'FINANCE','CHICAGO');
INSERT INTO emp (empno,ename,deptno) VALUES (9001,'JONES',50);
INSERT INTO emp (empno,ename,deptno) VALUES (9002,'ALICE',50);

The following change is made by user, john:

INSERT INTO dept VALUES (60,'HR','LOS ANGELES');

The following is the output displayed by the anonymous block receiving the signals from
the triggers:

Registered for alerts dept_alert and emp_alert
Waiting for signal...
Alert name : dept_alert
Alert msg : mary added department(s) on 25-OCT-07 16:41:01
Alert status : 0

Alert name : emp_alert
Alert msg : mary added employee(s) on 25-OCT-07 16:41:02
Alert status : 0

Alert name : dept_alert
Alert msg : john added department(s) on 25-OCT-07 16:41:22
Alert status : 0

Alert status : 1

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

371

7.2 DBMS_OUTPUT
The DBMS_OUTPUT package provides the capability to send messages (lines of text) to a
message buffer, or get messages from the message buffer. A message buffer is local to a
single session. Use the

DBMS_PIPE package to send messages between sessions.

The procedures and functions available in the DBMS_OUTPUT package are listed in the
following table.

Table 7-38 DBMS_OUTPUT Functions/Procedures

Function/Procedure Return
Type Description

DISABLE n/a Disable the capability to send and receive
messages.

ENABLE(buffer_size) n/a Enable the capability to send and receive
messages.

GET_LINE(line OUT, status OUT) n/a Get a line from the message buffer.
GET_LINES(lines OUT, numlines IN
OUT) n/a Get multiple lines from the message buffer.

NEW_LINE n/a Puts an end-of-line character sequence.

PUT(item) n/a Puts a partial line without an end-of-line
character sequence.

PUT_LINE(item) n/a Puts a complete line with an end-of-line
character sequence.

SERVEROUTPUT(stdout) n/a
Direct messages from PUT, PUT_LINE, or
NEW_LINE to either standard output or the
message buffer.

The following table lists the public variables available in the DBMS_OUTPUT package.

Table 7-39 DBMS_OUTPUT Public Variables

Public Variables Data Type Value Description
chararr TABLE For message lines.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

372

7.2.1 CHARARR

The CHARARR is for storing multiple message lines.

TYPE chararr IS TABLE OF VARCHAR2(32767) INDEX BY BINARY_INTEGER;

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

373

7.2.2 DISABLE

The DISABLE procedure clears out the message buffer. Any messages in the buffer at the
time the DISABLE procedure is executed will no longer be accessible. Any messages
subsequently sent with the PUT, PUT_LINE, or NEW_LINE procedures are discarded. No
error is returned to the sender when the PUT, PUT_LINE, or NEW_LINE procedures are
executed and messages have been disabled.

Use the ENABLE procedure or SERVEROUTPUT(TRUE) procedure to re-enable the
sending and receiving of messages.

DISABLE

Examples

This anonymous block disables the sending and receiving messages in the current
session.

BEGIN
 DBMS_OUTPUT.DISABLE;
END;

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

374

7.2.3 ENABLE

The ENABLE procedure enables the capability to send messages to the message buffer or
retrieve messages from the message buffer. Running SERVEROUTPUT(TRUE) also
implicitly performs the ENABLE procedure.

The destination of a message sent with PUT, PUT_LINE, or NEW_LINE depends upon the
state of SERVEROUTPUT.

• If the last state of SERVEROUTPUT is “true”, the message goes to standard output
of the command line.

• If the last state of SERVEROUTPUT is “false”, the message goes to the message
buffer.

ENABLE [(buffer_size INTEGER)]

Parameters

buffer_size

Maximum length of the message buffer in bytes. If a buffer_size of less than
2000 is specified, the buffer size is set to 2000.

Examples

The following anonymous block enables messages. Setting SERVEROUTPUT(TRUE)
forces them to standard output.

BEGIN
 DBMS_OUTPUT.ENABLE;
 DBMS_OUTPUT.SERVEROUTPUT(TRUE);
 DBMS_OUTPUT.PUT_LINE('Messages enabled');
END;

Messages enabled

The same effect could have been achieved by simply using SERVEROUTPUT(TRUE).

BEGIN
 DBMS_OUTPUT.SERVEROUTPUT(TRUE);
 DBMS_OUTPUT.PUT_LINE('Messages enabled');
END;

Messages enabled

The following anonymous block enables messages, but setting SERVEROUTPUT(FALSE)
directs messages to the message buffer.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

375

BEGIN
 DBMS_OUTPUT.ENABLE;
 DBMS_OUTPUT.SERVEROUTPUT(FALSE);
 DBMS_OUTPUT.PUT_LINE('Message sent to buffer');
END;

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

376

7.2.4 GET_LINE

The GET_LINE procedure provides the capability to retrieve a line of text from the
message buffer. Only text that has been terminated by an end-of-line character sequence
is retrieved – that is complete lines generated using PUT_LINE, or by a series of PUT
calls followed by a NEW_LINE call.

GET_LINE(line OUT VARCHAR2, status OUT INTEGER)

Parameters

line

Variable receiving the line of text from the message buffer.

status

0 if a line was returned from the message buffer, 1 if there was no line to return.

Examples

The following anonymous block writes the emp table out to the message buffer as a
comma-delimited string for each row.

EXEC DBMS_OUTPUT.SERVEROUTPUT(FALSE);

DECLARE
 v_emprec VARCHAR2(120);
 CURSOR emp_cur IS SELECT * FROM emp ORDER BY empno;
BEGIN
 DBMS_OUTPUT.ENABLE;
 FOR i IN emp_cur LOOP
 v_emprec := i.empno || ',' || i.ename || ',' || i.job || ',' ||
 NVL(LTRIM(TO_CHAR(i.mgr,'9999')),'') || ',' || i.hiredate ||
 ',' || i.sal || ',' ||
 NVL(LTRIM(TO_CHAR(i.comm,'9990.99')),'') || ',' || i.deptno;
 DBMS_OUTPUT.PUT_LINE(v_emprec);
 END LOOP;
END;

The following anonymous block reads the message buffer and inserts the messages
written by the prior example into a table named messages. The rows in messages are
then displayed.

CREATE TABLE messages (
 status INTEGER,
 msg VARCHAR2(100)
);

DECLARE

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

377

 v_line VARCHAR2(100);
 v_status INTEGER := 0;
BEGIN
 DBMS_OUTPUT.GET_LINE(v_line,v_status);
 WHILE v_status = 0 LOOP
 INSERT INTO messages VALUES(v_status, v_line);
 DBMS_OUTPUT.GET_LINE(v_line,v_status);
 END LOOP;
END;

SELECT msg FROM messages;

 msg

 7369,SMITH,CLERK,7902,17-DEC-80 00:00:00,800.00,,20
 7499,ALLEN,SALESMAN,7698,20-FEB-81 00:00:00,1600.00,300.00,30
 7521,WARD,SALESMAN,7698,22-FEB-81 00:00:00,1250.00,500.00,30
 7566,JONES,MANAGER,7839,02-APR-81 00:00:00,2975.00,,20
 7654,MARTIN,SALESMAN,7698,28-SEP-81 00:00:00,1250.00,1400.00,30
 7698,BLAKE,MANAGER,7839,01-MAY-81 00:00:00,2850.00,,30
 7782,CLARK,MANAGER,7839,09-JUN-81 00:00:00,2450.00,,10
 7788,SCOTT,ANALYST,7566,19-APR-87 00:00:00,3000.00,,20
 7839,KING,PRESIDENT,,17-NOV-81 00:00:00,5000.00,,10
 7844,TURNER,SALESMAN,7698,08-SEP-81 00:00:00,1500.00,0.00,30
 7876,ADAMS,CLERK,7788,23-MAY-87 00:00:00,1100.00,,20
 7900,JAMES,CLERK,7698,03-DEC-81 00:00:00,950.00,,30
 7902,FORD,ANALYST,7566,03-DEC-81 00:00:00,3000.00,,20
 7934,MILLER,CLERK,7782,23-JAN-82 00:00:00,1300.00,,10
(14 rows)

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

378

7.2.5 GET_LINES

The GET_LINES procedure provides the capability to retrieve one or more lines of text
from the message buffer into a collection. Only text that has been terminated by an end-
of-line character sequence is retrieved – that is complete lines generated using
PUT_LINE, or by a series of PUT calls followed by a NEW_LINE call.

GET_LINES(lines OUT CHARARR, numlines IN OUT INTEGER)

Parameters

lines

Table receiving the lines of text from the message buffer. See

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

379

CHARARR for a description of lines.

numlines IN

Number of lines to be retrieved from the message buffer.

numlines OUT

Actual number of lines retrieved from the message buffer. If the output value of
numlines is less than the input value, then there are no more lines left in the
message buffer.

Examples

The following examples uses the GET_LINES procedure to store all rows from the emp
table that were placed on the message buffer, into an array.

EXEC DBMS_OUTPUT.SERVEROUTPUT(FALSE);

DECLARE
 v_emprec VARCHAR2(120);
 CURSOR emp_cur IS SELECT * FROM emp ORDER BY empno;
BEGIN
 DBMS_OUTPUT.ENABLE;
 FOR i IN emp_cur LOOP
 v_emprec := i.empno || ',' || i.ename || ',' || i.job || ',' ||
 NVL(LTRIM(TO_CHAR(i.mgr,'9999')),'') || ',' || i.hiredate ||
 ',' || i.sal || ',' ||
 NVL(LTRIM(TO_CHAR(i.comm,'9990.99')),'') || ',' || i.deptno;
 DBMS_OUTPUT.PUT_LINE(v_emprec);
 END LOOP;
END;

DECLARE
 v_lines DBMS_OUTPUT.CHARARR;
 v_numlines INTEGER := 14;
 v_status INTEGER := 0;
BEGIN
 DBMS_OUTPUT.GET_LINES(v_lines,v_numlines);
 FOR i IN 1..v_numlines LOOP
 INSERT INTO messages VALUES(v_numlines, v_lines(i));
 END LOOP;
END;

SELECT msg FROM messages;

 msg

 7369,SMITH,CLERK,7902,17-DEC-80 00:00:00,800.00,,20
 7499,ALLEN,SALESMAN,7698,20-FEB-81 00:00:00,1600.00,300.00,30
 7521,WARD,SALESMAN,7698,22-FEB-81 00:00:00,1250.00,500.00,30
 7566,JONES,MANAGER,7839,02-APR-81 00:00:00,2975.00,,20
 7654,MARTIN,SALESMAN,7698,28-SEP-81 00:00:00,1250.00,1400.00,30
 7698,BLAKE,MANAGER,7839,01-MAY-81 00:00:00,2850.00,,30
 7782,CLARK,MANAGER,7839,09-JUN-81 00:00:00,2450.00,,10
 7788,SCOTT,ANALYST,7566,19-APR-87 00:00:00,3000.00,,20

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

380

 7839,KING,PRESIDENT,,17-NOV-81 00:00:00,5000.00,,10
 7844,TURNER,SALESMAN,7698,08-SEP-81 00:00:00,1500.00,0.00,30
 7876,ADAMS,CLERK,7788,23-MAY-87 00:00:00,1100.00,,20
 7900,JAMES,CLERK,7698,03-DEC-81 00:00:00,950.00,,30
 7902,FORD,ANALYST,7566,03-DEC-81 00:00:00,3000.00,,20
 7934,MILLER,CLERK,7782,23-JAN-82 00:00:00,1300.00,,10
(14 rows)

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

381

7.2.6 NEW_LINE

The NEW_LINE procedure writes an end-of-line character sequence in the message buffer.

NEW_LINE

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

382

7.2.7 PUT

The PUT procedure writes a string to the message buffer. No end-of-line character
sequence is written at the end of the string. Use the NEW_LINE procedure to add an end-
of-line character sequence.

PUT(item VARCHAR2)

Parameters

item

Text written to the message buffer.

Examples

The following example uses the PUT procedure to display a comma-delimited list of
employees from the emp table.

DECLARE
 CURSOR emp_cur IS SELECT * FROM emp ORDER BY empno;
BEGIN
 FOR i IN emp_cur LOOP
 DBMS_OUTPUT.PUT(i.empno);
 DBMS_OUTPUT.PUT(',');
 DBMS_OUTPUT.PUT(i.ename);
 DBMS_OUTPUT.PUT(',');
 DBMS_OUTPUT.PUT(i.job);
 DBMS_OUTPUT.PUT(',');
 DBMS_OUTPUT.PUT(i.mgr);
 DBMS_OUTPUT.PUT(',');
 DBMS_OUTPUT.PUT(i.hiredate);
 DBMS_OUTPUT.PUT(',');
 DBMS_OUTPUT.PUT(i.sal);
 DBMS_OUTPUT.PUT(',');
 DBMS_OUTPUT.PUT(i.comm);
 DBMS_OUTPUT.PUT(',');
 DBMS_OUTPUT.PUT(i.deptno);
 DBMS_OUTPUT.NEW_LINE;
 END LOOP;
END;

7369,SMITH,CLERK,7902,17-DEC-80 00:00:00,800.00,,20
7499,ALLEN,SALESMAN,7698,20-FEB-81 00:00:00,1600.00,300.00,30
7521,WARD,SALESMAN,7698,22-FEB-81 00:00:00,1250.00,500.00,30
7566,JONES,MANAGER,7839,02-APR-81 00:00:00,2975.00,,20
7654,MARTIN,SALESMAN,7698,28-SEP-81 00:00:00,1250.00,1400.00,30
7698,BLAKE,MANAGER,7839,01-MAY-81 00:00:00,2850.00,,30
7782,CLARK,MANAGER,7839,09-JUN-81 00:00:00,2450.00,,10
7788,SCOTT,ANALYST,7566,19-APR-87 00:00:00,3000.00,,20
7839,KING,PRESIDENT,,17-NOV-81 00:00:00,5000.00,,10
7844,TURNER,SALESMAN,7698,08-SEP-81 00:00:00,1500.00,0.00,30
7876,ADAMS,CLERK,7788,23-MAY-87 00:00:00,1100.00,,20
7900,JAMES,CLERK,7698,03-DEC-81 00:00:00,950.00,,30

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

383

7902,FORD,ANALYST,7566,03-DEC-81 00:00:00,3000.00,,20
7934,MILLER,CLERK,7782,23-JAN-82 00:00:00,1300.00,,10

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

384

7.2.8 PUT_LINE

The PUT_LINE procedure writes a single line to the message buffer including an end-of-
line character sequence.

PUT_LINE(item VARCHAR2)

Parameters

item

Text to be written to the message buffer.

Examples

The following example uses the PUT_LINE procedure to display a comma-delimited list
of employees from the emp table.

DECLARE
 v_emprec VARCHAR2(120);
 CURSOR emp_cur IS SELECT * FROM emp ORDER BY empno;
BEGIN
 FOR i IN emp_cur LOOP
 v_emprec := i.empno || ',' || i.ename || ',' || i.job || ',' ||
 NVL(LTRIM(TO_CHAR(i.mgr,'9999')),'') || ',' || i.hiredate ||
 ',' || i.sal || ',' ||
 NVL(LTRIM(TO_CHAR(i.comm,'9990.99')),'') || ',' || i.deptno;
 DBMS_OUTPUT.PUT_LINE(v_emprec);
 END LOOP;
END;

7369,SMITH,CLERK,7902,17-DEC-80 00:00:00,800.00,,20
7499,ALLEN,SALESMAN,7698,20-FEB-81 00:00:00,1600.00,300.00,30
7521,WARD,SALESMAN,7698,22-FEB-81 00:00:00,1250.00,500.00,30
7566,JONES,MANAGER,7839,02-APR-81 00:00:00,2975.00,,20
7654,MARTIN,SALESMAN,7698,28-SEP-81 00:00:00,1250.00,1400.00,30
7698,BLAKE,MANAGER,7839,01-MAY-81 00:00:00,2850.00,,30
7782,CLARK,MANAGER,7839,09-JUN-81 00:00:00,2450.00,,10
7788,SCOTT,ANALYST,7566,19-APR-87 00:00:00,3000.00,,20
7839,KING,PRESIDENT,,17-NOV-81 00:00:00,5000.00,,10
7844,TURNER,SALESMAN,7698,08-SEP-81 00:00:00,1500.00,0.00,30
7876,ADAMS,CLERK,7788,23-MAY-87 00:00:00,1100.00,,20
7900,JAMES,CLERK,7698,03-DEC-81 00:00:00,950.00,,30
7902,FORD,ANALYST,7566,03-DEC-81 00:00:00,3000.00,,20
7934,MILLER,CLERK,7782,23-JAN-82 00:00:00,1300.00,,10

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

385

7.2.9 SERVEROUTPUT

The SERVEROUTPUT procedure provides the capability to direct messages to standard
output of the command line or to the message buffer. Setting SERVEROUTPUT(TRUE)
also performs an implicit execution of ENABLE.

The default setting of SERVEROUTPUT is implementation dependent. For example, in
Oracle SQL*Plus, SERVEROUTPUT(FALSE) is the default. In PSQL,
SERVEROUTPUT(TRUE) is the default. Also note that in Oracle SQL*Plus, this setting is
controlled using the SQL*Plus SET command, not by a stored procedure as implemented
in Postgres Plus Advanced Server.

SERVEROUTPUT(stdout BOOLEAN)

Parameters

stdout

Set to “true” if subsequent PUT, PUT_LINE, or NEW_LINE commands are to send
text directly to standard output of the command line. Set to “false” if text is to be
sent to the message buffer.

Examples

The following anonymous block sends the first message to the command line and the
second message to the message buffer.

BEGIN
 DBMS_OUTPUT.SERVEROUTPUT(TRUE);
 DBMS_OUTPUT.PUT_LINE('This message goes to the command line');
 DBMS_OUTPUT.SERVEROUTPUT(FALSE);
 DBMS_OUTPUT.PUT_LINE('This message goes to the message buffer');
END;

This message goes to the command line

If within the same session, the following anonymous block is executed, the message
stored in the message buffer from the prior example is flushed and displayed on the
command line as well as the new message.

BEGIN
 DBMS_OUTPUT.SERVEROUTPUT(TRUE);
 DBMS_OUTPUT.PUT_LINE('Flush messages from the buffer');
END;

This message goes to the message buffer
Flush messages from the buffer

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

386

7.3 DBMS_PIPE

The DBMS_PIPE package provides the capability to send messages through a pipe within
or between sessions connected to the same database cluster.

The procedures and functions available in the DBMS_PIPE package are listed in the
following table.

Table 7-40 DBMS_PIPE Functions/Procedures

Function/Procedure Return
Type Description

CREATE_PIPE(pipename [,
maxpipesize] [, private]) INTEGER

Explicitly create a private pipe if private is
“true” (the default) or a public pipe if private
is “false”.

NEXT_ITEM_TYPE INTEGER Determine the data type of the next item in a
received message.

PACK_MESSAGE(item) n/a Place item in the session’s local message buffer.

PURGE(pipename) n/a Remove unreceived messages from the specified
pipe.

RECEIVE_MESSAGE(pipename [,
timeout]) INTEGER Get a message from a specified pipe.

REMOVE_PIPE(pipename) INTEGER Delete an explicitly created pipe.
RESET_BUFFER n/a Reset the local message buffer.
SEND_MESSAGE(pipename [, timeout
] [, maxpipesize])

INTEGER Send a message on a pipe.

UNIQUE_SESSION_NAME VARCHAR2 Obtain a unique session name.

UNPACK_MESSAGE(item OUT) n/a Retrieve the next data item from a message into
a type-compatible variable, item.

Pipes are categorized as implicit or explicit. An implicit pipe is created if a reference is
made to a pipe name that was not previously created by the CREATE_PIPE function. For
example, if the SEND_MESSAGE function is executed using a non-existent pipe name, a
new implicit pipe is created with that name. An explicit pipe is created using the
CREATE_PIPE function whereby the first parameter specifies the pipe name for the new
pipe.

Pipes are also categorized as private or public. A private pipe can only be accessed by the
user who created the pipe. Even a superuser cannot access a private pipe that was created
by another user. A public pipe can be accessed by any user who has access to the
DBMS_PIPE package.

A public pipe can only be created by using the CREATE_PIPE function with the third
parameter set to “false”. The CREATE_PIPE function can be used to create a private pipe
by setting the third parameter to “true” or by omitting the third parameter. All implicit
pipes are private.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

387

The individual data items or “lines” of a message are first built in a local message buffer,
unique to the current session. The PACK_MESSAGE procedure builds the message in the
session’s local message buffer. The SEND_MESSAGE function is then used to send the
message through the pipe.

Receipt of a message involves the reverse operation. The RECEIVE_MESSAGE function is
used to get a message from the specified pipe. The message is written to the session’s
local message buffer. The UNPACK_MESSAGE procedure is then used to transfer the
message data items from the message buffer to program variables. If a pipe contains
multiple messages, RECEIVE_MESSAGE gets the messages in FIFO (first-in-first-out)
order.

Each session maintains separate message buffers for messages created with the
PACK_MESSAGE procedure and messages retrieved by the RECEIVE_MESSAGE function.
Thus messages can be both built and received in the same session. However, if
consecutive RECEIVE_MESSAGE calls are made, only the message from the last
RECEIVE_MESSAGE call will be preserved in the local message buffer.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

388

7.3.1 CREATE_PIPE

The CREATE_PIPE function creates an explicit public pipe or an explicit private pipe
with a specified name.

status INTEGER CREATE_PIPE(pipename VARCHAR2
 [, maxpipesize INTEGER] [, private BOOLEAN])

Parameters

pipename

Name of the pipe.

maxpipesize

Maximum capacity of the pipe in bytes. Default is 8192 bytes.

private

Create a public pipe if set to “false”. Create a private pipe if set to “true”. This is
the default.

status

Status code returned by the operation. 0 indicates successful creation.

Examples

Create a private pipe named, messages:

DECLARE
 v_status INTEGER;
BEGIN
 v_status := DBMS_PIPE.CREATE_PIPE('messages');
 DBMS_OUTPUT.PUT_LINE('CREATE_PIPE status: ' || v_status);
END;
CREATE_PIPE status: 0

Create a public pipe named, mailbox:

DECLARE
 v_status INTEGER;
BEGIN
 v_status := DBMS_PIPE.CREATE_PIPE('mailbox',8192,FALSE);
 DBMS_OUTPUT.PUT_LINE('CREATE_PIPE status: ' || v_status);
END;
CREATE_PIPE status: 0

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

389

7.3.2 NEXT_ITEM_TYPE

The NEXT_ITEM_TYPE function returns an integer code identifying the data type of the
next data item in a message that has been retrieved into the session’s local message
buffer. As each item is moved off of the local message buffer with the
UNPACK_MESSAGE procedure, the NEXT_ITEM_TYPE function will return the data type
code for the next available item. A code of 0 is returned when there are no more items
left in the message.

typecode INTEGER NEXT_ITEM_TYPE

Parameters

typecode

Code identifying the data type of the next data item as shown in Table 7-41.

Table 7-41 NEXT_ITEM_TYPE Data Type Codes

Type Code Data Type
0 No more data items
9 NUMBER
11 VARCHAR2
13 DATE
23 RAW

Note: The type codes list in the table are not Oracle compatible. Oracle assigns a
different numbering sequence to the data types.

Examples

The following example shows a pipe packed with a NUMBER item, a VARCHAR2 item, a
DATE item, and a RAW item. A second anonymous block then uses the NEXT_ITEM_TYPE
function to display the type code of each item.

DECLARE
 v_number NUMBER := 123;
 v_varchar VARCHAR2(20) := 'Character data';
 v_date DATE := SYSDATE;
 v_raw RAW(4) := '21222324';
 v_status INTEGER;
BEGIN
 DBMS_PIPE.PACK_MESSAGE(v_number);
 DBMS_PIPE.PACK_MESSAGE(v_varchar);
 DBMS_PIPE.PACK_MESSAGE(v_date);
 DBMS_PIPE.PACK_MESSAGE(v_raw);
 v_status := DBMS_PIPE.SEND_MESSAGE('datatypes');
 DBMS_OUTPUT.PUT_LINE('SEND_MESSAGE status: ' || v_status);
EXCEPTION

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

390

 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE('SQLERRM: ' || SQLERRM);
 DBMS_OUTPUT.PUT_LINE('SQLCODE: ' || SQLCODE);
END;

SEND_MESSAGE status: 0

DECLARE
 v_number NUMBER;
 v_varchar VARCHAR2(20);
 v_date DATE;
 v_timestamp TIMESTAMP;
 v_raw RAW(4);
 v_status INTEGER;
BEGIN
 v_status := DBMS_PIPE.RECEIVE_MESSAGE('datatypes');
 DBMS_OUTPUT.PUT_LINE('RECEIVE_MESSAGE status: ' || v_status);
 DBMS_OUTPUT.PUT_LINE('----------------------------------');

 v_status := DBMS_PIPE.NEXT_ITEM_TYPE;
 DBMS_OUTPUT.PUT_LINE('NEXT_ITEM_TYPE: ' || v_status);
 DBMS_PIPE.UNPACK_MESSAGE(v_number);
 DBMS_OUTPUT.PUT_LINE('NUMBER Item : ' || v_number);
 DBMS_OUTPUT.PUT_LINE('----------------------------------');

 v_status := DBMS_PIPE.NEXT_ITEM_TYPE;
 DBMS_OUTPUT.PUT_LINE('NEXT_ITEM_TYPE: ' || v_status);
 DBMS_PIPE.UNPACK_MESSAGE(v_varchar);
 DBMS_OUTPUT.PUT_LINE('VARCHAR2 Item : ' || v_varchar);
 DBMS_OUTPUT.PUT_LINE('----------------------------------');

 v_status := DBMS_PIPE.NEXT_ITEM_TYPE;
 DBMS_OUTPUT.PUT_LINE('NEXT_ITEM_TYPE: ' || v_status);
 DBMS_PIPE.UNPACK_MESSAGE(v_date);
 DBMS_OUTPUT.PUT_LINE('DATE Item : ' || v_date);
 DBMS_OUTPUT.PUT_LINE('----------------------------------');

 v_status := DBMS_PIPE.NEXT_ITEM_TYPE;
 DBMS_OUTPUT.PUT_LINE('NEXT_ITEM_TYPE: ' || v_status);
 DBMS_PIPE.UNPACK_MESSAGE(v_raw);
 DBMS_OUTPUT.PUT_LINE('RAW Item : ' || v_raw);
 DBMS_OUTPUT.PUT_LINE('----------------------------------');

 v_status := DBMS_PIPE.NEXT_ITEM_TYPE;
 DBMS_OUTPUT.PUT_LINE('NEXT_ITEM_TYPE: ' || v_status);
 DBMS_OUTPUT.PUT_LINE('---------------------------------');
EXCEPTION
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE('SQLERRM: ' || SQLERRM);
 DBMS_OUTPUT.PUT_LINE('SQLCODE: ' || SQLCODE);
END;

RECEIVE_MESSAGE status: 0

NEXT_ITEM_TYPE: 9
NUMBER Item : 123

NEXT_ITEM_TYPE: 11
VARCHAR2 Item : Character data

NEXT_ITEM_TYPE: 13
DATE Item : 02-OCT-07 11:11:43

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

391

NEXT_ITEM_TYPE: 23
RAW Item : 21222324

NEXT_ITEM_TYPE: 0

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

392

7.3.3 PACK_MESSAGE

The PACK_MESSAGE procedure places an item of data in the session’s local message
buffer. PACK_MESSAGE must be executed at least once before issuing a SEND_MESSAGE
call.

PACK_MESSAGE(item { DATE | NUMBER | VARCHAR2 | RAW })

Use the UNPACK_MESSAGE procedure to obtain data items once the message is retrieved
using a RECEIVE_MESSAGE call.

Parameters

item

An expression evaluating to any of the acceptable parameter data types. The value
is added to the session’s local message buffer.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

393

7.3.4 PURGE

The PURGE procedure removes the unreceived messages from a specified implicit pipe.

PURGE(pipename VARCHAR2)

Use the REMOVE_PIPE function to delete an explicit pipe.

Parameters

pipename

Name of the pipe.

Examples

Two messages are sent on a pipe:

DECLARE
 v_status INTEGER;
BEGIN
 DBMS_PIPE.PACK_MESSAGE('Message #1');
 v_status := DBMS_PIPE.SEND_MESSAGE('pipe');
 DBMS_OUTPUT.PUT_LINE('SEND_MESSAGE status: ' || v_status);

 DBMS_PIPE.PACK_MESSAGE('Message #2');
 v_status := DBMS_PIPE.SEND_MESSAGE('pipe');
 DBMS_OUTPUT.PUT_LINE('SEND_MESSAGE status: ' || v_status);
END;

SEND_MESSAGE status: 0
SEND_MESSAGE status: 0

Receive the first message and unpack it:

DECLARE
 v_item VARCHAR2(80);
 v_status INTEGER;
BEGIN
 v_status := DBMS_PIPE.RECEIVE_MESSAGE('pipe',1);
 DBMS_OUTPUT.PUT_LINE('RECEIVE_MESSAGE status: ' || v_status);
 DBMS_PIPE.UNPACK_MESSAGE(v_item);
 DBMS_OUTPUT.PUT_LINE('Item: ' || v_item);
END;

RECEIVE_MESSAGE status: 0
Item: Message #1

Purge the pipe:

EXEC DBMS_PIPE.PURGE('pipe');

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

394

Try to retrieve the next message. The RECEIVE_MESSAGE call returns status code 1
indicating it timed out because no message was available.

DECLARE
 v_item VARCHAR2(80);
 v_status INTEGER;
BEGIN
 v_status := DBMS_PIPE.RECEIVE_MESSAGE('pipe',1);
 DBMS_OUTPUT.PUT_LINE('RECEIVE_MESSAGE status: ' || v_status);
END;

RECEIVE_MESSAGE status: 1

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

395

7.3.5 RECEIVE_MESSAGE

The RECEIVE_MESSAGE function obtains a message from a specified pipe.

status INTEGER RECEIVE_MESSAGE(pipename VARCHAR2
 [, timeout INTEGER])

Parameters

pipename

Name of the pipe.

timeout

Wait time (seconds). Default is 86400000 (1000 days).

status

Status code returned by the operation.

The possible status codes are:

Table 7-42 RECEIVE_MESSAGE Status Codes

Status Code Description
0 Success
1 Time out
2 Message too large .for the buffer

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

396

7.3.6 REMOVE_PIPE

The REMOVE_PIPE function deletes an explicit private or explicit public pipe.

status INTEGER REMOVE_PIPE(pipename VARCHAR2)

Use the REMOVE_PIPE function to delete explicitly created pipes – i.e., pipes created
with the CREATE_PIPE function.

Parameters

pipename

Name of the pipe.

status

Status code returned by the operation. A status code of 0 is returned even if the
named pipe is non-existent.

Examples

Two messages are sent on a pipe:

DECLARE
 v_status INTEGER;
BEGIN
 v_status := DBMS_PIPE.CREATE_PIPE('pipe');
 DBMS_OUTPUT.PUT_LINE('CREATE_PIPE status : ' || v_status);

 DBMS_PIPE.PACK_MESSAGE('Message #1');
 v_status := DBMS_PIPE.SEND_MESSAGE('pipe');
 DBMS_OUTPUT.PUT_LINE('SEND_MESSAGE status: ' || v_status);

 DBMS_PIPE.PACK_MESSAGE('Message #2');
 v_status := DBMS_PIPE.SEND_MESSAGE('pipe');
 DBMS_OUTPUT.PUT_LINE('SEND_MESSAGE status: ' || v_status);
END;

CREATE_PIPE status : 0
SEND_MESSAGE status: 0
SEND_MESSAGE status: 0

Receive the first message and unpack it:

DECLARE
 v_item VARCHAR2(80);
 v_status INTEGER;
BEGIN
 v_status := DBMS_PIPE.RECEIVE_MESSAGE('pipe',1);
 DBMS_OUTPUT.PUT_LINE('RECEIVE_MESSAGE status: ' || v_status);

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

397

 DBMS_PIPE.UNPACK_MESSAGE(v_item);
 DBMS_OUTPUT.PUT_LINE('Item: ' || v_item);
END;

RECEIVE_MESSAGE status: 0
Item: Message #1

Remove the pipe:

SELECT DBMS_PIPE.REMOVE_PIPE('pipe') FROM DUAL;

remove_pipe

 0
(1 row)

Try to retrieve the next message. The RECEIVE_MESSAGE call returns status code 1
indicating it timed out because the pipe had been deleted.

DECLARE
 v_item VARCHAR2(80);
 v_status INTEGER;
BEGIN
 v_status := DBMS_PIPE.RECEIVE_MESSAGE('pipe',1);
 DBMS_OUTPUT.PUT_LINE('RECEIVE_MESSAGE status: ' || v_status);
END;

RECEIVE_MESSAGE status: 1

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

398

7.3.7 RESET_BUFFER

The RESET_BUFFER procedure resets a “pointer” to the session’s local message buffer
back to the beginning of the buffer. This has the effect of causing subsequent
PACK_MESSAGE calls to overwrite any data items that existed in the message buffer prior
to the RESET_BUFFER call.

RESET_BUFFER

Examples

A message to John is written to the local message buffer. It is replaced by a message to
Bob by calling RESET_BUFFER. The message is sent on the pipe.

DECLARE
 v_status INTEGER;
BEGIN
 DBMS_PIPE.PACK_MESSAGE('Hi, John');
 DBMS_PIPE.PACK_MESSAGE('Can you attend a meeting at 3:00, today?');
 DBMS_PIPE.PACK_MESSAGE('If not, is tomorrow at 8:30 ok with you?');
 DBMS_PIPE.RESET_BUFFER;
 DBMS_PIPE.PACK_MESSAGE('Hi, Bob');
 DBMS_PIPE.PACK_MESSAGE('Can you attend a meeting at 9:30, tomorrow?');
 v_status := DBMS_PIPE.SEND_MESSAGE('pipe');
 DBMS_OUTPUT.PUT_LINE('SEND_MESSAGE status: ' || v_status);
END;

SEND_MESSAGE status: 0

The message to Bob is in the received message.

DECLARE
 v_item VARCHAR2(80);
 v_status INTEGER;
BEGIN
 v_status := DBMS_PIPE.RECEIVE_MESSAGE('pipe',1);
 DBMS_OUTPUT.PUT_LINE('RECEIVE_MESSAGE status: ' || v_status);
 DBMS_PIPE.UNPACK_MESSAGE(v_item);
 DBMS_OUTPUT.PUT_LINE('Item: ' || v_item);
 DBMS_PIPE.UNPACK_MESSAGE(v_item);
 DBMS_OUTPUT.PUT_LINE('Item: ' || v_item);
END;

RECEIVE_MESSAGE status: 0
Item: Hi, Bob
Item: Can you attend a meeting at 9:30, tomorrow?

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

399

7.3.8 SEND_MESSAGE

The SEND_MESSAGE function sends a message from the session’s local message buffer to
the specified pipe.

status SEND_MESSAGE(pipename VARCHAR2 [, timeout INTEGER]
 [, maxpipesize INTEGER])

Parameters

pipename

Name of the pipe.

timeout

Wait time (seconds). Default is 86400000 (1000 days).

maxpipesize

Maximum capacity of the pipe in bytes. Default is 8192 bytes.

status

Status code returned by the operation.

The possible status codes are:

Table 7-43 SEND_MESSAGE Status Codes

Status Code Description
0 Success
1 Time out
3 Function interrupted

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

400

7.3.9 UNIQUE_SESSION_NAME

The UNIQUE_SESSION_NAME function returns a name, unique to the current session.

name VARCHAR2 UNIQUE_SESSION_NAME

Parameters

name

Unique session name.

Examples

The following anonymous block retrieves and displays a unique session name.

DECLARE
 v_session VARCHAR2(30);
BEGIN
 v_session := DBMS_PIPE.UNIQUE_SESSION_NAME;
 DBMS_OUTPUT.PUT_LINE('Session Name: ' || v_session);
END;

Session Name: PG$PIPE$5$2752

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

401

7.3.10 UNPACK_MESSAGE

The UNPACK_MESSAGE procedure copies the data items of a message from the local
message buffer to a specified program variable. The message must be placed in the local
message buffer with the RECEIVE_MESSAGE function before using UNPACK_MESSAGE.

UNPACK_MESSAGE(item OUT { DATE | NUMBER | VARCHAR2 | RAW })

Parameters

item

Type-compatible variable that receives a data item from the local message buffer.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

402

7.3.11 Comprehensive Example

The following example uses a pipe as a “mailbox”. The procedures to create the mailbox,
add a multi-item message to the mailbox (up to three items), and display the full contents
of the mailbox are enclosed in a package named, mailbox.

CREATE OR REPLACE PACKAGE mailbox
IS
 PROCEDURE create_mailbox;
 PROCEDURE add_message (
 p_mailbox VARCHAR2,
 p_item_1 VARCHAR2,
 p_item_2 VARCHAR2 DEFAULT 'END',
 p_item_3 VARCHAR2 DEFAULT 'END'
);
 PROCEDURE empty_mailbox (
 p_mailbox VARCHAR2,
 p_waittime INTEGER DEFAULT 10
);
END mailbox;

CREATE OR REPLACE PACKAGE BODY mailbox
IS
 PROCEDURE create_mailbox
 IS
 v_mailbox VARCHAR2(30);
 v_status INTEGER;
 BEGIN
 v_mailbox := DBMS_PIPE.UNIQUE_SESSION_NAME;
 v_status := DBMS_PIPE.CREATE_PIPE(v_mailbox,1000,FALSE);
 IF v_status = 0 THEN
 DBMS_OUTPUT.PUT_LINE('Created mailbox: ' || v_mailbox);
 ELSE
 DBMS_OUTPUT.PUT_LINE('CREATE_PIPE failed - status: ' ||
 v_status);
 END IF;
 END create_mailbox;

 PROCEDURE add_message (
 p_mailbox VARCHAR2,
 p_item_1 VARCHAR2,
 p_item_2 VARCHAR2 DEFAULT 'END',
 p_item_3 VARCHAR2 DEFAULT 'END'
)
 IS
 v_item_cnt INTEGER := 0;
 v_status INTEGER;
 BEGIN
 DBMS_PIPE.PACK_MESSAGE(p_item_1);
 v_item_cnt := 1;
 IF p_item_2 != 'END' THEN
 DBMS_PIPE.PACK_MESSAGE(p_item_2);
 v_item_cnt := v_item_cnt + 1;
 END IF;
 IF p_item_3 != 'END' THEN
 DBMS_PIPE.PACK_MESSAGE(p_item_3);
 v_item_cnt := v_item_cnt + 1;
 END IF;

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

403

 v_status := DBMS_PIPE.SEND_MESSAGE(p_mailbox);
 IF v_status = 0 THEN
 DBMS_OUTPUT.PUT_LINE('Added message with ' || v_item_cnt ||
 ' item(s) to mailbox ' || p_mailbox);
 ELSE
 DBMS_OUTPUT.PUT_LINE('SEND_MESSAGE in add_message failed - ' ||
 'status: ' || v_status);
 END IF;
 END add_message;

 PROCEDURE empty_mailbox (
 p_mailbox VARCHAR2,
 p_waittime INTEGER DEFAULT 10
)
 IS
 v_msgno INTEGER DEFAULT 0;
 v_itemno INTEGER DEFAULT 0;
 v_item VARCHAR2(100);
 v_status INTEGER;
 BEGIN
 v_status := DBMS_PIPE.RECEIVE_MESSAGE(p_mailbox,p_waittime);
 WHILE v_status = 0 LOOP
 v_msgno := v_msgno + 1;
 DBMS_OUTPUT.PUT_LINE('****** Start message #' || v_msgno ||
 ' ******');
 BEGIN
 LOOP
 v_status := DBMS_PIPE.NEXT_ITEM_TYPE;
 EXIT WHEN v_status = 0;
 DBMS_PIPE.UNPACK_MESSAGE(v_item);
 v_itemno := v_itemno + 1;
 DBMS_OUTPUT.PUT_LINE('Item #' || v_itemno || ': ' ||
 v_item);
 END LOOP;
 DBMS_OUTPUT.PUT_LINE('******* End message #' || v_msgno ||
 ' *******');
 DBMS_OUTPUT.PUT_LINE('*');
 v_itemno := 0;
 v_status := DBMS_PIPE.RECEIVE_MESSAGE(p_mailbox,1);
 END;
 END LOOP;
 DBMS_OUTPUT.PUT_LINE('Number of messages received: ' || v_msgno);
 v_status := DBMS_PIPE.REMOVE_PIPE(p_mailbox);
 IF v_status = 0 THEN
 DBMS_OUTPUT.PUT_LINE('Deleted mailbox ' || p_mailbox);
 ELSE
 DBMS_OUTPUT.PUT_LINE('Could not delete mailbox - status: '
 || v_status);
 END IF;
 END empty_mailbox;
END mailbox;

The following demonstrates the execution of the procedures in mailbox. The first
procedure creates a public pipe using a name generated by the UNIQUE_SESSION_NAME
function.

EXEC mailbox.create_mailbox;

Created mailbox: PG$PIPE$13$3940

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

404

Using the mailbox name, any user in the same database with access to the mailbox
package and DBMS_PIPE package can add messages:

EXEC mailbox.add_message('PG$PIPE$13$3940','Hi, John','Can you attend a
meeting at 3:00, today?','-- Mary');

Added message with 3 item(s) to mailbox PG$PIPE$13$3940

EXEC mailbox.add_message('PG$PIPE$13$3940','Don''t forget to submit your
report','Thanks,','-- Joe');

Added message with 3 item(s) to mailbox PG$PIPE$13$3940

Finally, the contents of the mailbox can be emptied:

EXEC mailbox.empty_mailbox('PG$PIPE$13$3940');

****** Start message #1 ******
Item #1: Hi, John
Item #2: Can you attend a meeting at 3:00, today?
Item #3: -- Mary
******* End message #1 *******
*
****** Start message #2 ******
Item #1: Don't forget to submit your report
Item #2: Thanks,
Item #3: Joe
******* End message #2 *******
*
Number of messages received: 2
Deleted mailbox PG$PIPE$13$3940

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

405

7.4 UTL_FILE

The UTL_FILE package provides the capability to read from, and write to files on the
operating system’s file system. Non-superusers must be granted EXECUTE privilege on
the UTL_FILE package by a superuser before using any of the functions or procedures in
the package. For example the following command grants the privilege to user mary:

GRANT EXECUTE ON PACKAGE SYS.UTL_FILE TO mary;

Also, the operating system username, enterprisedb, must have the appropriate read
and/or write permissions on the directories and files to be accessed using the UTL_FILE
functions and procedures. If the required file permissions are not in place, an exception is
thrown in the UTL_FILE function or procedure.

A handle to the file to be written to, or read from is used to reference the file. The file
handle is defined by a public variable in the UTL_FILE package named,
UTL_FILE.FILE_TYPE. A variable of type FILE_TYPE must be declared to receive the
file handle returned by calling the FOPEN function. The file handle is then used for all
subsequent operations on the file.

References to directories on the file system are done using the directory name or alias
that is assigned to the directory using the

 CREATE DIRECTORY command.

The procedures and functions available in the UTL_FILE package are listed in the
following table.

Table 7-44 UTL_FILE Functions/Procedures

Function/Procedure Return
Type Description

FCLOSE(file IN OUT) n/a Closes the specified file identified by file.
FCLOSE_ALL n/a Closes all open files.

FCOPY(location, filename,
dest_dir, dest_file [, start_line
[, end_line]])

n/a

Copies filename in the directory identified by
location to file, dest_file, in directory,
dest_dir, starting from line, start_line, to
line, end_line.

FFLUSH(file) n/a Forces data in the buffer to be written to disk in
the file identified by file.

FOPEN(location, filename,
open_mode [, max_linesize]) FILE_TYPE Opens file, filename, in the directory identified

by location.
FREMOVE(location, filename) n/a Removes the specified file from the file system.
FRENAME(location, filename,
dest_dir, dest_file [, overwrite
])

n/a Renames the specified file.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

406

Function/Procedure Return
Type Description

GET_LINE(file, buffer OUT) n/a Reads a line of text into variable, buffer, from
the file identified by file.

IS_OPEN(file) BOOLEAN Determines whether or not the given file is open.

NEW_LINE(file [, lines]) n/a Writes an end-of-line character sequence into the
file.

PUT(file, buffer) n/a Writes buffer to the given file. PUT does not
write an end-of-line character sequence.

PUT_LINE(file, buffer) n/a
Writes buffer to the given file. An end-of-line
character sequence is added by the PUT_LINE
procedure.

PUTF(file, format [, arg1] [,
...]) n/a

Writes a formatted string to the given file. Up to
five substitution parameters, arg1,...arg5 may
be specified for replacement in format.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

407

7.4.1 FCLOSE

The FCLOSE procedure closes an open file.

FCLOSE(file IN OUT FILE_TYPE)

Parameters

file

Variable of type FILE_TYPE containing a file handle of the file to be closed.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

408

7.4.2 FCLOSE_ALL

The FLCLOSE_ALL procedures closes all open files. The procedure executes successfully
even if there are no open files to close.

FCLOSE_ALL

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

409

7.4.3 FCOPY

The FCOPY procedure copies text from one file to another.

FCOPY(location VARCHAR2, filename VARCHAR2,
 dest_dir VARCHAR2, dest_file VARCHAR2
 [, start_line PLS_INTEGER [, end_line PLS_INTEGER]])

Parameters

location

Directory name, as stored in pg_catalog.edb_dir.dirname, of the directory
containing the file to be copied.

filename

Name of the source file to be copied.

dest_dir

Directory name, as stored in pg_catalog.edb_dir.dirname, of the directory
to which the file is to be copied.

dest_file

Name of the destination file.

start_line

Line number in the source file from which copying will begin. The default is 1.

end_line

Line number of the last line in the source file to be copied. If omitted or null,
copying will go to the last line of the file.

Examples

The following makes a copy of a file, C:\TEMP\EMPDIR\empfile.csv, containing a
comma-delimited list of employees from the emp table. The copy, empcopy.csv, is then
listed.

CREATE DIRECTORY empdir AS 'C:/TEMP/EMPDIR';

DECLARE

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

410

 v_empfile UTL_FILE.FILE_TYPE;
 v_src_dir VARCHAR2(50) := 'empdir';
 v_src_file VARCHAR2(20) := 'empfile.csv';
 v_dest_dir VARCHAR2(50) := 'empdir';
 v_dest_file VARCHAR2(20) := 'empcopy.csv';
 v_emprec VARCHAR2(120);
 v_count INTEGER := 0;
BEGIN
 UTL_FILE.FCOPY(v_src_dir,v_src_file,v_dest_dir,v_dest_file);
 v_empfile := UTL_FILE.FOPEN(v_dest_dir,v_dest_file,'r');
 DBMS_OUTPUT.PUT_LINE('The following is the destination file, ''' ||
 v_dest_file || '''');
 LOOP
 UTL_FILE.GET_LINE(v_empfile,v_emprec);
 DBMS_OUTPUT.PUT_LINE(v_emprec);
 v_count := v_count + 1;
 END LOOP;
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 UTL_FILE.FCLOSE(v_empfile);
 DBMS_OUTPUT.PUT_LINE(v_count || ' records retrieved');
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE('SQLERRM: ' || SQLERRM);
 DBMS_OUTPUT.PUT_LINE('SQLCODE: ' || SQLCODE);
END;

The following is the destination file, 'empcopy.csv'
7369,SMITH,CLERK,7902,17-DEC-80,800,,20
7499,ALLEN,SALESMAN,7698,20-FEB-81,1600,300,30
7521,WARD,SALESMAN,7698,22-FEB-81,1250,500,30
7566,JONES,MANAGER,7839,02-APR-81,2975,,20
7654,MARTIN,SALESMAN,7698,28-SEP-81,1250,1400,30
7698,BLAKE,MANAGER,7839,01-MAY-81,2850,,30
7782,CLARK,MANAGER,7839,09-JUN-81,2450,,10
7788,SCOTT,ANALYST,7566,19-APR-87,3000,,20
7839,KING,PRESIDENT,,17-NOV-81,5000,,10
7844,TURNER,SALESMAN,7698,08-SEP-81,1500,0,30
7876,ADAMS,CLERK,7788,23-MAY-87,1100,,20
7900,JAMES,CLERK,7698,03-DEC-81,950,,30
7902,FORD,ANALYST,7566,03-DEC-81,3000,,20
7934,MILLER,CLERK,7782,23-JAN-82,1300,,10
14 records retrieved

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

411

7.4.4 FFLUSH

The FFLUSH procedure flushes unwritten data from the write buffer to the file.

FFLUSH(file FILE_TYPE)

Parameters

file

Variable of type FILE_TYPE containing a file handle.

Examples

Each line is flushed after the NEW_LINE procedure is called.

DECLARE
 v_empfile UTL_FILE.FILE_TYPE;
 v_directory VARCHAR2(50) := 'empdir';
 v_filename VARCHAR2(20) := 'empfile.csv';
 CURSOR emp_cur IS SELECT * FROM emp ORDER BY empno;
BEGIN
 v_empfile := UTL_FILE.FOPEN(v_directory,v_filename,'w');
 FOR i IN emp_cur LOOP
 UTL_FILE.PUT(v_empfile,i.empno);
 UTL_FILE.PUT(v_empfile,',');
 UTL_FILE.PUT(v_empfile,i.ename);
 UTL_FILE.PUT(v_empfile,',');
 UTL_FILE.PUT(v_empfile,i.job);
 UTL_FILE.PUT(v_empfile,',');
 UTL_FILE.PUT(v_empfile,i.mgr);
 UTL_FILE.PUT(v_empfile,',');
 UTL_FILE.PUT(v_empfile,i.hiredate);
 UTL_FILE.PUT(v_empfile,',');
 UTL_FILE.PUT(v_empfile,i.sal);
 UTL_FILE.PUT(v_empfile,',');
 UTL_FILE.PUT(v_empfile,i.comm);
 UTL_FILE.PUT(v_empfile,',');
 UTL_FILE.PUT(v_empfile,i.deptno);
 UTL_FILE.NEW_LINE(v_empfile);
 UTL_FILE.FFLUSH(v_empfile);
 END LOOP;
 DBMS_OUTPUT.PUT_LINE('Created file: ' || v_filename);
 UTL_FILE.FCLOSE(v_empfile);
END;

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

412

7.4.5 FOPEN

The FOPEN function opens a file for I/O.

filetype FILE_TYPE FOPEN(location VARCHAR2, filename VARCHAR2,
 open_mode VARCHAR2 [, max_linesize BINARY_INTEGER])

Parameters

location

Directory name, as stored in pg_catalog.edb_dir.dirname, of the directory
containing the file to be opened.

filename

Name of the file to be opened.

open_mode

Mode in which the file will be opened. Modes are: a - append to file; r - read
from file; w - write to file.

max_linesize

Maximum size of a line in characters. In read mode, an exception is thrown if an
attempt is made to read a line exceeding max_linesize. In write and append
modes, an exception is thrown if an attempt is made to write a line exceeding
max_linesize. The end-of-line character(s) are not included in determining if
the maximum line size is exceeded. This behavior is not Oracle compatible -
Oracle does count the end-of-line character(s).

filetype

Variable of type FILE_TYPE containing the file handle of the opened file.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

413

7.4.6 FREMOVE

The FREMOVE procedure removes a file from the system.

FREMOVE(location VARCHAR2, filename VARCHAR2)

An exception is thrown if the file to be removed does not exist.

Parameters

location

Directory name, as stored in pg_catalog.edb_dir.dirname, of the directory
containing the file to be removed.

filename

Name of the file to be removed.

Examples

The following removes file empfile.csv.

DECLARE
 v_directory VARCHAR2(50) := 'empdir';
 v_filename VARCHAR2(20) := 'empfile.csv';
BEGIN
 UTL_FILE.FREMOVE(v_directory,v_filename);
 DBMS_OUTPUT.PUT_LINE('Removed file: ' || v_filename);
 EXCEPTION
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE('SQLERRM: ' || SQLERRM);
 DBMS_OUTPUT.PUT_LINE('SQLCODE: ' || SQLCODE);
END;

Removed file: empfile.csv

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

414

7.4.7 FRENAME

The FRENAME procedure renames a given file. This effectively moves a file from one
location to another.

FRENAME(location VARCHAR2, filename VARCHAR2,
 dest_dir VARCHAR2, dest_file VARCHAR2, [overwrite BOOLEAN])

Parameters

location

Directory name, as stored in pg_catalog.edb_dir.dirname, of the directory
containing the file to be renamed.

filename

Name of the source file to be renamed.

dest_dir

Directory name, as stored in pg_catalog.edb_dir.dirname, of the directory
to which the renamed file is to exist.

dest_file

New name of the original file.

overwrite

Replaces any existing file named dest_file in dest_dir if set to “true”,
otherwise an exception is thrown if set to “false”. This is the default.

Examples

The following renames a file, C:\TEMP\EMPDIR\empfile.csv, containing a comma-
delimited list of employees from the emp table. The renamed file,
C:\TEMP\NEWDIR\newemp.csv, is then listed.

CREATE DIRECTORY "newdir" AS 'C:/TEMP/NEWDIR';

DECLARE
 v_empfile UTL_FILE.FILE_TYPE;
 v_src_dir VARCHAR2(50) := 'empdir';
 v_src_file VARCHAR2(20) := 'empfile.csv';
 v_dest_dir VARCHAR2(50) := 'newdir';
 v_dest_file VARCHAR2(50) := 'newemp.csv';

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

415

 v_replace BOOLEAN := FALSE;
 v_emprec VARCHAR2(120);
 v_count INTEGER := 0;
BEGIN
 UTL_FILE.FRENAME(v_src_dir,v_src_file,v_dest_dir,
 v_dest_file,v_replace);
 v_empfile := UTL_FILE.FOPEN(v_dest_dir,v_dest_file,'r');
 DBMS_OUTPUT.PUT_LINE('The following is the renamed file, ''' ||
 v_dest_file || '''');
 LOOP
 UTL_FILE.GET_LINE(v_empfile,v_emprec);
 DBMS_OUTPUT.PUT_LINE(v_emprec);
 v_count := v_count + 1;
 END LOOP;
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 UTL_FILE.FCLOSE(v_empfile);
 DBMS_OUTPUT.PUT_LINE(v_count || ' records retrieved');
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE('SQLERRM: ' || SQLERRM);
 DBMS_OUTPUT.PUT_LINE('SQLCODE: ' || SQLCODE);
END;

The following is the renamed file, 'newemp.csv'
7369,SMITH,CLERK,7902,17-DEC-80 00:00:00,800.00,,20
7499,ALLEN,SALESMAN,7698,20-FEB-81 00:00:00,1600.00,300.00,30
7521,WARD,SALESMAN,7698,22-FEB-81 00:00:00,1250.00,500.00,30
7566,JONES,MANAGER,7839,02-APR-81 00:00:00,2975.00,,20
7654,MARTIN,SALESMAN,7698,28-SEP-81 00:00:00,1250.00,1400.00,30
7698,BLAKE,MANAGER,7839,01-MAY-81 00:00:00,2850.00,,30
7782,CLARK,MANAGER,7839,09-JUN-81 00:00:00,2450.00,,10
7788,SCOTT,ANALYST,7566,19-APR-87 00:00:00,3000.00,,20
7839,KING,PRESIDENT,,17-NOV-81 00:00:00,5000.00,,10
7844,TURNER,SALESMAN,7698,08-SEP-81 00:00:00,1500.00,0.00,30
7876,ADAMS,CLERK,7788,23-MAY-87 00:00:00,1100.00,,20
7900,JAMES,CLERK,7698,03-DEC-81 00:00:00,950.00,,30
7902,FORD,ANALYST,7566,03-DEC-81 00:00:00,3000.00,,20
7934,MILLER,CLERK,7782,23-JAN-82 00:00:00,1300.00,,10
14 records retrieved

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

416

7.4.8 GET_LINE

The GET_LINE procedure reads a line of text from a given file up to, but not including
the end-of-line terminator. A NO_DATA_FOUND exception is thrown when there are no
more lines to read.

GET_LINE(file FILE_TYPE, buffer OUT VARCHAR2)

Parameters

file

Variable of type FILE_TYPE containing the file handle of the opened file.

buffer

Variable to receive a line from the file.

Examples

The following anonymous block reads through and displays the records in file
empfile.csv.

DECLARE
 v_empfile UTL_FILE.FILE_TYPE;
 v_directory VARCHAR2(50) := 'empdir';
 v_filename VARCHAR2(20) := 'empfile.csv';
 v_emprec VARCHAR2(120);
 v_count INTEGER := 0;
BEGIN
 v_empfile := UTL_FILE.FOPEN(v_directory,v_filename,'r');
 LOOP
 UTL_FILE.GET_LINE(v_empfile,v_emprec);
 DBMS_OUTPUT.PUT_LINE(v_emprec);
 v_count := v_count + 1;
 END LOOP;
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 UTL_FILE.FCLOSE(v_empfile);
 DBMS_OUTPUT.PUT_LINE('End of file ' || v_filename || ' - ' ||
 v_count || ' records retrieved');
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE('SQLERRM: ' || SQLERRM);
 DBMS_OUTPUT.PUT_LINE('SQLCODE: ' || SQLCODE);
END;

7369,SMITH,CLERK,7902,17-DEC-80 00:00:00,800.00,,20
7499,ALLEN,SALESMAN,7698,20-FEB-81 00:00:00,1600.00,300.00,30
7521,WARD,SALESMAN,7698,22-FEB-81 00:00:00,1250.00,500.00,30
7566,JONES,MANAGER,7839,02-APR-81 00:00:00,2975.00,,20
7654,MARTIN,SALESMAN,7698,28-SEP-81 00:00:00,1250.00,1400.00,30
7698,BLAKE,MANAGER,7839,01-MAY-81 00:00:00,2850.00,,30

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

417

7782,CLARK,MANAGER,7839,09-JUN-81 00:00:00,2450.00,,10
7788,SCOTT,ANALYST,7566,19-APR-87 00:00:00,3000.00,,20
7839,KING,PRESIDENT,,17-NOV-81 00:00:00,5000.00,,10
7844,TURNER,SALESMAN,7698,08-SEP-81 00:00:00,1500.00,0.00,30
7876,ADAMS,CLERK,7788,23-MAY-87 00:00:00,1100.00,,20
7900,JAMES,CLERK,7698,03-DEC-81 00:00:00,950.00,,30
7902,FORD,ANALYST,7566,03-DEC-81 00:00:00,3000.00,,20
7934,MILLER,CLERK,7782,23-JAN-82 00:00:00,1300.00,,10
End of file empfile.csv - 14 records retrieved

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

418

7.4.9 IS_OPEN

The IS_OPEN function determines whether or not the given file is open.

status BOOLEAN IS_OPEN(file FILE_TYPE)

Parameters

file

Variable of type FILE_TYPE containing the file handle of the file to be tested.

status

“True” if the given file is open, “false” otherwise.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

419

7.4.10 NEW_LINE

The NEW_LINE procedure writes an end-of-line character sequence in the file.

NEW_LINE(file FILE_TYPE [, lines INTEGER])

Parameters

file

Variable of type FILE_TYPE containing the file handle of the file to which end-
of-line character sequences are to be written.

lines

Number of end-of-line character sequences to be written. The default is one.

Examples

A file containing a double-spaced list of employee records is written.

DECLARE
 v_empfile UTL_FILE.FILE_TYPE;
 v_directory VARCHAR2(50) := 'empdir';
 v_filename VARCHAR2(20) := 'empfile.csv';
 CURSOR emp_cur IS SELECT * FROM emp ORDER BY empno;
BEGIN
 v_empfile := UTL_FILE.FOPEN(v_directory,v_filename,'w');
 FOR i IN emp_cur LOOP
 UTL_FILE.PUT(v_empfile,i.empno);
 UTL_FILE.PUT(v_empfile,',');
 UTL_FILE.PUT(v_empfile,i.ename);
 UTL_FILE.PUT(v_empfile,',');
 UTL_FILE.PUT(v_empfile,i.job);
 UTL_FILE.PUT(v_empfile,',');
 UTL_FILE.PUT(v_empfile,i.mgr);
 UTL_FILE.PUT(v_empfile,',');
 UTL_FILE.PUT(v_empfile,i.hiredate);
 UTL_FILE.PUT(v_empfile,',');
 UTL_FILE.PUT(v_empfile,i.sal);
 UTL_FILE.PUT(v_empfile,',');
 UTL_FILE.PUT(v_empfile,i.comm);
 UTL_FILE.PUT(v_empfile,',');
 UTL_FILE.PUT(v_empfile,i.deptno);
 UTL_FILE.NEW_LINE(v_empfile,2);
 END LOOP;
 DBMS_OUTPUT.PUT_LINE('Created file: ' || v_filename);
 UTL_FILE.FCLOSE(v_empfile);
END;

Created file: empfile.csv

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

420

This file is then displayed:

C:\TEMP\EMPDIR>TYPE empfile.csv

7369,SMITH,CLERK,7902,17-DEC-80 00:00:00,800.00,,20

7499,ALLEN,SALESMAN,7698,20-FEB-81 00:00:00,1600.00,300.00,30

7521,WARD,SALESMAN,7698,22-FEB-81 00:00:00,1250.00,500.00,30

7566,JONES,MANAGER,7839,02-APR-81 00:00:00,2975.00,,20

7654,MARTIN,SALESMAN,7698,28-SEP-81 00:00:00,1250.00,1400.00,30

7698,BLAKE,MANAGER,7839,01-MAY-81 00:00:00,2850.00,,30

7782,CLARK,MANAGER,7839,09-JUN-81 00:00:00,2450.00,,10

7788,SCOTT,ANALYST,7566,19-APR-87 00:00:00,3000.00,,20

7839,KING,PRESIDENT,,17-NOV-81 00:00:00,5000.00,,10

7844,TURNER,SALESMAN,7698,08-SEP-81 00:00:00,1500.00,0.00,30

7876,ADAMS,CLERK,7788,23-MAY-87 00:00:00,1100.00,,20

7900,JAMES,CLERK,7698,03-DEC-81 00:00:00,950.00,,30

7902,FORD,ANALYST,7566,03-DEC-81 00:00:00,3000.00,,20

7934,MILLER,CLERK,7782,23-JAN-82 00:00:00,1300.00,,10

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

421

7.4.11 PUT

The PUT procedure writes a string to the given file. No end-of-line character sequence is
written at the end of the string. Use the NEW_LINE procedure to add an end-of-line
character sequence.

PUT(file FILE_TYPE, buffer { DATE | NUMBER | TIMESTAMP |
 VARCHAR2 })

Parameters

file

Variable of type FILE_TYPE containing the file handle of the file to which the
given string is to be written.

buffer

Text to be written to the specified file.

Examples

The following example uses the PUT procedure to create a comma-delimited file of
employees from the emp table.

DECLARE
 v_empfile UTL_FILE.FILE_TYPE;
 v_directory VARCHAR2(50) := 'empdir';
 v_filename VARCHAR2(20) := 'empfile.csv';
 CURSOR emp_cur IS SELECT * FROM emp ORDER BY empno;
BEGIN
 v_empfile := UTL_FILE.FOPEN(v_directory,v_filename,'w');
 FOR i IN emp_cur LOOP
 UTL_FILE.PUT(v_empfile,i.empno);
 UTL_FILE.PUT(v_empfile,',');
 UTL_FILE.PUT(v_empfile,i.ename);
 UTL_FILE.PUT(v_empfile,',');
 UTL_FILE.PUT(v_empfile,i.job);
 UTL_FILE.PUT(v_empfile,',');
 UTL_FILE.PUT(v_empfile,i.mgr);
 UTL_FILE.PUT(v_empfile,',');
 UTL_FILE.PUT(v_empfile,i.hiredate);
 UTL_FILE.PUT(v_empfile,',');
 UTL_FILE.PUT(v_empfile,i.sal);
 UTL_FILE.PUT(v_empfile,',');
 UTL_FILE.PUT(v_empfile,i.comm);
 UTL_FILE.PUT(v_empfile,',');
 UTL_FILE.PUT(v_empfile,i.deptno);
 UTL_FILE.NEW_LINE(v_empfile);
 END LOOP;
 DBMS_OUTPUT.PUT_LINE('Created file: ' || v_filename);
 UTL_FILE.FCLOSE(v_empfile);

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

422

END;

Created file: empfile.csv

The following is the contents of empfile.csv created above:

C:\TEMP\EMPDIR>TYPE empfile.csv

7369,SMITH,CLERK,7902,17-DEC-80 00:00:00,800.00,,20
7499,ALLEN,SALESMAN,7698,20-FEB-81 00:00:00,1600.00,300.00,30
7521,WARD,SALESMAN,7698,22-FEB-81 00:00:00,1250.00,500.00,30
7566,JONES,MANAGER,7839,02-APR-81 00:00:00,2975.00,,20
7654,MARTIN,SALESMAN,7698,28-SEP-81 00:00:00,1250.00,1400.00,30
7698,BLAKE,MANAGER,7839,01-MAY-81 00:00:00,2850.00,,30
7782,CLARK,MANAGER,7839,09-JUN-81 00:00:00,2450.00,,10
7788,SCOTT,ANALYST,7566,19-APR-87 00:00:00,3000.00,,20
7839,KING,PRESIDENT,,17-NOV-81 00:00:00,5000.00,,10
7844,TURNER,SALESMAN,7698,08-SEP-81 00:00:00,1500.00,0.00,30
7876,ADAMS,CLERK,7788,23-MAY-87 00:00:00,1100.00,,20
7900,JAMES,CLERK,7698,03-DEC-81 00:00:00,950.00,,30
7902,FORD,ANALYST,7566,03-DEC-81 00:00:00,3000.00,,20
7934,MILLER,CLERK,7782,23-JAN-82 00:00:00,1300.00,,10

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

423

7.4.12 PUT_LINE

The PUT_LINE procedure writes a single line to the given file including an end-of-line
character sequence.

PUT_LINE(file FILE_TYPE, buffer { DATE | NUMBER | TIMESTAMP |
 VARCHAR2 })

Parameters

file

Variable of type FILE_TYPE containing the file handle of the file to which the
given line is to be written.

buffer

Text to be written to the specified file.

Examples

The following example uses the PUT_LINE procedure to create a comma-delimited file
of employees from the emp table.

DECLARE
 v_empfile UTL_FILE.FILE_TYPE;
 v_directory VARCHAR2(50) := 'empdir';
 v_filename VARCHAR2(20) := 'empfile.csv';
 v_emprec VARCHAR2(120);
 CURSOR emp_cur IS SELECT * FROM emp ORDER BY empno;
BEGIN
 v_empfile := UTL_FILE.FOPEN(v_directory,v_filename,'w');
 FOR i IN emp_cur LOOP
 v_emprec := i.empno || ',' || i.ename || ',' || i.job || ',' ||
 NVL(LTRIM(TO_CHAR(i.mgr,'9999')),'') || ',' || i.hiredate ||
 ',' || i.sal || ',' ||
 NVL(LTRIM(TO_CHAR(i.comm,'9990.99')),'') || ',' || i.deptno;
 UTL_FILE.PUT_LINE(v_empfile,v_emprec);
 END LOOP;
 DBMS_OUTPUT.PUT_LINE('Created file: ' || v_filename);
 UTL_FILE.FCLOSE(v_empfile);
END;

The following is the contents of empfile.csv created above:

C:\TEMP\EMPDIR>TYPE empfile.csv

7369,SMITH,CLERK,7902,17-DEC-80 00:00:00,800.00,,20
7499,ALLEN,SALESMAN,7698,20-FEB-81 00:00:00,1600.00,300.00,30
7521,WARD,SALESMAN,7698,22-FEB-81 00:00:00,1250.00,500.00,30
7566,JONES,MANAGER,7839,02-APR-81 00:00:00,2975.00,,20

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

424

7654,MARTIN,SALESMAN,7698,28-SEP-81 00:00:00,1250.00,1400.00,30
7698,BLAKE,MANAGER,7839,01-MAY-81 00:00:00,2850.00,,30
7782,CLARK,MANAGER,7839,09-JUN-81 00:00:00,2450.00,,10
7788,SCOTT,ANALYST,7566,19-APR-87 00:00:00,3000.00,,20
7839,KING,PRESIDENT,,17-NOV-81 00:00:00,5000.00,,10
7844,TURNER,SALESMAN,7698,08-SEP-81 00:00:00,1500.00,0.00,30
7876,ADAMS,CLERK,7788,23-MAY-87 00:00:00,1100.00,,20
7900,JAMES,CLERK,7698,03-DEC-81 00:00:00,950.00,,30
7902,FORD,ANALYST,7566,03-DEC-81 00:00:00,3000.00,,20
7934,MILLER,CLERK,7782,23-JAN-82 00:00:00,1300.00,,10

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

425

7.4.13 PUTF

The PUTF procedure writes a formatted string to the given file.

PUTF(file FILE_TYPE, format VARCHAR2 [, arg1 VARCHAR2]
 [, ...])

Parameters

file

Variable of type FILE_TYPE containing the file handle of the file to which the
formatted line is to be written.

format

String to format the text written to the file. The special character sequence, %s, is
substituted by the value of arg. The special character sequence, \n, indicates a
new line. Note, however, in Postgres Plus Advanced Server, a new line character
must be specified with two consecutive backslashes instead of one - \\n. This
characteristic is not Oracle compatible.

arg1

Up to five arguments, arg1,...arg5, to be substituted in the format string for each
occurrence of %s. The first arg is substituted for the first occurrence of %s, the
second arg is substituted for the second occurrence of %s, etc.

Examples

The following anonymous block produces formatted output containing data from the emp
table. Note the use of the E literal syntax and double backslashes for the new line
character sequence in the format string which are not Oracle compatible.

DECLARE
 v_empfile UTL_FILE.FILE_TYPE;
 v_directory VARCHAR2(50) := 'empdir';
 v_filename VARCHAR2(20) := 'empfile.csv';
 v_format VARCHAR2(200);
 CURSOR emp_cur IS SELECT * FROM emp ORDER BY empno;
BEGIN
 v_format := E'%s %s, %s\\nSalary: $%s Commission: $%s\\n\\n';
 v_empfile := UTL_FILE.FOPEN(v_directory,v_filename,'w');
 FOR i IN emp_cur LOOP
 UTL_FILE.PUTF(v_empfile,v_format,i.empno,i.ename,i.job,i.sal,
 NVL(i.comm,0));
 END LOOP;
 DBMS_OUTPUT.PUT_LINE('Created file: ' || v_filename);

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

426

 UTL_FILE.FCLOSE(v_empfile);
EXCEPTION
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE('SQLERRM: ' || SQLERRM);
 DBMS_OUTPUT.PUT_LINE('SQLCODE: ' || SQLCODE);
END;

Created file: empfile.csv

The following is the contents of empfile.csv created above:

C:\TEMP\EMPDIR>TYPE empfile.csv

7369 SMITH, CLERK
Salary: $800.00 Commission: $0

7499 ALLEN, SALESMAN
Salary: $1600.00 Commission: $300.00

7521 WARD, SALESMAN
Salary: $1250.00 Commission: $500.00

7566 JONES, MANAGER
Salary: $2975.00 Commission: $0

7654 MARTIN, SALESMAN
Salary: $1250.00 Commission: $1400.00

7698 BLAKE, MANAGER
Salary: $2850.00 Commission: $0

7782 CLARK, MANAGER
Salary: $2450.00 Commission: $0

7788 SCOTT, ANALYST
Salary: $3000.00 Commission: $0

7839 KING, PRESIDENT
Salary: $5000.00 Commission: $0

7844 TURNER, SALESMAN
Salary: $1500.00 Commission: $0.00

7876 ADAMS, CLERK
Salary: $1100.00 Commission: $0

7900 JAMES, CLERK
Salary: $950.00 Commission: $0

7902 FORD, ANALYST
Salary: $3000.00 Commission: $0

7934 MILLER, CLERK
Salary: $1300.00 Commission: $0

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

427

7.5 DBMS_SQL

The DBMS_SQL package provides an Oracle compatible application interface to the
EnterpriseDB dynamic SQL functionality. With DBMS_SQL you can construct queries
and other commands at run time (rather than when you write the application).
EnterpriseDB Advanced Server offers native support for dynamic SQL; DBMS_SQL
provides a way to use dynamic SQL in an Oracle compatible fashion without modifying
your application.

DBMS_SQL assumes the privileges of the current user when executing dynamic SQL
statements.

Function/Procedure Function or
Procedure

Return
Type Description

BIND_VARIABLE(c, name, value [,
out_value_size]) Procedure n/a Bind a value to a variable.

BIND_VARIABLE_CHAR(c, name, value
[, out_value_size]) Procedure n/a Bind a CHAR value to a variable.

BIND_VARIABLE_RAW(c, name, value
[, out_value_size]) Procedure n/a Bind a RAW value to a variable.

CLOSE_CURSOR(c IN OUT) Procedure n/a Close a cursor.
COLUMN_VALUE(c, position, value
OUT [, column_error OUT [,
actual_length OUT]])

Procedure n/a Return a column value into a variable.

COLUMN_VALUE_CHAR(c, position,
value OUT [, column_error OUT [,
actual_length OUT]])

Procedure n/a Return a CHAR column value into a variable.

COLUMN_VALUE_RAW(c, position,
value OUT [, column_error OUT [,
actual_length OUT]])

Procedure n/a Return a RAW column value into a variable.

DEFINE_COLUMN(c, position, column
[, column_size]) Procedure n/a Define a column in the SELECT list.

DEFINE_COLUMN_CHAR(c, position,
column, column_size) Procedure n/a Define a CHAR column in the SELECT list.

DEFINE_COLUMN_RAW(c, position,
column, column_size) Procedure n/a Define a RAW column in the SELECT list.

EXECUTE(c) Function INTEGER Execute a cursor.
EXECUTE_AND_FETCH(c [, exact]) Function INTEGER Execute a cursor and fetch a single row.
FETCH_ROWS(c) Function INTEGER Fetch rows from the cursor.
IS_OPEN(c) Function BOOLEAN Check if a cursor is open.
LAST_ROW_COUNT Function INTEGER Return cumulative number of rows fetched.
OPEN_CURSOR Function INTEGER Open a cursor.
PARSE(c, statement,
language_flag) Procedure n/a Parse a statement.

The following table lists the public variable available in the DBMS_SQL package.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

428

Table 7-45 DBMS_SQL Public Variables

Public Variables Data Type Value Description

native INTEGER
1 Provided for Oracle syntax compatibility. See

DBMS_SQL.PARSE for more information.

V6 INTEGER
2 Provided for Oracle syntax compatibility. See

DBMS_SQL.PARSE for more information.

V7 INTEGER
3 Provided for Oracle syntax compatibility. See

DBMS_SQL.PARSE for more information

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

429

7.5.1 BIND_VARIABLE

The BIND_VARIABLE procedure provides the capability to associate a value with an IN
or IN OUT bind variable in a SQL command.

BIND_VARIABLE(c INTEGER, name VARCHAR2,
 value { BLOB | CLOB | DATE | FLOAT | INTEGER | NUMBER |
TIMESTAMP | VARCHAR2 }
 [, out_value_size INTEGER])

Parameters

c

Cursor ID of the cursor for the SQL command with bind variables.

name

Name of the bind variable in the SQL command.

value

Value to be assigned.

out_value_size

If name is an IN OUT variable, defines the maximum length of the output value.
If not specified, the length of value is assumed.

Examples

The following anonymous block uses bind variables to insert a row into the emp table.

DECLARE
 curid INTEGER;
 v_sql VARCHAR2(150) := 'INSERT INTO emp VALUES ' ||
 '(:p_empno, :p_ename, :p_job, :p_mgr, ' ||
 ':p_hiredate, :p_sal, :p_comm, :p_deptno)';
 v_empno emp.empno%TYPE;
 v_ename emp.ename%TYPE;
 v_job emp.job%TYPE;
 v_mgr emp.mgr%TYPE;
 v_hiredate emp.hiredate%TYPE;
 v_sal emp.sal%TYPE;
 v_comm emp.comm%TYPE;
 v_deptno emp.deptno%TYPE;
 v_status INTEGER;
BEGIN
 curid := DBMS_SQL.OPEN_CURSOR;

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

430

 DBMS_SQL.PARSE(curid,v_sql,DBMS_SQL.native);
 v_empno := 9001;
 v_ename := 'JONES';
 v_job := 'SALESMAN';
 v_mgr := 7369;
 v_hiredate := TO_DATE('13-DEC-07','DD-MON-YY');
 v_sal := 8500.00;
 v_comm := 1500.00;
 v_deptno := 40;
 DBMS_SQL.BIND_VARIABLE(curid,':p_empno',v_empno);
 DBMS_SQL.BIND_VARIABLE(curid,':p_ename',v_ename);
 DBMS_SQL.BIND_VARIABLE(curid,':p_job',v_job);
 DBMS_SQL.BIND_VARIABLE(curid,':p_mgr',v_mgr);
 DBMS_SQL.BIND_VARIABLE(curid,':p_hiredate',v_hiredate);
 DBMS_SQL.BIND_VARIABLE(curid,':p_sal',v_sal);
 DBMS_SQL.BIND_VARIABLE(curid,':p_comm',v_comm);
 DBMS_SQL.BIND_VARIABLE(curid,':p_deptno',v_deptno);
 v_status := DBMS_SQL.EXECUTE(curid);
 DBMS_OUTPUT.PUT_LINE('Number of rows processed: ' || v_status);
 DBMS_SQL.CLOSE_CURSOR(curid);
END;

Number of rows processed: 1

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

431

7.5.2 BIND_VARIABLE_CHAR

The BIND_VARIABLE_CHAR procedure provides the capability to associate a CHAR value
with an IN or IN OUT bind variable in a SQL command.

BIND_VARIABLE_CHAR(c INTEGER, name VARCHAR2, value CHAR
 [, out_value_size INTEGER])

Parameters

c

Cursor ID of the cursor for the SQL command with bind variables.

name

Name of the bind variable in the SQL command.

value

Value of type CHAR to be assigned.

out_value_size

If name is an IN OUT variable, defines the maximum length of the output value.
If not specified, the length of value is assumed.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

432

7.5.3 BIND VARIABLE RAW

The BIND_VARIABLE_RAW procedure provides the capability to associate a RAW value
with an IN or IN OUT bind variable in a SQL command.

BIND_VARIABLE_RAW(c INTEGER, name VARCHAR2, value RAW
 [, out_value_size INTEGER])

Parameters

c

Cursor ID of the cursor for the SQL command with bind variables.

name

Name of the bind variable in the SQL command.

value

Value of type RAW to be assigned.

out_value_size

If name is an IN OUT variable, defines the maximum length of the output value.
If not specified, the length of value is assumed.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

433

7.5.4 CLOSE_CURSOR

The CLOSE_CURSOR procedure closes an open cursor. The resources allocated to the
cursor are released and it cannot no longer be used.

CLOSE_CURSOR(c IN OUT INTEGER)

Parameters

c

Cursor ID of the cursor to be closed.

Examples

The following example closes a previously opened cursor:

DECLARE
 curid INTEGER;
BEGIN
 curid := DBMS_SQL.OPEN_CURSOR;
 .
 .
 .
 DBMS_SQL.CLOSE_CURSOR(curid);
END;

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

434

7.5.5 COLUMN_VALUE

The COLUMN_VALUE procedure defines a variable to receive a value from a cursor.

COLUMN_VALUE(c INTEGER, position INTEGER, value OUT { BLOB |
 CLOB | DATE | FLOAT | INTEGER | NUMBER | TIMESTAMP | VARCHAR2 }
 [, column_error OUT NUMBER [, actual_length OUT INTEGER]])

Parameters

c

Cursor id of the cursor returning data to the variable being defined.

position

Position within the cursor of the returned data. The first value in the cursor is
position 1.

value

Variable receiving the data returned in the cursor by a prior fetch call.

column_error

Error number associated with the column, if any.

actual_length

Actual length of the data prior to any truncation.

Examples

The following example shows the portion of an anonymous block that receives the values
from a cursor using the COLUMN_VALUE procedure. See the example for FETCH_ROWS
for the complete anonymous block.

DECLARE
 curid INTEGER;
 v_empno NUMBER(4);
 v_ename VARCHAR2(10);
 v_hiredate DATE;
 v_sal NUMBER(7,2);
 v_comm NUMBER(7,2);
 v_sql VARCHAR2(50) := 'SELECT empno, ename, hiredate, sal, ' ||
 'comm FROM emp';
 v_status INTEGER;
BEGIN

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

435

 .
 .
 .
 LOOP
 v_status := DBMS_SQL.FETCH_ROWS(curid);
 EXIT WHEN v_status = 0;
 DBMS_SQL.COLUMN_VALUE(curid,1,v_empno);
 DBMS_SQL.COLUMN_VALUE(curid,2,v_ename);
 DBMS_SQL.COLUMN_VALUE(curid,3,v_hiredate);
 DBMS_SQL.COLUMN_VALUE(curid,4,v_sal);
 DBMS_SQL.COLUMN_VALUE(curid,4,v_sal);
 DBMS_SQL.COLUMN_VALUE(curid,5,v_comm);
 DBMS_OUTPUT.PUT_LINE(v_empno || ' ' || RPAD(v_ename,10) || ' ' ||
 TO_CHAR(v_hiredate,'yyyy-mm-dd') || ' ' ||
 TO_CHAR(v_sal,'9,999.99') || ' ' ||
 TO_CHAR(NVL(v_comm,0),'9,999.99'));
 END LOOP;
 DBMS_SQL.CLOSE_CURSOR(curid);
END;

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

436

7.5.6 COLUMN_VALUE_CHAR

The COLUMN_VALUE_CHAR procedure defines a variable to receive a CHAR value from a
cursor.

COLUMN_VALUE_CHAR(c INTEGER, position INTEGER, value OUT CHAR
 [, column_error OUT NUMBER [, actual_length OUT INTEGER]])

Parameters

c

Cursor id of the cursor returning data to the variable being defined.

position

Position within the cursor of the returned data. The first value in the cursor is
position 1.

value

Variable of data type CHAR receiving the data returned in the cursor by a prior
fetch call.

column_error

Error number associated with the column, if any.

actual_length

Actual length of the data prior to any truncation.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

437

7.5.7 COLUMN VALUE RAW

The COLUMN_VALUE_RAW procedure defines a variable to receive a RAW value from a
cursor.

COLUMN_VALUE_RAW(c INTEGER, position INTEGER, value OUT RAW
 [, column_error OUT NUMBER [, actual_length OUT INTEGER]])

Parameters

c

Cursor id of the cursor returning data to the variable being defined.

position

Position within the cursor of the returned data. The first value in the cursor is
position 1.

value

Variable of data type RAW receiving the data returned in the cursor by a prior fetch
call.

column_error

Error number associated with the column, if any.

actual_length

Actual length of the data prior to any truncation.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

438

7.5.8 DEFINE_COLUMN

The DEFINE_COLUMN procedure defines a column or expression in the SELECT list that
is to be returned and retrieved in a cursor.

DEFINE_COLUMN(c INTEGER, position INTEGER, column { BLOB |
 CLOB | DATE | FLOAT | INTEGER | NUMBER | TIMESTAMP | VARCHAR2 }
 [, column_size INTEGER])

Parameters

c

Cursor id of the cursor associated with the SELECT command.

position

Position of the column or expression in the SELECT list that is being defined.

column

A variable that is of the same data type as the column or expression in position
position of the SELECT list.

column_size

The maximum length of the returned data. column_size must be specified only
if column is VARCHAR2. Returned data exceeding column_size is truncated to
column_size characters.

Examples

The following shows how the empno, ename, hiredate, sal, and comm columns of the
emp table are defined with the DEFINE_COLUMN procedure.

DECLARE
 curid INTEGER;
 v_empno NUMBER(4);
 v_ename VARCHAR2(10);
 v_hiredate DATE;
 v_sal NUMBER(7,2);
 v_comm NUMBER(7,2);
 v_sql VARCHAR2(50) := 'SELECT empno, ename, hiredate, sal, ' ||
 'comm FROM emp';
 v_status INTEGER;
BEGIN
 curid := DBMS_SQL.OPEN_CURSOR;
 DBMS_SQL.PARSE(curid,v_sql,DBMS_SQL.native);

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

439

 DBMS_SQL.DEFINE_COLUMN(curid,1,v_empno);
 DBMS_SQL.DEFINE_COLUMN(curid,2,v_ename,10);
 DBMS_SQL.DEFINE_COLUMN(curid,3,v_hiredate);
 DBMS_SQL.DEFINE_COLUMN(curid,4,v_sal);
 DBMS_SQL.DEFINE_COLUMN(curid,5,v_comm);
 .
 .
 .
END;

The following shows an alternative to the prior example that produces the exact same
results. Note that the lengths of the data types are irrelevant – the empno, sal, and comm
columns will still return data equivalent to NUMBER(4) and NUMBER(7,2), respectively,
even though v_num is defined as NUMBER(1) (assuming the declarations in the
COLUMN_VALUE procedure are of the appropriate maximum sizes). The ename column
will return data up to ten characters in length as defined by the length parameter in the
DEFINE_COLUMN call, not by the data type declaration, VARCHAR2(1) declared for
v_varchar. The actual size of the returned data is dictated by the COLUMN_VALUE
procedure.

DECLARE
 curid INTEGER;
 v_num NUMBER(1);
 v_varchar VARCHAR2(1);
 v_date DATE;
 v_sql VARCHAR2(50) := 'SELECT empno, ename, hiredate, sal, ' ||
 'comm FROM emp';
 v_status INTEGER;
BEGIN
 curid := DBMS_SQL.OPEN_CURSOR;
 DBMS_SQL.PARSE(curid,v_sql,DBMS_SQL.native);
 DBMS_SQL.DEFINE_COLUMN(curid,1,v_num);
 DBMS_SQL.DEFINE_COLUMN(curid,2,v_varchar,10);
 DBMS_SQL.DEFINE_COLUMN(curid,3,v_date);
 DBMS_SQL.DEFINE_COLUMN(curid,4,v_num);
 DBMS_SQL.DEFINE_COLUMN(curid,5,v_num);
 .
 .
 .
END;

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

440

7.5.9 DEFINE_COLUMN_CHAR

The DEFINE_COLUMN_CHAR procedure defines a CHAR column or expression in the
SELECT list that is to be returned and retrieved in a cursor.

DEFINE_COLUMN_CHAR(c INTEGER, position INTEGER, column CHAR,
 column_size INTEGER)

Parameters

c

Cursor id of the cursor associated with the SELECT command.

position

Position of the column or expression in the SELECT list that is being defined.

column

A CHAR variable.

column_size

The maximum length of the returned data. Returned data exceeding
column_size is truncated to column_size characters.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

441

7.5.10 DEFINE COLUMN RAW

The DEFINE_COLUMN_RAW procedure defines a RAW column or expression in the
SELECT list that is to be returned and retrieved in a cursor.

DEFINE_COLUMN_RAW(c INTEGER, position INTEGER, column RAW,
 column_size INTEGER)

Parameters

c

Cursor id of the cursor associated with the SELECT command.

position

Position of the column or expression in the SELECT list that is being defined.

column

A RAW variable.

column_size

The maximum length of the returned data. Returned data exceeding
column_size is truncated to column_size characters.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

442

7.5.11 EXECUTE

The EXECUTE function executes a parsed SQL command or SPL block.

status INTEGER EXECUTE(c INTEGER)

Parameters

c

Cursor ID of the parsed SQL command or SPL block to be executed.

status

Number of rows processed if the SQL command was DELETE, INSERT, or
UPDATE. status is meaningless for all other commands.

Examples

The following anonymous block inserts a row into the dept table.

DECLARE
 curid INTEGER;
 v_sql VARCHAR2(50);
 v_status INTEGER;
BEGIN
 curid := DBMS_SQL.OPEN_CURSOR;
 v_sql := 'INSERT INTO dept VALUES (50, ''HR'', ''LOS ANGELES'')';
 DBMS_SQL.PARSE(curid, v_sql, DBMS_SQL.native);
 v_status := DBMS_SQL.EXECUTE(curid);
 DBMS_OUTPUT.PUT_LINE('Number of rows processed: ' || v_status);
 DBMS_SQL.CLOSE_CURSOR(curid);
END;

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

443

7.5.12 EXECUTE_AND_FETCH

Function EXECUTE_AND_FETCH executes a parsed SELECT command and fetches one
row.

status INTEGER EXECUTE_AND_FETCH(c INTEGER
 [, exact BOOLEAN])

Parameters

c

Cursor id of the cursor for the SELECT command to be executed.

exact

If set to “true”, an exception is thrown if the number of rows in the result set is
not exactly equal to 1. If set to “false”, no exception is thrown. The default is
“false”. A NO_DATA_FOUND exception is thrown if exact is “true” and there are
no rows in the result set. A TOO_MANY_ROWS exception is thrown if exact is
“true” and there is more than one row in the result set.

status

Returns 1 if a row was successfully fetched, 0 if no rows to fetch. If an exception
is thrown, no value is returned.

Examples

The following stored procedure uses the EXECUTE_AND_FETCH function to retrieve one
employee using the employee’s name. An exception will be thrown if the employee is not
found, or there is more than one employee with the same name.

CREATE OR REPLACE PROCEDURE select_by_name(
 p_ename emp.ename%TYPE
)
IS
 curid INTEGER;
 v_empno emp.empno%TYPE;
 v_hiredate emp.hiredate%TYPE;
 v_sal emp.sal%TYPE;
 v_comm emp.comm%TYPE;
 v_dname dept.dname%TYPE;
 v_disp_date VARCHAR2(10);
 v_sql VARCHAR2(120) := 'SELECT empno, hiredate, sal, ' ||
 'NVL(comm, 0), dname ' ||
 'FROM emp e, dept d ' ||
 'WHERE ename = :p_ename ' ||
 'AND e.deptno = d.deptno';

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

444

 v_status INTEGER;
BEGIN
 curid := DBMS_SQL.OPEN_CURSOR;
 DBMS_SQL.PARSE(curid,v_sql,DBMS_SQL.native);
 DBMS_SQL.BIND_VARIABLE(curid,':p_ename',UPPER(p_ename));
 DBMS_SQL.DEFINE_COLUMN(curid,1,v_empno);
 DBMS_SQL.DEFINE_COLUMN(curid,2,v_hiredate);
 DBMS_SQL.DEFINE_COLUMN(curid,3,v_sal);
 DBMS_SQL.DEFINE_COLUMN(curid,4,v_comm);
 DBMS_SQL.DEFINE_COLUMN(curid,5,v_dname,14);
 v_status := DBMS_SQL.EXECUTE_AND_FETCH(curid,TRUE);
 DBMS_SQL.COLUMN_VALUE(curid,1,v_empno);
 DBMS_SQL.COLUMN_VALUE(curid,2,v_hiredate);
 DBMS_SQL.COLUMN_VALUE(curid,3,v_sal);
 DBMS_SQL.COLUMN_VALUE(curid,4,v_comm);
 DBMS_SQL.COLUMN_VALUE(curid,5,v_dname);
 v_disp_date := TO_CHAR(v_hiredate, 'MM/DD/YYYY');
 DBMS_OUTPUT.PUT_LINE('Number : ' || v_empno);
 DBMS_OUTPUT.PUT_LINE('Name : ' || UPPER(p_ename));
 DBMS_OUTPUT.PUT_LINE('Hire Date : ' || v_disp_date);
 DBMS_OUTPUT.PUT_LINE('Salary : ' || v_sal);
 DBMS_OUTPUT.PUT_LINE('Commission: ' || v_comm);
 DBMS_OUTPUT.PUT_LINE('Department: ' || v_dname);
 DBMS_SQL.CLOSE_CURSOR(curid);
EXCEPTION
 WHEN NO_DATA_FOUND THEN
 DBMS_OUTPUT.PUT_LINE('Employee ' || p_ename || ' not found');
 DBMS_SQL.CLOSE_CURSOR(curid);
 WHEN TOO_MANY_ROWS THEN
 DBMS_OUTPUT.PUT_LINE('Too many employees named, ' ||
 p_ename || ', found');
 DBMS_SQL.CLOSE_CURSOR(curid);
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE('The following is SQLERRM:');
 DBMS_OUTPUT.PUT_LINE(SQLERRM);
 DBMS_OUTPUT.PUT_LINE('The following is SQLCODE:');
 DBMS_OUTPUT.PUT_LINE(SQLCODE);
 DBMS_SQL.CLOSE_CURSOR(curid);
END;

EXEC select_by_name('MARTIN')

Number : 7654
Name : MARTIN
Hire Date : 09/28/1981
Salary : 1250
Commission: 1400
Department: SALES

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

445

7.5.13 FETCH_ROWS

The FETCH_ROWS function retrieves a row from a cursor.

status INTEGER FETCH_ROWS(c INTEGER)

Parameters

c

Cursor ID of the cursor from which to fetch a row.

status

Returns 1 if a row was successfully fetched, 0 if no more rows to fetch.

Examples

The following examples fetches the rows from the emp table and displays the results.

DECLARE
 curid INTEGER;
 v_empno NUMBER(4);
 v_ename VARCHAR2(10);
 v_hiredate DATE;
 v_sal NUMBER(7,2);
 v_comm NUMBER(7,2);
 v_sql VARCHAR2(50) := 'SELECT empno, ename, hiredate, sal, ' ||
 'comm FROM emp';
 v_status INTEGER;
BEGIN
 curid := DBMS_SQL.OPEN_CURSOR;
 DBMS_SQL.PARSE(curid,v_sql,DBMS_SQL.native);
 DBMS_SQL.DEFINE_COLUMN(curid,1,v_empno);
 DBMS_SQL.DEFINE_COLUMN(curid,2,v_ename,10);
 DBMS_SQL.DEFINE_COLUMN(curid,3,v_hiredate);
 DBMS_SQL.DEFINE_COLUMN(curid,4,v_sal);
 DBMS_SQL.DEFINE_COLUMN(curid,5,v_comm);

 v_status := DBMS_SQL.EXECUTE(curid);
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME HIREDATE SAL COMM');
 DBMS_OUTPUT.PUT_LINE('----- ---------- ---------- -------- ' ||
 '--------');
 LOOP
 v_status := DBMS_SQL.FETCH_ROWS(curid);
 EXIT WHEN v_status = 0;
 DBMS_SQL.COLUMN_VALUE(curid,1,v_empno);
 DBMS_SQL.COLUMN_VALUE(curid,2,v_ename);
 DBMS_SQL.COLUMN_VALUE(curid,3,v_hiredate);
 DBMS_SQL.COLUMN_VALUE(curid,4,v_sal);
 DBMS_SQL.COLUMN_VALUE(curid,4,v_sal);
 DBMS_SQL.COLUMN_VALUE(curid,5,v_comm);
 DBMS_OUTPUT.PUT_LINE(v_empno || ' ' || RPAD(v_ename,10) || ' ' ||

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

446

 TO_CHAR(v_hiredate,'yyyy-mm-dd') || ' ' ||
 TO_CHAR(v_sal,'9,999.99') || ' ' ||
 TO_CHAR(NVL(v_comm,0),'9,999.99'));
 END LOOP;
 DBMS_SQL.CLOSE_CURSOR(curid);
END;

EMPNO ENAME HIREDATE SAL COMM
----- ---------- ---------- -------- --------
7369 SMITH 1980-12-17 800.00 .00
7499 ALLEN 1981-02-20 1,600.00 300.00
7521 WARD 1981-02-22 1,250.00 500.00
7566 JONES 1981-04-02 2,975.00 .00
7654 MARTIN 1981-09-28 1,250.00 1,400.00
7698 BLAKE 1981-05-01 2,850.00 .00
7782 CLARK 1981-06-09 2,450.00 .00
7788 SCOTT 1987-04-19 3,000.00 .00
7839 KING 1981-11-17 5,000.00 .00
7844 TURNER 1981-09-08 1,500.00 .00
7876 ADAMS 1987-05-23 1,100.00 .00
7900 JAMES 1981-12-03 950.00 .00
7902 FORD 1981-12-03 3,000.00 .00
7934 MILLER 1982-01-23 1,300.00 .00

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

447

7.5.14 IS_OPEN

The IS_OPEN function provides the capability to test if the given cursor is open.

status BOOLEAN IS_OPEN(c INTEGER)

Parameters

c

Cursor ID of the cursor to be tested.

status

Set to “true” if the cursor is open, set to “false” if the cursor is not open.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

448

7.5.15 LAST_ROW_COUNT

The LAST_ROW_COUNT function returns the number of rows that have been currently
fetched.

rowcnt INTEGER LAST_ROW_COUNT

Parameters

rowcnt

Number of row fetched thus far.

Examples

The following example uses the LAST_ROW_COUNT function to display the total number
of rows fetched in the query.

DECLARE
 curid INTEGER;
 v_empno NUMBER(4);
 v_ename VARCHAR2(10);
 v_hiredate DATE;
 v_sal NUMBER(7,2);
 v_comm NUMBER(7,2);
 v_sql VARCHAR2(50) := 'SELECT empno, ename, hiredate, sal, ' ||
 'comm FROM emp';
 v_status INTEGER;
BEGIN
 curid := DBMS_SQL.OPEN_CURSOR;
 DBMS_SQL.PARSE(curid,v_sql,DBMS_SQL.native);
 DBMS_SQL.DEFINE_COLUMN(curid,1,v_empno);
 DBMS_SQL.DEFINE_COLUMN(curid,2,v_ename,10);
 DBMS_SQL.DEFINE_COLUMN(curid,3,v_hiredate);
 DBMS_SQL.DEFINE_COLUMN(curid,4,v_sal);
 DBMS_SQL.DEFINE_COLUMN(curid,5,v_comm);

 v_status := DBMS_SQL.EXECUTE(curid);
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME HIREDATE SAL COMM');
 DBMS_OUTPUT.PUT_LINE('----- ---------- ---------- -------- ' ||
 '--------');
 LOOP
 v_status := DBMS_SQL.FETCH_ROWS(curid);
 EXIT WHEN v_status = 0;
 DBMS_SQL.COLUMN_VALUE(curid,1,v_empno);
 DBMS_SQL.COLUMN_VALUE(curid,2,v_ename);
 DBMS_SQL.COLUMN_VALUE(curid,3,v_hiredate);
 DBMS_SQL.COLUMN_VALUE(curid,4,v_sal);
 DBMS_SQL.COLUMN_VALUE(curid,4,v_sal);
 DBMS_SQL.COLUMN_VALUE(curid,5,v_comm);
 DBMS_OUTPUT.PUT_LINE(v_empno || ' ' || RPAD(v_ename,10) || ' ' ||
 TO_CHAR(v_hiredate,'yyyy-mm-dd') || ' ' ||
 TO_CHAR(v_sal,'9,999.99') || ' ' ||
 TO_CHAR(NVL(v_comm,0),'9,999.99'));

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

449

 END LOOP;
 DBMS_OUTPUT.PUT_LINE('Number of rows: ' || DBMS_SQL.LAST_ROW_COUNT);
 DBMS_SQL.CLOSE_CURSOR(curid);
END;

EMPNO ENAME HIREDATE SAL COMM
----- ---------- ---------- -------- --------
7369 SMITH 1980-12-17 800.00 .00
7499 ALLEN 1981-02-20 1,600.00 300.00
7521 WARD 1981-02-22 1,250.00 500.00
7566 JONES 1981-04-02 2,975.00 .00
7654 MARTIN 1981-09-28 1,250.00 1,400.00
7698 BLAKE 1981-05-01 2,850.00 .00
7782 CLARK 1981-06-09 2,450.00 .00
7788 SCOTT 1987-04-19 3,000.00 .00
7839 KING 1981-11-17 5,000.00 .00
7844 TURNER 1981-09-08 1,500.00 .00
7876 ADAMS 1987-05-23 1,100.00 .00
7900 JAMES 1981-12-03 950.00 .00
7902 FORD 1981-12-03 3,000.00 .00
7934 MILLER 1982-01-23 1,300.00 .00
Number of rows: 14

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

450

7.5.16 OPEN_CURSOR

The OPEN_CURSOR function creates a new cursor. A cursor must be used to parse and
execute any dynamic SQL statement. Once a cursor has been opened, it can be re-used
with the same or different SQL statements. The cursor does not have to be closed and re-
opened in order to be re-used.

c INTEGER OPEN_CURSOR

Parameters

c

Cursor ID number associated with the newly created cursor.

Examples

The following example creates a new cursor:

DECLARE
 curid INTEGER;
BEGIN
 curid := DBMS_SQL.OPEN_CURSOR;
 .
 .
 .
END;

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

451

7.5.17 PARSE

The PARSE procedure parses a SQL command or SPL block. If the SQL command is a
DDL command, it is immediately executed and does not require running the EXECUTE
function.

PARSE(c INTEGER, statement VARCHAR2, language_flag INTEGER)

Parameters

c

Cursor ID of an open cursor.

statement

SQL command or SPL block to be parsed. A SQL command must not end with
the semi-colon terminator, however an SPL block does require the semi-colon
terminator.

language_flag

Language flag provided for Oracle syntax compatibility. Use DBMS_SQL.V6,
DBMS_SQL.V7 or DBMS_SQL.native. This flag is ignored, and all syntax is
assumed to be in EnterpriseDB Advanced Server form.

Examples

The following anonymous block creates a table named, job. Note that DDL statements
are executed immediately by the PARSE procedure and do not require a separate
EXECUTE step.

DECLARE
 curid INTEGER;
BEGIN
 curid := DBMS_SQL.OPEN_CURSOR;
 DBMS_SQL.PARSE(curid, 'CREATE TABLE job (jobno NUMBER(3), ' ||
 'jname VARCHAR2(9))',DBMS_SQL.native);
 DBMS_SQL.CLOSE_CURSOR(curid);
END;

The following inserts two rows into the job table.

DECLARE
 curid INTEGER;
 v_sql VARCHAR2(50);
 v_status INTEGER;
BEGIN

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

452

 curid := DBMS_SQL.OPEN_CURSOR;
 v_sql := 'INSERT INTO job VALUES (100, ''ANALYST'')';
 DBMS_SQL.PARSE(curid, v_sql, DBMS_SQL.native);
 v_status := DBMS_SQL.EXECUTE(curid);
 DBMS_OUTPUT.PUT_LINE('Number of rows processed: ' || v_status);
 v_sql := 'INSERT INTO job VALUES (200, ''CLERK'')';
 DBMS_SQL.PARSE(curid, v_sql, DBMS_SQL.native);
 v_status := DBMS_SQL.EXECUTE(curid);
 DBMS_OUTPUT.PUT_LINE('Number of rows processed: ' || v_status);
 DBMS_SQL.CLOSE_CURSOR(curid);
END;

Number of rows processed: 1
Number of rows processed: 1

The following anonymous block uses the DBMS_SQL package to execute a block
containing two INSERT statements. Note that the end of the block contains a terminating
semi-colon, while in the prior example, each individual INSERT statement does not have
a terminating semi-colon.

DECLARE
 curid INTEGER;
 v_sql VARCHAR2(100);
 v_status INTEGER;
BEGIN
 curid := DBMS_SQL.OPEN_CURSOR;
 v_sql := 'BEGIN ' ||
 'INSERT INTO job VALUES (300, ''MANAGER''); ' ||
 'INSERT INTO job VALUES (400, ''SALESMAN''); ' ||
 'END;';
 DBMS_SQL.PARSE(curid, v_sql, DBMS_SQL.native);
 v_status := DBMS_SQL.EXECUTE(curid);
 DBMS_SQL.CLOSE_CURSOR(curid);
END;

7.6 DBMS_JOB

The DBMS_JOB package provides for the creation, scheduling, and managing of jobs. A
job runs a stored procedure which has been previously stored in the database. The
SUBMIT procedure is used to create and store a job definition. A job identifier is assigned
to a job along with its associated stored procedure and the attributes describing when and
how often the job is to be run.

This package relies on the pgAgent scheduler. By default, the Postgres Plus Advanced
Server installer installs pgAgent, but you must start the pgAgent service manually prior
to using DBMS_JOB. If you attempt to use this package to schedule a job after un-
installing pgAgent, DBMS_JOB will throw an error. DBMS_JOB verifies that pgAgent is
installed, but does not verify that the service is running.

You can find more information about configuring and starting the pgAgent service in the
pgAgent README file in the doc subdirectory of the installation tree.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

453

Table 7-46 DBMS_JOB Function/Procedures

Function/Procedure Function or
Procedure

Return
Type Description

BROKEN(job, broken [, next_date
]) Procedure n/a Specify that a given job is either broken or

not broken.
CHANGE(job, what, next_date,
interval, instance, force) Procedure n/a Change the job’s parameters.

INTERVAL(job, interval) Procedure n/a

Set the execution frequency by means of a
date function that is recalculated each time
the job is run. This value becomes the next
date/time for execution.

NEXT_DATE(job, next_date) Procedure n/a Set the next date/time the job is to be run.
REMOVE(job) Procedure n/a Delete the job definition from the database.

RUN(job) Procedure n/a Forces execution of a job even if it is
marked broken.

SUBMIT(job OUT, what [, next_date
[, interval [, no_parse]]]) Procedure n/a Creates a job and stores its definition in the

database.
WHAT(job, what) Procedure n/a Change the stored procedure run by a job.

When and how often a job is run is dependent upon two interacting parameters –
next_date and interval. The next_date parameter is a date/time value that
specifies the next date/time when the job is to be executed. The interval parameter is
a string that contains a date function that evaluates to a date/time value.

Just prior to any execution of the job, the expression in the interval parameter is
evaluated. The resulting value replaces the next_date value stored with the job. The
job is then executed. In this manner, the expression in interval is repeatedly re-
evaluated prior to each job execution, supplying the next_date date/time for the next
execution.

The following examples use the following stored procedure, job_proc, which simply
inserts a timestamp into table, jobrun, containing a single VARCHAR2 column.

CREATE TABLE jobrun (
 runtime VARCHAR2(40)
);

CREATE OR REPLACE PROCEDURE job_proc
IS
BEGIN
 INSERT INTO jobrun VALUES ('job_proc run at ' || TO_CHAR(SYSDATE,
 'yyyy-mm-dd hh24:mi:ss'));
END;

7.6.1 BROKEN

The BROKEN procedure sets the state of a job to either broken or not broken. A broken job
cannot be executed except by using the RUN procedure.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

454

BROKEN(job BINARY_INTEGER, broken BOOLEAN [, next_date DATE])

Parameters

job

Identifier of the job to be set as broken or not broken.

broken

If set to “true” the job’s state is set to broken. If set to “false” the job’s state is set
to not broken. Broken jobs cannot be run except by using the RUN procedure.

next_date

Date/time when the job is to be run. The default is SYSDATE.

Examples

Set the state of a job with job identifier 104 to broken:

BEGIN
 DBMS_JOB.BROKEN(104,true);
END;

Change the state back to not broken:

BEGIN
 DBMS_JOB.BROKEN(104,false);
END;

7.6.2 CHANGE

The CHANGE procedure modifies certain job attributes including the stored procedure to
be run, the next date/time the job is to be run, and how often it is to be run.

CHANGE(job BINARY_INTEGER what VARCHAR2, next_date DATE,
 interval VARCHAR2, instance BINARY_INTEGER, force BOOLEAN)

Parameters

job

Identifier of the job to modify.

what

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

455

Stored procedure name. Set this parameter to null if the existing value is to
remain unchanged.

next_date

Date/time when the job is to be run next. Set this parameter to null if the existing
value is to remain unchanged.

interval

Date function that when evaluated, provides the next date/time the job is to run.
Set this parameter to null if the existing value is to remain unchanged.

instance

This argument is ignored, but is included for compatibility.

force

This argument is ignored, but is included for compatibility.

Examples

Change the job to run next on December 13, 2007. Leave other parameters unchanged.

BEGIN
 DBMS_JOB.CHANGE(104,NULL,TO_DATE('13-DEC-07','DD-MON-YY'),NULL, NULL,
 NULL);
END;

7.6.3 INTERVAL

The INTERVAL procedure sets the frequency of how often a job is to be run.

INTERVAL(job BINARY_INTEGER, interval VARCHAR2)

Parameters

job

Identifier of the job to modify.

interval

Date function that when evaluated, provides the next date/time the job is to be
run.

Examples

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

456

Change the job to run once a week:

BEGIN
 DBMS_JOB.INTERVAL(104,'SYSDATE + 7');
END;

7.6.4 NEXT_DATE

The NEXT_DATE procedure sets the date/time of when the job is to be run next.

NEXT_DATE(job BINARY_INTEGER, next_date DATE)

Parameters

job

Identifier of the job whose next run date is to be set.

next_date

Date/time when the job is to be run next.

Examples

Change the job to run next on December 14, 2007:

BEGIN
 DBMS_JOB.NEXT_DATE(104, TO_DATE('14-DEC-07','DD-MON-YY'));
END;

7.6.5 REMOVE

The REMOVE procedure deletes the specified job from the database. The job must be
resubmitted using the SUBMIT procedure in order to have it executed again. Note that the
stored procedure that was associated with the job is not deleted.

REMOVE(job BINARY_INTEGER)

Parameters

job

Identifier of the job that is to be removed from the database.

Examples

Remove a job from the database:

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

457

BEGIN
 DBMS_JOB.REMOVE(104);
END;

7.6.6 RUN

The RUN procedure forces the job to be run, even if its state is broken.

RUN(job BINARY_INTEGER)

Parameters

job

Identifier of the job to be run.

Examples

Force a job to be run.

BEGIN
 DBMS_JOB.RUN(104);
END;

7.6.7 SUBMIT

The SUBMIT procedure creates a job definition and stores it in the database. A job
consists of a job identifier, the stored procedure to be executed, when the job is to be first
run, and a date function that calculates the next date/time the job is to be run.

SUBMIT(job OUT BINARY_INTEGER, what VARCHAR2
 [, next_date DATE [, interval VARCHAR2 [, no_parse BOOLEAN]]]

Parameters

job

Identifier assigned to the job.

what

Name of the stored procedure to be executed by the job.

next_date

Date/time when the job is to be run next. The default is SYSDATE.

interval

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

458

Date function that when evaluated, provides the next date/time the job is to run. If
interval is set to null, then the job is run only once. Null is the default.

no_parse

If set to “true”, do not syntax-check the stored procedure upon job creation –
check only when the job first executes. If set to “false”, check the procedure upon
job creation. The default is “false”.

Note: The no_parse option is not supported in this implementation of
SUBMIT(). It is included for compatibility only.

Examples

The following example creates a job using stored procedure, job_proc. The job will
execute immediately and run once a day thereafter as set by the interval parameter,
SYSDATE + 1.

DECLARE
 jobid INTEGER;
BEGIN
 DBMS_JOB.SUBMIT(jobid,'job_proc;',SYSDATE,
 'SYSDATE + 1');
 DBMS_OUTPUT.PUT_LINE('jobid: ' || jobid);
END;

jobid: 104

The job immediately executes procedure, job_proc, populating table, jobrun, with a
row:

SELECT * FROM jobrun;

 runtime

 job_proc run at 2007-12-11 11:43:25
(1 row)

7.6.8 WHAT

The WHAT procedure changes the stored procedure that the job will execute.

WHAT(job BINARY_INTEGER, what VARCHAR2)

Parameters

job

Identifier of the job for which the stored procedure is to be changed.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

459

what

Name of the stored procedure to be executed.

Examples

Change the job to run the list_emp procedure:

BEGIN
 DBMS_JOB.WHAT(104,'list_emp;');
END;

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

460

7.7 DBMS_LOB

The DBMS_LOB package provides the capability to operate on large objects.

Table 7-47 DBMS_LOB Functions/Procedures

Function/Procedure Function or
Procedure

Return
Type Description

APPEND(dest_lob IN OUT, src_lob) Procedure n/a Appends one large object to another.
CLOSE(lob_loc IN OUT) Procedure n/a Close an open large object.
COMPARE(lob_1, lob_2 [, amount [,
offset_1 [, offset_2]]]) Function INTEGER Compares two large objects.

CONVERTOBLOB(dest_lob IN OUT,
src_clob, amount, dest_offset IN
OUT, src_offset IN OUT,
blob_csid, lang_context IN OUT,
warning OUT)

Procedure n/a Converts character data to binary.

CONVERTTOCLOB(dest_lob IN OUT,
src_blob, amount, dest_offset IN
OUT, src_offset IN OUT,
blob_csid, lang_context IN OUT,
warning OUT)

Procedure n/a Converts binary data to character.

COPY(dest_lob IN OUT, src_lob,
amount [, dest_offset [,
src_offset]])

Procedure n/a Copies one large object to another.

ERASE(lob_loc IN OUT, amount IN
OUT [, offset]) Procedure n/a Erase a large object.

GET_STORAGE_LIMIT(lob_loc) Function INTEGER Get the storage limit for large objects.
GETLENGTH(lob_loc) Function INTEGER Get the length of the large object.

INSTR(lob_loc, pattern [, offset
[, nth]]) Function INTEGER

Get the position of the nth occurrence of a
pattern in the large object starting at
offset.

ISOPEN(lob_loc) Function INTEGER Check if the large object is open.
OPEN(lob_loc IN OUT, open_mode) Procedure n/a Open a large object.
READ(lob_loc, amount IN OUT,
offset, buffer OUT) Procedure n/a Read a large object.

SUBSTR(lob_loc [, amount [,
offset]]) Function RAW,

VARCHAR2 Get part of a large object.

TRIM(lob_loc IN OUT, newlen) Procedure n/a Trim a large object to the specified length.
WRITE(lob_loc IN OUT, amount,
offset, buffer) Procedure n/a Write data to a large object.

WRITEAPPEND(lob_loc IN OUT,
amount, buffer) Procedure n/a Write data from the buffer to the end of a

large object.

The following table lists the public variables available in the package.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

461

Table 7-48 DBMS_LOB Public Variables

Public Variables Data Type Value
compress off INTEGER 0
compress_on INTEGER 1
deduplicate_off INTEGER 0
deduplicate_on INTEGER 4
default_csid INTEGER 0
default_lang_ctx INTEGER 0
encrypt_off INTEGER 0
encrypt_on INTEGER 1
file_readonly INTEGER 0
lobmaxsize INTEGER 1073741823
lob_readonly INTEGER 0
lob_readwrite INTEGER 1
no_warning INTEGER 0
opt_compress INTEGER 1
opt_deduplicate INTEGER 4
opt_encrypt INTEGER 2
warn_inconvertible_char INTEGER 1

In the following sections, lengths and offsets are measured in bytes if the large objects are
BLOBs. Lengths and offsets are measured in characters if the large objects are CLOBs.

7.7.1 APPEND

The APPEND procedure provides the capability to append one large object to another.
Both large objects must be of the same type.

APPEND(dest_lob IN OUT { BLOB | CLOB }, src_lob { BLOB | CLOB })

Parameters

dest_lob

Large object locator for the destination object. Must be the same data type as
src_lob.

src_lob

Large object locator for the source object. Must be the same data type as
dest_lob.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

462

7.7.2 CLOSE

Note: This procedure exists for compatibility only, and is ignored. Calls to this procedure
have no effect.

CLOSE(lob_loc IN OUT { BLOB | CLOB })

Parameters

lob_loc

Large object locator of the large object to be closed.

7.7.3 COMPARE

The COMPARE procedure performs an exact byte-by-byte comparison of two large objects
for a given length at given offsets. The large objects being compared must be the same
data type.

status INTEGER COMPARE(lob_1 { BLOB | CLOB },
 lob_2 { BLOB | CLOB }
 [, amount INTEGER [, offset_1 INTEGER [, offset_2 INTEGER]]])

Parameters

lob_1

Large object locator of the first large object to be compared. Must be the same
data type as lob_2.

lob_2

Large object locator of the second large object to be compared. Must be the same
data type as lob_1.

amount

If the data type of the large objects is BLOB, then the comparison is made for
amount bytes. If the data type of the large objects is CLOB, then the comparison is
made for amount characters. The default it the maximum size of a large object.

offset_1

Position within the first large object to begin the comparison. The first
byte/character is offset 1. The default is 1.

offset_2

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

463

Position within the second large object to begin the comparison. The first
byte/character is offset 1. The default is 1.

status

Zero if both large objects are exactly the same for the specified length for the
specified offsets. Non-zero, if the objects are not the same. NULL if amount,
offset_1, or offset_2 are less than zero.

7.7.4 CONVERTTOBLOB

The CONVERTTOBLOB procedure provides the capability to convert character data to
binary.

CONVERTTOBLOB(dest_lob IN OUT BLOB, src_clob CLOB,
 amount INTEGER, dest_offset IN OUT INTEGER,
 src_offset IN OUT INTEGER, blob_csid NUMBER,
 lang_context IN OUT INTEGER, warning OUT INTEGER)

Parameters

dest_lob

BLOB large object locator to which the character data is to be converted.

src_clob

CLOB large object locator of the character data to be converted.

amount

Number of characters of src_clob to be converted.

dest_offset IN

Position in bytes in the destination BLOB where writing of the source CLOB should
begin. The first byte is offset 1.

dest_offset OUT

Position in bytes in the destination BLOB after the write operation completes. The
first byte is offset 1.

src_offset IN

Position in characters in the source CLOB where conversion to the destination
BLOB should begin. The first character is offset 1.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

464

src_offset OUT

Position in characters in the source CLOB after the conversion operation
completes. The first character is offset 1.

blob_csid

Character set ID of the converted, destination BLOB.

lang_context IN

Language context for the conversion. The default value of 0 is typically used for
this setting.

lang_context OUT

Language context after the conversion completes.

warning

0 if the conversion was successful, 1 if an inconvertible character was
encountered.

7.7.5 CONVERTTOCLOB

The CONVERTTOCLOB procedure provides the capability to convert binary data to
character.

CONVERTTOCLOB(dest_lob IN OUT CLOB, src_blob BLOB,
 amount INTEGER, dest_offset IN OUT INTEGER,
 src_offset IN OUT INTEGER, blob_csid NUMBER,
 lang_context IN OUT INTEGER, warning OUT INTEGER)

Parameters

dest_lob

CLOB large object locator to which the binary data is to be converted.

src_blob

BLOB large object locator of the binary data to be converted.

amount

Number of bytes of src_blob to be converted.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

465

dest_offset IN

Position in characters in the destination CLOB where writing of the source BLOB
should begin. The first character is offset 1.

dest_offset OUT

Position in characters in the destination CLOB after the write operation completes.
The first character is offset 1.

src_offset IN

Position in bytes in the source BLOB where conversion to the destination CLOB
should begin. The first byte is offset 1.

src_offset OUT

Position in bytes in the source BLOB after the conversion operation completes.
The first byte is offset 1.

blob_csid

Character set ID of the converted, destination CLOB.

lang_context IN

Language context for the conversion. The default value of 0 is typically used for
this setting.

lang_context OUT

Language context after the conversion completes.

warning

0 if the conversion was successful, 1 if an inconvertible character was
encountered.

7.7.6 COPY

The COPY procedure provides the capability to copy one large object to another. The
source and destination large objects must be the same data type.

COPY(dest_lob IN OUT { BLOB | CLOB }, src_lob { BLOB | CLOB },
 amount INTEGER
 [, dest_offset INTEGER [, src_offset INTEGER]])

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

466

Parameters

dest_lob

Large object locator of the large object to which src_lob is to be copied. Must
be the same data type as src_lob.

src_lob

Large object locator of the large object to be copied to dest_lob. Must be the
same data type as dest_lob.

amount

Number of bytes/characters of src_lob to be copied.

dest_offset

Position in the destination large object where writing of the source large object
should begin. The first position is offset 1. The default is 1.

src_offset

Position in the source large object where copying to the destination large object
should begin. The first position is offset 1. The default is 1.

7.7.7 ERASE

The ERASE procedure provides the capability to erase a portion of a large object. To erase
a large object means to replace the specified portion with zero-byte fillers for BLOBs or
with spaces for CLOBs. The actual size of the large object is not altered.

ERASE(lob_loc IN OUT { BLOB | CLOB }, amount IN OUT INTEGER
 [, offset INTEGER])

Parameters

lob_loc

Large object locator of the large object to be erased.

amount IN

Number of bytes/characters to be erased.

amount OUT

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

467

Number of bytes/characters actually erased. This value can be smaller than the
input value if the end of the large object is reached before amount
bytes/characters have been erased.

offset

Position in the large object where erasing is to begin. The first byte/character is
position 1. The default is 1.

7.7.8 GET_STORAGE_LIMIT

The GET_STORAGE_LIMIT function returns the limit on the largest allowable large
object.

size INTEGER GET_STORAGE_LIMIT(lob_loc BLOB)

size INTEGER GET_STORAGE_LIMIT(lob_loc CLOB)

Parameters

size

Maximum allowable size of a large object in this database.

lob_loc

This parameter is ignored, but is included for compatibility.

7.7.9 GETLENGTH

The GETLENGTH function returns the length of a large object.

amount INTEGER GETLENGTH(lob_loc BLOB)

amount INTEGER GETLENGTH(lob_loc CLOB)

Parameters

lob_loc

Large object locator of the large object whose length is to be obtained.

amount

Length of the large object in bytes for BLOBs or characters for CLOBs.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

468

7.7.10 INSTR

The INSTR function returns the location of the nth occurrence of a given pattern within a
large object.

position INTEGER INSTR(lob_loc { BLOB | CLOB },
 pattern { RAW | VARCHAR2 } [, offset INTEGER [, nth INTEGER]])

Parameters

lob_loc

Large object locator of the large object in which to search for pattern.

pattern

Pattern of bytes or characters to match against the large object, lob. pattern
must be RAW if lob_loc is a BLOB. pattern must be VARCHAR2 if lob_loc is a
CLOB.

offset

Position within lob_loc to start search for pattern. The first byte/character is
position 1. The default is 1.

nth

Search for pattern, nth number of times starting at the position given by
offset. The default is 1.

position

Position within the large object where pattern appears the nth time specified by
nth starting from the position given by offset.

7.7.11 ISOPEN

This procedure exists for compatibility only, and is ignored. Calls to this procedure have
no effect.

status INTEGER ISOPEN(lob_loc { BLOB | CLOB })

Parameters

lob_loc

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

469

Large object locator for the large object to be tested.

status

1 if the large object has been opened, 0 otherwise.

7.7.12 OPEN

The OPEN procedure opens a large object for either read-only or read-write modes. This
procedure exists for compatibility only, and is ignored. Calls to this procedure have no
effect.

OPEN(lob_loc IN OUT { BLOB | CLOB }, open_mode BINARY_INTEGER)

Parameters

lob_loc

Large object locator of the large object to be opened.

open_mode

Mode in which to open the large object. Set to 0 (lob_readonly) for read-only
mode. Set to 1 (lob_readwrite) for read-write mode.

7.7.13 READ

The READ procedure provides the capability to read a portion of a large object into a
buffer.

READ(lob_loc { BLOB | CLOB }, amount IN OUT BINARY_INTEGER,
 offset INTEGER, buffer OUT { RAW | VARCHAR2 })

Parameters

lob_loc

Large object locator of the large object to be read.

amount IN

Number of bytes/characters to read.

amount OUT

Number of bytes/characters actually read. If there is no more data to be read, then
amount returns 0 and a DATA_NOT_FOUND exception is thrown.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

470

offset

Position to begin reading. The first byte/character is position 1.

buffer

Variable to receive the large object. If lob_loc is a BLOB, then buffer must be
RAW. If lob_loc is a CLOB, then buffer must be VARCHAR2.

7.7.14 SUBSTR

The SUBSTR function provides the capability to return a portion of a large object.

data { RAW | VARCHAR2 } SUBSTR(lob_loc { BLOB | CLOB }
 [, amount INTEGER [, offset INTEGER]])

Parameters

lob_loc

Large object locator of the large object to be read.

amount

Number of bytes/characters to be returned. Default is 32,767.

offset

Position within the large object to begin returning data. The first byte/character is
position 1. The default is 1.

data

Returned portion of the large object to be read. If lob_loc is a BLOB, the return
data type is RAW. If lob_loc is a CLOB, the return data type is VARCHAR2.

7.7.15 TRIM

The TRIM procedure provides the capability to truncate a large object to the specified
length.

TRIM(lob_loc IN OUT { BLOB | CLOB }, newlen INTEGER)

Parameters

lob_loc

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

471

Large object locator of the large object to be trimmed.

newlen

Number of bytes/characters to which the large object is to be trimmed.

7.7.16 WRITE

The WRITE procedure provides the capability to write data into a large object. Any
existing data in the large object at the specified offset for the given length is overwritten
by data given in the buffer.

WRITE(lob_loc IN OUT { BLOB | CLOB }, amount BINARY_INTEGER,
 offset INTEGER, buffer { RAW | VARCHAR2 })

Parameters

lob_loc

Large object locator of the large object to be written.

amount

The number of bytes/characters in buffer to be written to the large object.

offset

The offset in bytes/characters from the beginning of the large object (origin is 1)
for the write operation to begin.

buffer

Contains data to be written to the large object. If lob_loc is a BLOB, then
buffer must be RAW. If lob_loc is a CLOB, then buffer must be VARCHAR2.

7.7.17 WRITEAPPEND

The WRITEAPPEND procedure provides the capability to add data to the end of a large
object.

WRITEAPPEND(lob_loc IN OUT { BLOB | CLOB },
 amount BINARY_INTEGER, buffer { RAW | VARCHAR2 })

Parameters

lob_loc

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

472

Large object locator of the large object to which data is to be appended.

amount

Number of bytes/characters from buffer to be appended the large object.

buffer

Data to be appended to the large object. If lob_loc is a BLOB, then buffer must
be RAW. If lob_loc is a CLOB, then buffer must be VARCHAR2.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

473

7.8 DBMS_UTILITY

The DBMS_UTILITY package provides various utility programs.

Table 7-49 DBMS_UTILITY Functions/Procedures

Function/Procedure Function or
Procedure

Return
Type Description

ANALYZE_DATABASE(method [,
estimate_rows [, estimate_percent
[, method_opt]]])

Procedure n/a Analyze database tables.

ANALYZE_PART_OBJECT(schema,
object_name [, object_type [,
command_type [, command_opt [,
sample_clause]]]])

Procedure n/a Analyze a partitioned table.

ANALYZE_SCHEMA(schema, method [,
estimate_rows [, estimate_percent
[, method_opt]]])

Procedure n/a Analyze schema tables.

CANONICALIZE(name, canon_name
OUT, canon_len) Procedure n/a Canonicalizes a string – e.g., strips off white

space.
COMMA_TO_TABLE(list, tablen OUT,
tab OUT) Procedure n/a Convert a comma-delimited list of names to

a table of names.
DB_VERSION(version OUT,
compatibility OUT) Procedure n/a Get the database version.

EXEC_DDL_STATEMENT(parse_string) Procedure n/a Execute a DDL statement.
GET_CPU_TIME Function NUMBER Get the current CPU time.
GET_DEPENDENCY(type, schema,
name) Procedure n/a Get objects that are dependent upon the

given object..
GET_HASH_VALUE(name, base,
hash_size) Function NUMBER Compute a hash value.

GET_PARAMETER_VALUE(parnam,
intval OUT, strval OUT) Procedure BINARY_IN

TEGER
Get database initialization parameter
settings.

GET_TIME Function NUMBER Get the current time.
NAME_TOKENIZE(name, a OUT, b OUT,
c OUT, dblink OUT, nextpos OUT) Procedure n/a Parse the given name into its component

parts.
TABLE_TO_COMMA(tab, tablen OUT,
list OUT) Procedure n/a Convert a table of names to a comma-

delimited list.

The following table lists the public variables available in the DBMS_UTILITY package.

Table 7-50 DBMS_UTILITY Public Variables

Public Variables Data Type Value Description
inv_error_on_restrictions PLS_INTEGER 1 Used by the INVALIDATE procedure.
lname_array TABLE For lists of long names.
uncl_array TABLE For lists of users and names.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

474

7.8.1 LNAME_ARRAY

The LNAME_ARRAY is for storing lists of long names including fully-qualified names.

TYPE lname_array IS TABLE OF VARCHAR2(4000) INDEX BY BINARY_INTEGER;

7.8.2 UNCL_ARRAY

The UNCL_ARRAY is for storing lists of users and names.

TYPE uncl_array IS TABLE OF VARCHAR2(227) INDEX BY BINARY_INTEGER;

7.8.3 ANALYZE_DATABASE, ANALYZE SCHEMA and ANALYZE
PART_OBJECT

The ANALYZE_DATABASE(), ANALYZE_SCHEMA() and ANALYZE_PART_OBJECT()
procedures provide the capability to gather statistics on tables in the database. When you
execute the ANALYZE statement, Postgres samples the data in a table and records
distribution statistics in the pg_statistics system table.

ANALYZE_DATABASE, ANALYZE_SCHEMA, and ANALYZE_PART_OBJECT differ
primarily in the number of tables that are processed:

• ANALYZE_DATABASE analyzes all tables in all schemas within the current
database.

• ANALYZE_SCHEMA analyzes all tables in a given schema (within the current
database).

• ANALYZE_PART_OBJECT analyzes a single table.

The syntax for the ANALYZE commands are:

ANALYZE_DATABASE(method VARCHAR2 [, estimate_rows NUMBER
 [, estimate_percent NUMBER [, method_opt VARCHAR2]]])

ANALYZE_SCHEMA(schema VARCHAR2, method VARCHAR2
 [, estimate_rows NUMBER [, estimate_percent NUMBER
 [, method_opt VARCHAR2]]])

ANALYZE_PART_OBJECT(schema VARCHAR2, object_name VARCHAR2
 [, object_type CHAR [, command_type CHAR
 [, command_opt VARCHAR2 [, sample_clause]]]])

Parameters - ANALYZE_DATABASE and ANALYZE_SCHEMA

method

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

475

method determines whether the ANALYZE procedure populates the
pg_statistics table or removes entries from the pg_statistics table. If
you specify a method of DELETE, the ANALYZE procedure removes the relevant
rows from pg_statistics. If you specify a method of COMPUTE or ESTIMATE,
the ANALYZE procedure analyzes a table (or multiple tables) and records the
distribution information in pg_statistics. There is no difference between
COMPUTE or ESTIMATE; both methods execute the Postgres ANALYZE statement.
All other parameters are validated and then ignored.

estimate_rows

Number of rows upon which to base estimated statistics. One of estimate_rows
or estimate_percent must be specified if method is ESTIMATE.

This argument is ignored, but is included for compatibility.

estimate_percent

Percentage of rows upon which to base estimated statistics. One of
estimate_rows or estimate_percent must be specified if method is
ESTIMATE.

This argument is ignored, but is included for compatibility.

method_opt

Object types to be analyzed. Any combination of the following:

[FOR TABLE]
[FOR ALL [INDEXED] COLUMNS] [SIZE n]
[FOR ALL INDEXES]

This argument is ignored, but is included for compatibility.

Parameters - ANALYZE_PART_OBJECT

schema

Name of the schema whose objects are to be analyzed.

object_name

Name of the partitioned object to be analyzed.

object_type

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

476

Type of object to be analyzed. Valid values are: T – table, I – index.

This argument is ignored, but is included for compatibility.

command_type

Type of analyze functionality to perform. Valid values are: E - gather estimated
statistics based upon on a specified number of rows or a percentage of rows in the
sample_clause clause; C - compute exact statistics; or V – validate the
structure and integrity of the partitions.

This argument is ignored, but is included for compatibility.

command_opt

For command_type C or E, can be any combination of:

[FOR TABLE]
[FOR ALL COLUMNS]
[FOR ALL LOCAL INDEXES]

For command_type V, can be CASCADE if object_type is T.

This argument is ignored, but is included for compatibility.

sample_clause

If command_type is E, contains the following clause to specify the number of
rows or percentage or rows on which to base the estimate.

SAMPLE n { ROWS | PERCENT }

This argument is ignored, but is included for compatibility.

7.8.4 CANONICALIZE

The CANONICALIZE procedure performs the following operations on an input string:

• If the string is not double-quoted, verifies that it uses the characters of a legal
identifier. If not, an exception is thrown. If the string is double-quoted, all
characters are allowed.

• If the string is not double-quoted and does not contain periods, uppercases all
alphabetic characters and eliminates leading and trailing spaces.

• If the string is double-quoted and does not contain periods, strips off the
double quotes.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

477

• If the string contains periods and no portion of the string is double-quoted,
uppercases each portion of the string and encloses each portion in double
quotes.

• If the string contains periods and portions of the string are double-quoted,
returns the double-quoted portions unchanged including the double quotes and
returns the non-double-quoted portions uppercased and enclosed in double
quotes.

CANONICALIZE(name VARCHAR2, canon_name OUT VARCHAR2,
 canon_len BINARY_INTEGER)

Parameters

name

String to be canonicalized.

canon_name

The canonicalized string.

canon_len

Number of bytes in name to canonicalize starting from the first character.

Examples

The following procedure applies the CANONICALIZE procedure on its input parameter
and displays the results.

CREATE OR REPLACE PROCEDURE canonicalize (
 p_name VARCHAR2,
 p_length BINARY_INTEGER DEFAULT 30
)
IS
 v_canon VARCHAR2(100);
BEGIN
 DBMS_UTILITY.CANONICALIZE(p_name,v_canon,p_length);
 DBMS_OUTPUT.PUT_LINE('Canonicalized name ==>' || v_canon || '<==');
 DBMS_OUTPUT.PUT_LINE('Length: ' || LENGTH(v_canon));
EXCEPTION
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE('SQLERRM: ' || SQLERRM);
 DBMS_OUTPUT.PUT_LINE('SQLCODE: ' || SQLCODE);
END;

EXEC canonicalize('Identifier')
Canonicalized name ==>IDENTIFIER<==
Length: 10

EXEC canonicalize('"Identifier"')
Canonicalized name ==>Identifier<==
Length: 10

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

478

EXEC canonicalize('"_+142%"')
Canonicalized name ==>_+142%<==
Length: 6

EXEC canonicalize('abc.def.ghi')
Canonicalized name ==>"ABC"."DEF"."GHI"<==
Length: 17

EXEC canonicalize('"abc.def.ghi"')
Canonicalized name ==>abc.def.ghi<==
Length: 11

EXEC canonicalize('"abc".def."ghi"')
Canonicalized name ==>"abc"."DEF"."ghi"<==
Length: 17

EXEC canonicalize('"abc.def".ghi')
Canonicalized name ==>"abc.def"."GHI"<==
Length: 15

7.8.5 COMMA_TO_TABLE

The COMMA_TO_TABLE procedure converts a comma-delimited list of names into a table
of names. Each entry in the list becomes a table entry. The names must be formatted as
valid identifiers.

COMMA_TO_TABLE(list VARCHAR2, tablen OUT BINARY_INTEGER,
 tab OUT { LNAME_ARRAY | UNCL_ARRAY })

Parameters

list

Comma-delimited list of names.

tablen

Number of entries in tab.

tab

Table containing the individual names in list. See LNAME_ARRAY or
UNCL_ARRAY for a description of tab.

Examples

The following procedure uses the COMMA_TO_TABLE procedure to convert a list of names
to a table. The table entries are then displayed.

CREATE OR REPLACE PROCEDURE comma_to_table (
 p_list VARCHAR2
)

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

479

IS
 r_lname DBMS_UTILITY.LNAME_ARRAY;
 v_length BINARY_INTEGER;
BEGIN
 DBMS_UTILITY.COMMA_TO_TABLE(p_list,v_length,r_lname);
 FOR i IN 1..v_length LOOP
 DBMS_OUTPUT.PUT_LINE(r_lname(i));
 END LOOP;
END;

EXEC comma_to_table('edb.dept, edb.emp, edb.jobhist')

edb.dept
edb.emp
edb.jobhist

7.8.6 DB_VERSION

The DB_VERSION procedure returns the version number of the database.

DB_VERSION(version OUT VARCHAR2, compatibility OUT VARCHAR2)

Parameters

version

Database version number.

compatibility

Compatibility setting of the database. (To be implementation-defined as to its
meaning.)

Examples

The following anonymous block displays the database version information.

DECLARE
 v_version VARCHAR2(80);
 v_compat VARCHAR2(80);
BEGIN
 DBMS_UTILITY.DB_VERSION(v_version,v_compat);
 DBMS_OUTPUT.PUT_LINE('Version: ' || v_version);
 DBMS_OUTPUT.PUT_LINE('Compatibility: ' || v_compat);
END;

Version: 8.3.0.106
Compatibility: 8.3.0.106

7.8.7 EXEC_DDL_STATEMENT

The EXEC_DDL_STATEMENT provides the capability to execute a DDL command.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

480

EXEC_DDL_STATEMENT(parse_string VARCHAR2)

Parameters

parse_string

The DDL command to be executed.

Examples

The following anonymous block creates the job table.

BEGIN
 DBMS_UTILITY.EXEC_DDL_STATEMENT(
 'CREATE TABLE job (' ||
 'jobno NUMBER(3),' ||
 'jname VARCHAR2(9))'
);
END;

7.8.8 GET_CPU_TIME

The GET_CPU_TIME function returns the CPU time in 100th’s of a second from some
arbitrary point in time.

cputime NUMBER GET_CPU_TIME

Parameters

cputime

Number of 100th’s of a second of CPU time.

Examples

The following SELECT command retrieves the current CPU time.

SELECT DBMS_UTILITY.GET_CPU_TIME FROM DUAL;

get_cpu_time

 603

7.8.9 GET_DEPENDENCY
The GET_DEPENDENCY procedure provides the capability to list the objects that are
dependent upon the specified object. GET_DEPENDENCY does not show dependencies for
functions or procedures.

GET_DEPENDENCY(type VARCHAR2, schema VARCHAR2,
 name VARCHAR2)

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

481

Parameters

type

The object type of name. Valid values are INDEX, PACKAGE, PACKAGE BODY,
SEQUENCE, TABLE, TRIGGER, TYPE and VIEW.

schema

Name of the schema in which name exists.

name

Name of the object for which dependencies are to be obtained.

Examples

The following anonymous block finds dependencies on the EMP table.

BEGIN
 DBMS_UTILITY.GET_DEPENDENCY('TABLE','public','EMP');
END;

DEPENDENCIES ON public.EMP
--
*TABLE public.EMP()
* CONSTRAINT c public.emp()
* CONSTRAINT f public.emp()
* CONSTRAINT p public.emp()
* TYPE public.emp()
* CONSTRAINT c public.emp()
* CONSTRAINT f public.jobhist()
* VIEW .empname_view()

7.8.10 GET_HASH_VALUE

The GET_HASH_VALUE function provides the capability to compute a hash value for a
given string.

hash NUMBER GET_HASH_VALUE(name VARCHAR2, base NUMBER,
 hash_size NUMBER)

Parameters

name

The string for which a hash value is to be computed.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

482

base

Starting value at which hash values are to be generated.

hash_size

The number of hash values for the desired hash table.

hash

The generated hash value.

Examples

The following anonymous block creates a table of hash values using the ename column
of the emp table and then displays the key along with the hash value. The hash values
start at 100 with a maximum of 1024 distinct values.

DECLARE
 v_hash NUMBER;
 TYPE hash_tab IS TABLE OF NUMBER INDEX BY VARCHAR2(10);
 r_hash HASH_TAB;
 CURSOR emp_cur IS SELECT ename FROM emp;
BEGIN
 FOR r_emp IN emp_cur LOOP
 r_hash(r_emp.ename) :=
 DBMS_UTILITY.GET_HASH_VALUE(r_emp.ename,100,1024);
 END LOOP;
 FOR r_emp IN emp_cur LOOP
 DBMS_OUTPUT.PUT_LINE(RPAD(r_emp.ename,10) || ' ' ||
 r_hash(r_emp.ename));
 END LOOP;
END;

SMITH 377
ALLEN 740
WARD 718
JONES 131
MARTIN 176
BLAKE 568
CLARK 621
SCOTT 1097
KING 235
TURNER 850
ADAMS 156
JAMES 942
FORD 775
MILLER 148

7.8.11 GET_PARAMETER_VALUE

The GET_PARAMETER_VALUE procedure provides the capability to retrieve database
initialization parameter settings.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

483

status BINARY_INTEGER GET_PARAMETER_VALUE(parnam VARCHAR2,
intval OUT INTEGER, strval OUT VARCHAR2)

Parameters

parnam

Name of the parameter whose value is to be returned. The parameters are listed in
the pg_settings system view.

intval

Value of an integer parameter or the length of strval.

strval

Value of a string parameter.

status

Returns 0 if the parameter value is INTEGER or BOOLEAN. Returns 1 if the
parameter value is a string.

Examples

The following anonymous block shows the values of two initialization parameters.

DECLARE
 v_intval INTEGER;
 v_strval VARCHAR2(80);
BEGIN
 DBMS_UTILITY.GET_PARAMETER_VALUE('max_fsm_pages', v_intval, v_strval);
 DBMS_OUTPUT.PUT_LINE('max_fsm_pages' || ': ' || v_intval);
 DBMS_UTILITY.GET_PARAMETER_VALUE('client_encoding', v_intval, v_strval);
 DBMS_OUTPUT.PUT_LINE('client_encoding' || ': ' || v_strval);
END;

max_fsm_pages: 72625
client_encoding: SQL_ASCII

7.8.12 GET_TIME

The GET_TIME function provides the capability to return the current time in 100th’s of a
second.

time NUMBER GET_TIME

Parameters

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

484

time

Number of 100th’s of a second from the time in which the program is started.

Examples

The following example shows calls to the GET_TIME function.

SELECT DBMS_UTILITY.GET_TIME FROM DUAL;

 get_time

 1555860

SELECT DBMS_UTILITY.GET_TIME FROM DUAL;

 get_time

 1556037

7.8.13 NAME_TOKENIZE

The NAME_TOKENIZE procedure parses a name into its component parts. Names without
double quotes are uppercased. The double quotes are stripped from names with double
quotes.

NAME_TOKENIZE(name VARCHAR2, a OUT VARCHAR2, b OUT VARCHAR2,
 c OUT VARCHAR2, dblink OUT VARCHAR2,
 nextpos OUT BINARY_INTEGER)

Parameters

name

String containing a name in the following format:

a[.b[.c]][@dblink]

a

Returns the leftmost component.

b

Returns the second component, if any.

c

Returns the third component, if any.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

485

dblink

Returns the database link name.

nextpos

Position of the last character parsed in name.

Examples

The following stored procedure is used to display the returned parameter values of the
NAME_TOKENIZE procedure for various names.

CREATE OR REPLACE PROCEDURE name_tokenize (
 p_name VARCHAR2
)
IS
 v_a VARCHAR2(30);
 v_b VARCHAR2(30);
 v_c VARCHAR2(30);
 v_dblink VARCHAR2(30);
 v_nextpos BINARY_INTEGER;
BEGIN
 DBMS_UTILITY.NAME_TOKENIZE(p_name,v_a,v_b,v_c,v_dblink,v_nextpos);
 DBMS_OUTPUT.PUT_LINE('name : ' || p_name);
 DBMS_OUTPUT.PUT_LINE('a : ' || v_a);
 DBMS_OUTPUT.PUT_LINE('b : ' || v_b);
 DBMS_OUTPUT.PUT_LINE('c : ' || v_c);
 DBMS_OUTPUT.PUT_LINE('dblink : ' || v_dblink);
 DBMS_OUTPUT.PUT_LINE('nextpos: ' || v_nextpos);
END;

Tokenize the name, emp:

BEGIN
 name_tokenize('emp');
END;

name : emp
a : EMP
b :
c :
dblink :
nextpos: 3

Tokenize the name, edb.list_emp:

BEGIN
 name_tokenize('edb.list_emp');
END;

name : edb.list_emp
a : EDB
b : LIST_EMP
c :
dblink :

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

486

nextpos: 12

Tokenize the name, "edb"."Emp_Admin".update_emp_sal:

BEGIN
 name_tokenize('"edb"."Emp_Admin".update_emp_sal');
END;

name : "edb"."Emp_Admin".update_emp_sal
a : edb
b : Emp_Admin
c : UPDATE_EMP_SAL
dblink :
nextpos: 32

Tokenize the name edb.emp@edb_dblink:

BEGIN
 name_tokenize('edb.emp@edb_dblink');
END;

name : edb.emp@edb_dblink
a : EDB
b : EMP
c :
dblink : EDB_DBLINK
nextpos: 18

7.8.14 TABLE_TO_COMMA

The TABLE_TO_COMMA procedure converts table of names into a comma-delimited list of
names. Each table entry becomes a list entry. The names must be formatted as valid
identifiers.

TABLE_TO_COMMA(tab { LNAME_ARRAY | UNCL_ARRAY },
 tablen OUT BINARY_INTEGER, list OUT VARCHAR2)

Parameters

tab

Table containing names. See LNAME_ARRAY or UNCL_ARRAY for a
description of tab.

tablen

Number of entries in list.

list

Comma-delimited list of names from tab.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

487

Examples

The following example first uses the COMMA_TO_TABLE procedure to convert a comma-
delimited list to a table. The TABLE_TO_COMMA procedure then converts the table back to
a comma-delimited list that is displayed.

CREATE OR REPLACE PROCEDURE table_to_comma (
 p_list VARCHAR2
)
IS
 r_lname DBMS_UTILITY.LNAME_ARRAY;
 v_length BINARY_INTEGER;
 v_listlen BINARY_INTEGER;
 v_list VARCHAR2(80);
BEGIN
 DBMS_UTILITY.COMMA_TO_TABLE(p_list,v_length,r_lname);
 DBMS_OUTPUT.PUT_LINE('Table Entries');
 DBMS_OUTPUT.PUT_LINE('-------------');
 FOR i IN 1..v_length LOOP
 DBMS_OUTPUT.PUT_LINE(r_lname(i));
 END LOOP;
 DBMS_OUTPUT.PUT_LINE('-------------');
 DBMS_UTILITY.TABLE_TO_COMMA(r_lname,v_listlen,v_list);
 DBMS_OUTPUT.PUT_LINE('Comma-Delimited List: ' || v_list);
END;

EXEC table_to_comma('edb.dept, edb.emp, edb.jobhist')

Table Entries

edb.dept
edb.emp
edb.jobhist

Comma-Delimited List: edb.dept, edb.emp, edb.jobhist

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

488

7.9 UTL_MAIL

The UTL_MAIL package provides the capability to manage e-mail.

Note: An administrator must grant execute privileges to each user or group before they
can use this package.

Table 7-51 UTL_MAIL Functions/Procedures

Function/Procedure Function or
Procedure

Return
Type Description

SEND(sender, recipients, cc, bcc,
subject, message [, mime_type [,
priority]])

Procedure n/a Packages and sends an e-mail to an SMTP
server.

SEND_ATTACH_RAW(sender,
recipients, cc, bcc, subject,
message, mime_type, priority,
attachment [, att_inline [,
att_mime_type [, att_filename
]]])

Procedure n/a Same as the SEND procedure, but with
BYTEA or large object attachments.

SEND_ATTACH_VARCHAR2(sender,
recipients, cc, bcc, subject,
message, mime_type, priority,
attachment [, att_inline [,
att_mime_type [, att_filename
]]])

Procedure n/a Same as the SEND procedure, but with
VARCHAR2 attachments.

7.9.1 SEND

The SEND procedure provides the capability to send an e-mail to an SMTP server.

SEND(sender VARCHAR2, recipients VARCHAR2, cc VARCHAR2,
 bcc VARCHAR2, subject VARCHAR2, message VARCHAR2
 [, mime_type VARCHAR2 [, priority PLS_INTEGER]])

Parameters

sender

E-mail address of the sender.

recipients

Comma-separated e-mail addresses of the recipients.

cc

Comma-separated e-mail addresses of copy recipients.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

489

bcc

Comma-separated e-mail addresses of blind copy recipients.

subject

Subject line of the e-mail.

message

Body of the e-mail.

mime_type

Mime type of the message. The default is text/plain; charset=us-ascii.

priority

Priority of the e-mail The default is 3.

Examples

The following anonymous block sends a simple e-mail message.

DECLARE
 v_sender VARCHAR2(30);
 v_recipients VARCHAR2(60);
 v_subj VARCHAR2(20);
 v_msg VARCHAR2(200);
BEGIN
 v_sender := 'jsmith@enterprisedb.com';
 v_recipients := 'ajones@enterprisedb.com,rrogers@enterprisedb.com';
 v_subj := 'Holiday Party';
 v_msg := 'This year''s party is scheduled for Friday, Dec. 21 at ' ||
 '6:00 PM. Please RSVP by Dec. 15th.';
 UTL_MAIL.SEND(v_sender,v_recipients,NULL,NULL,v_subj,v_msg);
END;

7.9.2 SEND_ATTACH_RAW

The SEND_ATTACH_RAW procedure provides the capability to send an e-mail to an SMTP
server with an attachment containing either BYTEA data or a large object (identified by
the large object's OID). The call to SEND_ATTACH_RAW can be written in two ways:

SEND_ATTACH_RAW(sender VARCHAR2, recipients VARCHAR2,
 cc VARCHAR2, bcc VARCHAR2, subject VARCHAR2, message VARCHAR2,
 mime_type VARCHAR2, priority PLS_INTEGER,
 attachment BYTEA[, att_inline BOOLEAN
 [, att_mime_type VARCHAR2[, att_filename VARCHAR2]]])

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

490

SEND_ATTACH_RAW(sender VARCHAR2, recipients VARCHAR2,
 cc VARCHAR2, bcc VARCHAR2, subject VARCHAR2, message VARCHAR2,
 mime_type VARCHAR2, priority PLS_INTEGER, attachment OID
 [, att_inline BOOLEAN [, att_mime_type VARCHAR2
 [, att_filename VARCHAR2]]])

Parameters

sender

E-mail address of the sender.

recipients

Comma-separated e-mail addresses of the recipients.

cc

Comma-separated e-mail addresses of copy recipients.

bcc

Comma-separated e-mail addresses of blind copy recipients.

subject

Subject line of the e-mail.

message

Body of the e-mail.

mime_type

Mime type of the message. The default is text/plain; charset=us-ascii.

priority

Priority of the e-mail. The default is 3.

attachment

The attachment.

att_inline

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

491

If set to “true”, then the attachment is viewable inline, “false” otherwise. The
default is “true”.

att_mime_type

Mime type of the attachment. The default is application/octet.

att_filename

The file name containing the attachment. The default is null.

7.9.3 SEND_ATTACH_VARCHAR2

The SEND_ATTACH_VARCHAR2 procedure provides the capability to send an e-mail to an
SMTP server with a text attachment.

SEND_ATTACH_VARCHAR2(sender VARCHAR2, recipients VARCHAR2,
 cc VARCHAR2, bcc VARCHAR2, subject VARCHAR2, message VARCHAR2,
 mime_type VARCHAR2, priority PLS_INTEGER, attachment VARCHAR2
 [, att_inline BOOLEAN [, att_mime_type VARCHAR2
 [, att_filename VARCHAR2]]])

Parameters

sender

E-mail address of the sender.

recipients

Comma-separated e-mail addresses of the recipients.

cc

Comma-separated e-mail addresses of copy recipients.

bcc

Comma-separated e-mail addresses of blind copy recipients.

subject

Subject line of the e-mail.

message

Body of the e-mail.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

492

mime_type

Mime type of the message. The default is text/plain; charset=us-ascii.

priority

Priority of the e-mail The default is 3.

attachment

The VARCHAR2 attachment.

att_inline

If set to “true”, then the attachment is viewable inline, “false” otherwise. The
default is “true”.

att_mime_type

Mime type of the attachment. The default is text/plain; charset=us-
ascii.

att_filename

The file name containing the attachment. The default is null.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

493

7.10 UTL_SMTP

The UTL_SMTP package provides the capability to send e-mails over the Simple Mail
Transfer Protocol (SMTP).

Note: An administrator must grant execute privileges to each user or group before they
can use this package.

Table 7-52 UTL_SMTP Functions/Procedures

Function/Procedure Function or
Procedure Return Type Description

CLOSE_DATA(c IN OUT) Procedure n/a Ends an e-mail message.
COMMAND(c IN OUT, cmd [, arg
]) Both REPLY Execute an SMTP command.

COMMAND_REPLIES(c IN OUT, cmd
[, arg]) Function REPLIES Execute an SMTP command where multiple

reply lines are expected.
DATA(c IN OUT, body VARCHAR2) Procedure n/a Specify the body of an e-mail message.

EHLO(c IN OUT, domain) Procedure n/a Perform initial handshaking with an SMTP
server and return extended information.

HELO(c IN OUT, domain) Procedure n/a Perform initial handshaking with an SMTP
server

HELP(c IN OUT [, command]) Function REPLIES Send the HELP command.
MAIL(c IN OUT, sender [,
parameters]) Procedure n/a Start a mail transaction.

NOOP(c IN OUT) Both REPLY Send the null command.
OPEN_CONNECTION(host [, port
[, tx_timeout]]) Function CONNECTION Open a connection.

OPEN_DATA(c IN OUT) Both REPLY Send the DATA command.

QUIT(c IN OUT) Procedure n/a Terminate the SMTP session and
disconnect.

RCPT(c IN OUT, recipient [,
parameters]) Procedure n/a Specify the recipient of an e-mail message.

RSET(c IN OUT) Procedure n/a Terminate the current mail transaction.
VRFY(c IN OUT, recipient) Function REPLY Validate an e-mail address.
WRITE_DATA(c IN OUT, data) Procedure n/a Write a portion of the e-mail message.

The following table lists the public variables available in the UTL_SMTP package.

Table 7-53 UTL_SMTP Public Variables

Public Variables Data Type Value Description
connection RECORD Description of an SMTP connection.
reply RECORD SMTP reply line.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

494

7.10.1 CONNECTION

The CONNECTION record type provides a description of an SMTP connection.

TYPE connection IS RECORD (
 host VARCHAR2(255),
 port PLS_INTEGER,
 tx_timeout PLS_INTEGER
);

7.10.2 REPLY/REPLIES

The REPLY record type provides a description of an SMTP reply line. REPLIES is a table
of multiple SMTP reply lines.

TYPE reply IS RECORD (
 code INTEGER,
 text VARCHAR2(508)
);
TYPE replies IS TABLE OF reply INDEX BY BINARY_INTEGER;

7.10.3 CLOSE_DATA

The CLOSE_DATA procedure terminates an e-mail message by sending the following
sequence:

<CR><LF>.<CR><LF>

This is a single period at the beginning of a line.

CLOSE_DATA(c IN OUT CONNECTION)

Parameters

c

The SMTP connection to be closed.

7.10.4 COMMAND

The COMMAND procedure provides the capability to execute an SMTP command. If you
are expecting multiple reply lines, use COMMAND_REPLIES.

reply REPLY COMMAND(c IN OUT CONNECTION, cmd VARCHAR2
 [, arg VARCHAR2])

COMMAND(c IN OUT CONNECTION, cmd VARCHAR2 [, arg VARCHAR2])

Parameters

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

495

c

The SMTP connection to which the command is to be sent.

cmd

The SMTP command to be processed.

arg

An argument to the SMTP command. The default is null.

reply

SMTP reply to the command. If SMTP returns multiple replies, only the last one
is returned in reply. See REPLY/REPLIES.

7.10.5 COMMAND_REPLIES

The COMMAND_REPLIES function processes an SMTP command that returns multiple
reply lines. Use COMMAND if only a single reply line is expected.

replies REPLIES COMMAND(c IN OUT CONNECTION, cmd VARCHAR2
 [, arg VARCHAR2])

Parameters

c

The SMTP connection to which the command is to be sent.

cmd

The SMTP command to be processed.

arg

An argument to the SMTP command. The default is null.

replies

SMTP reply lines to the command. See REPLY/REPLIES.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

496

7.10.6 DATA

The DATA procedure provides the capability to specify the body of the e-mail message.
The message is terminated with a <CR><LF>.<CR><LF> sequence.

DATA(c IN OUT CONNECTION, body VARCHAR2)

Parameters

c

The SMTP connection to which the command is to be sent.

body

Body of the e-mail message to be sent.

7.10.7 EHLO

The EHLO procedure performs initial handshaking with the SMTP server after
establishing the connection. The EHLO procedure allows the client to identify itself to the
SMTP server according to RFC 821. RFC 1869 specifies the format of the information
returned in the server’s reply. The HELO procedure performs the equivalent
functionality, but returns less information about the server.

EHLO(c IN OUT CONNECTION, domain VARCHAR2)

Parameters

c

The connection to the SMTP server over which to perform handshaking.

domain

Domain name of the sending host.

7.10.8 HELO

The HELO procedure performs initial handshaking with the SMTP server after
establishing the connection. The HELO procedure allows the client to identify itself to the
SMTP server according to RFC 821. The EHLO procedure performs the equivalent
functionality, but returns more information about the server.

HELO(c IN OUT, domain VARCHAR2)

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

497

Parameters

c

The connection to the SMTP server over which to perform handshaking.

domain

Domain name of the sending host.

7.10.9 HELP

The HELP function provides the capability to send the HELP command to the SMTP
server.

replies REPLIES HELP(c IN OUT CONNECTION [, command VARCHAR2])

Parameters

c

The SMTP connection to which the command is to be sent.

command

Command on which help is requested.

replies

SMTP reply lines to the command. See REPLY/REPLIES.

7.10.10 MAIL

The MAIL procedure initiates a mail transaction.

MAIL(c IN OUT CONNECTION, sender VARCHAR2
 [, parameters VARCHAR2])

Parameters

c

Connection to SMTP server on which to start a mail transaction.

sender

The sender’s e-mail address.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

498

parameters

Mail command parameters in the format, key=value as defined in RFC 1869,
Section 6.

7.10.11 NOOP

The NOOP function/procedure sends the null command to the SMTP server. The NOOP has
no effect upon the server except to obtain a successful response.

reply REPLY NOOP(c IN OUT CONNECTION)

NOOP(c IN OUT CONNECTION)

Parameters

c

The SMTP connection on which to send the command.

reply

SMTP reply to the command. If SMTP returns multiple replies, only the last one
is returned in reply. See REPLY/REPLIES.

7.10.12 OPEN_CONNECTION

The OPEN_CONNECTION functions open a connection to an SMTP server.

c CONNECTION OPEN_CONNECTION(host VARCHAR2 [, port PLS_INTEGER
 [, tx_timeout PLS_INTEGER DEFAULT NULL]])

Parameters

host

Name of the SMTP server.

port

Port number on which the SMTP server is listening. The default is 25.

tx_timeout

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

499

Time out value in seconds. Do not wait is indicated by specifying 0. Wait
indefinitely is indicated by setting timeout to null. The default is null.

c

Connection handle returned by the SMTP server.

7.10.13 OPEN_DATA

The OPEN_DATA procedure sends the DATA command to the SMTP server.

OPEN_DATA(c IN OUT CONNECTION)

Parameters

c

SMTP connection on which to send the command.

7.10.14 QUIT

The QUIT procedure closes the session with an SMTP server.

QUIT(c IN OUT CONNECTION)

Parameters

c

SMTP connection to be terminated.

7.10.15 RCPT

The RCPT procedure provides the e-mail address of the recipient. To schedule multiple
recipients, invoke RCPT multiple times.

RCPT(c IN OUT CONNECTION, recipient VARCHAR2
 [, parameters VARCHAR2])

Parameters

c

Connection to SMTP server on which to add a recipient.

recipient

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

500

The recipient’s e-mail address.

parameters

Mail command parameters in the format, key=value as defined in RFC 1869,
Section 6.

7.10.16 RSET

The RSET procedure provides the capability to terminate the current mail transaction.

RSET(c IN OUT CONNECTION)

Parameters

c

SMTP connection on which to cancel the mail transaction.

7.10.17 VRFY

The VRFY function provides the capability to validate and verify the recipient’s e-mail
address. If valid, the recipient’s full name and fully qualified mailbox is returned.

reply REPLY VRFY(c IN OUT CONNECTION, recipient VARCHAR2)

Parameters

c

The SMTP connection on which to verify the e-mail address.

recipient

The recipient’s e-mail address to be verified.

reply

SMTP reply to the command. If SMTP returns multiple replies, only the last one
is returned in reply. See REPLY/REPLIES.

7.10.18 WRITE_DATA

The WRITE_DATA procedure provides the capability to add VARCHAR2 data to an e-mail
message. The WRITE_DATA procedure may be repetitively called to add data.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

501

WRITE_DATA(c IN OUT CONNECTION, data VARCHAR2)

Parameters

c

The SMTP connection on which to add data.

data

Data to be added to the e-mail message. The data must conform to the RFC 822
specification.

7.10.19 Comprehensive Example

The following procedure constructs and sends a text e-mail message using the UTL_SMTP
package.

CREATE OR REPLACE PROCEDURE send_mail (
 p_sender VARCHAR2,
 p_recipient VARCHAR2,
 p_subj VARCHAR2,
 p_msg VARCHAR2,
 p_mailhost VARCHAR2
)
IS
 v_conn UTL_SMTP.CONNECTION;
 v_crlf CONSTANT VARCHAR2(2) := CHR(13) || CHR(10);
 v_port CONSTANT PLS_INTEGER := 25;
BEGIN
 v_conn := UTL_SMTP.OPEN_CONNECTION(p_mailhost,v_port);
 UTL_SMTP.HELO(v_conn,p_mailhost);
 UTL_SMTP.MAIL(v_conn,p_sender);
 UTL_SMTP.RCPT(v_conn,p_recipient);
 UTL_SMTP.DATA(v_conn, SUBSTR(
 'Date: ' || TO_CHAR(SYSDATE,
 'Dy, DD Mon YYYY HH24:MI:SS') || v_crlf
 || 'From: ' || p_sender || v_crlf
 || 'To: ' || p_recipient || v_crlf
 || 'Subject: ' || p_subj || v_crlf
 || p_msg
 , 1, 32767));
 UTL_SMTP.QUIT(v_conn);
END;

EXEC send_mail('asmith@enterprisedb.com','pjones@enterprisedb.com','Holiday
Party','Are you planning to attend?','smtp.enterprisedb.com');

The following example uses the OPEN_DATA, WRITE_DATA, and CLOSE_DATA
procedures instead of the DATA procedure.

CREATE OR REPLACE PROCEDURE send_mail_2 (
 p_sender VARCHAR2,
 p_recipient VARCHAR2,
 p_subj VARCHAR2,

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

502

 p_msg VARCHAR2,
 p_mailhost VARCHAR2
)
IS
 v_conn UTL_SMTP.CONNECTION;
 v_crlf CONSTANT VARCHAR2(2) := CHR(13) || CHR(10);
 v_port CONSTANT PLS_INTEGER := 25;
BEGIN
 v_conn := UTL_SMTP.OPEN_CONNECTION(p_mailhost,v_port);
 UTL_SMTP.HELO(v_conn,p_mailhost);
 UTL_SMTP.MAIL(v_conn,p_sender);
 UTL_SMTP.RCPT(v_conn,p_recipient);
 UTL_SMTP.OPEN_DATA(v_conn);
 UTL_SMTP.WRITE_DATA(v_conn,'From: ' || p_sender || v_crlf);
 UTL_SMTP.WRITE_DATA(v_conn,'To: ' || p_recipient || v_crlf);
 UTL_SMTP.WRITE_DATA(v_conn,'Subject: ' || p_subj || v_crlf);
 UTL_SMTP.WRITE_DATA(v_conn,v_crlf || p_msg);
 UTL_SMTP.CLOSE_DATA(v_conn);
 UTL_SMTP.QUIT(v_conn);
END;

EXEC send_mail_2('asmith@enterprisedb.com','pjones@enterprisedb.com','Holiday
Party','Are you planning to attend?','smtp.enterprisedb.com');

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

503

8 Object Types and Objects
This chapter discusses how object-oriented programming techniques can be exploited in
SPL. Object-oriented programming as seen in programming languages such as Java and
C++ centers on the concept of objects. An object is a representation of a real-world entity
such as a person, place, or thing. The generic description or definition of a particular
object such as a person for example, is called an object type. Specific people such as
“Joe” or “Sally” are said to be objects of object type, person, or equivalently, instances of
the object type, person, or simply, person objects.

Note: The terms “database objects” and “objects” that have been used in this document
up to this point should not be confused with an object and object type as used in this
chapter. The prior usage of these terms is in a general sense to mean the entities that can
be created in a database such as tables, views, indexes, users, etc. Within the context of
this chapter, object and object type refer to specific data structures and code that are well-
defined by the SPL programming language.

As was stated at the beginning of this chapter, an object type is a description or definition
of something. This definition of an object type is characterized by two components:

• Attributes – fields that describe particular characteristics of an object instance. For
a person object, examples might be name, address, gender, date of birth, height,
weight, eye color, occupation, etc.

• Methods – programs that perform some type of function or operation on, or
related to an object. For a person object, examples might be calculating the
person’s age, displaying the person’s attributes, changing the values assigned to
the person’s attributes, etc.

The remainder of this chapter delves into the creation and usage of object types and
objects in SPL.

Note: Implementation of SPL object types and objects is following a phased approach.
As of this release, support of methods along with certain other features of most object-
oriented programming languages have not yet been implemented. This chapter
documents only those features that have currently been implemented.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

504

8.1 Object Type Components

Object types are created and stored in the database by using the following two constructs
of the SPL language:

• The object type specification - This is the public interface specifying the attributes
and method signatures of the object type.

• The object type body - This contains the implementation of the methods specified
in the object type specification.

Note: Only the object type specification and attributes are supported at this time.

8.1.1 Object Type Specification Syntax

The following is the syntax of the object type specification:

CREATE [OR REPLACE] TYPE name { IS | AS } OBJECT
 ({ attribute { datatype | objtype } } [, ...])

name is an identifier assigned to the object type. attribute is an identifier assigned to
an attribute of the object type. datatype is a base data type. objtype is a previously
defined object type.

8.2 Creating Object Types

The CREATE TYPE AS OBJECT command is used to create the object type specification.
The following example creates the addr_obj_typ object type.

CREATE OR REPLACE TYPE addr_obj_typ AS OBJECT (
 street VARCHAR2(30),
 city VARCHAR2(20),
 state CHAR(2),
 zip NUMBER(5)
);

The following object type specification creates the emp_obj_typ object type. In this
example, the addr attribute is defined by the addr_obj_typ object type.

CREATE TYPE emp_obj_typ AS OBJECT (
 empno NUMBER(4),
 ename VARCHAR2(20),
 addr ADDR_OBJ_TYP
);

8.3 Creating Object Instances

Creating instances of an object type requires the following steps.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

505

• Declare an object variable of the object type
• Initialize the declared object variable with initial values

The syntax for declaring an object variable is as follows.

object objtype

object is an identifier assigned to the object variable. objtype is the identifier of a
previously defined object type.

The next step is to initialize the object variable with values. The following is the syntax
of an object initialization expression.

[ROW] ({ expr1 | NULL } [, { expr2 | NULL }] [, ...])

ROW is an optional keyword if two or more terms are specified within the parenthesis-
enclosed, comma-delimited list. If only one term is specified, then specification of the
ROW keyword is mandatory. expr1, expr2, … are expressions that are type compatible
with the first attribute of the object type, the second attribute of the object type, etc. If
NULL is specified, the corresponding object attribute is set to null. If an attribute is of an
object type, then the corresponding expression can be null or an object initialization
expression.

Note: In Oracle, the initialization process is done with a constructor function that takes
the name of the object type. The constructor function name takes the place of the ROW
keyword in the initialization expression. Constructor functions are not supported in SPL
at this time.

In Oracle the syntax is the following:

objtype ({ expr1 | NULL } [, { expr2 | NULL }] [, ...])

The following anonymous block declares a variable of type emp_obj_typ named
v_emp, and initializes it.

DECLARE
 v_emp EMP_OBJ_TYP;
BEGIN
 v_emp := (9001,'JONES',
 ('123 MAIN STREET','EDISON','NJ',08817));
END;

Note: In Oracle the assignment statement in the anonymous block would take the
following form:

 v_emp := emp_obj_typ (9001,'JONES',
 addr_obj_typ('123 MAIN STREET','EDISON','NJ',08817));

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

506

8.4 Referencing an Object

Once an object variable is created and initialized, individual attributes can be referenced
using dot notation of the form:

object.attribute

object is the identifier assigned to the object variable. attribute is the identifier of an
object type attribute.

If attribute, itself, is of an object type, then the reference must take the form:

object.attribute.attribute_inner

attribute_inner is an identifier belonging to the object type to which attribute
references in its definition of object.

The following example expands upon the previous anonymous block to display the
values assigned to the emp_obj_typ object.

DECLARE
 v_emp EMP_OBJ_TYP;
BEGIN
 v_emp := (9001,'JONES',
 ('123 MAIN STREET','EDISON','NJ',08817));
 DBMS_OUTPUT.PUT_LINE('Employee No : ' || v_emp.empno);
 DBMS_OUTPUT.PUT_LINE('Name : ' || v_emp.ename);
 DBMS_OUTPUT.PUT_LINE('Street : ' || v_emp.addr.street);
 DBMS_OUTPUT.PUT_LINE('City/State/Zip: ' || v_emp.addr.city || ', ' ||
 v_emp.addr.state || ' ' || v_emp.addr.zip);
END;

The following is the output from this anonymous block.

Employee No : 9001
Name : JONES
Street : 123 MAIN STREET
City/State/Zip: EDISON, NJ 8817

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

507

8.5 Dropping an Object Type

The syntax for deleting an object type is as follows.

DROP TYPE objtype;

objtype is the identifier of the object type to be dropped. If the definition of objtype
contains attributes that are themselves object types, these nested object types must be
dropped last.

The following example drops the emp_obj_typ and the addr_obj_typ object types
created earlier in this chapter. emp_obj_typ must be dropped first since it contains
addr_obj_typ within its definition as an attribute.

DROP TYPE emp_obj_typ;
DROP TYPE addr_obj_typ;

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

508

9 Open Client Library
The Open Client Library provides application interoperability with the Oracle Call
Interface – an application that was formerly “locked in” can now work with either a
Postgres Plus Advanced Server or an Oracle database with minimal to no changes to the
application code. The Open Client Library was written in C code from scratch.

9.1 Comparison with Oracle Call Interface

The following diagram compares the Open Client Library and Oracle Call Interface
application stacks.

Figure 6 Open Client Library

Application Programs Same
Application Programs

Published API Compatible API

Oracle’s OCI-Lib Open Client Library

libpq

Wire-Level Protocols Wire-Level Protocols

“Black
Box” Open

Source

Oracle DBMS Advanced Server

Oracle Database Postgres Plus
Database

UPI

OracleTM Call Interface EnterpriseDB’s
Open Client Library

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

509

9.2 OCL Reference

The following tables list the functions supported in the Open Client Library. Note that
any and all header files must be supplied by the user. Postgres Plus Advanced Server
does not supply any such files.

Table 9-54 Connect, Authorize, and Initialize Functions

Function Description
OCIEnvCreate Create an OCI environment.
OCIEnvInit Initialize an OCI environment handle.
OCIInitialize Initialize the OCI environment.
OCILogoff Release a session.
OCILogon Create a logon connection.
OCILogon2 Create a logon session in various modes.
OCIServerAttach Establish an access path to a data source.
OCIServerDetach Remove access to a data source.
OCISessionBegin Create a user session.
OCISessionEnd End a user session.
OCISessionGet Get session from session pool.
OCISessionRelease Release a session.
OCITerminate Detach from shared memory subsystem.

Table 9-55 Handle and Descriptor Functions

Function Description
OCIAttrGet Get handle attributes.
OCIAttrSet Set handle attributes.
OCIDescriptorAlloc Allocate and initialize a descriptor.
OCIDescriptorFree Free an allocated descriptor.
OCIHandleAlloc Allocate and initialize a handle.
OCIHandleFree Free an allocated handle.
OCIParamGet Get a parameter descriptor.
OCIParamSet Set a parameter descriptor.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

510

Table 9-56 Bind, Define, and Describe Functions

Function Description
OCIBindByName Bind by name.
OCIBindByPos Bind by position.
OCIBindDynamic Set additional attributes after bind.
OCIBindArrayOfStruct Bind an array of structures for bulk operations.
OCIDefineByPos Define an output variable association.
OCIDefineDynamic Set additional attributes for define.
OCIDescribeAny Describe existing schema objects.
OCIStmtGetBindInfo Get bind and indicator variable names and handle.

Table 9-57 Statement Functions

Function Description
OCIStmtExecute Execute a prepared SQL statement.
OCIStmtFetch Fetch rows of data (deprecated).
OCIStmtFetch2 Fetch rows of data.
OCIStmtPrepare Prepare a SQL statement.
OCIStmtPrepare2 Prepare a SQL statement.
OCIStmtRelease Release a statement handle.

Table 9-58 Transaction Functions

Function Description
OCITransCommit Commit a transaction.
OCITransRollback Roll back a transaction.

Table 9-59 Miscellaneous Functions

Function Description
OCIClientVersion Return client library version.
OCIErrorGet Return error message.
OCIPasswordChange Change password.
OCIPing Confirm that the connection and server are active.
OCIServerVersion Get the Oracle version string.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

511

Table 9-60 Date and Datetime Functions

Function Description
OCIDateAddDays Add or subtract a number of days.
OCIDateAddMonths Add or subtract a number of months.
OCIDateAssign Assign a date.
OCIDateCheck Check if the given date is valid.
OCIDateCompare Compare two dates.
OCIDateDaysBetween Find the number of days between two dates.
OCIDateFromText Convert a string to a date.
OCIDateGetDate Get the date portion of a date.
OCIDateGetTime Get the time portion of a date.
OCIDateLastDay Get the date of the last day of the month.
OCIDateNextDay Get the date of the next day.
OCIDateSetDate Set the date portion of a date.
OCIDateSetTime Set the time portion of a date.
OCIDateSysDate Get the current system date and time.
OCIDateToText Convert a date to a string.
OCIDateTimeAssign Perform datetime assignment.
OCIDateTimeCheck Check if the date is valid.
OCIDateTimeCompare Compare two datetime values.
OCIDateTimeConstruct Construct a datetime descriptor.
OCIDateTimeConvert Convert one datetime type to another.

OCIDateTimeFromArray Convert an array of size OCI_DT_ARRAYLEN to an OCIDateTime
descriptor.

OCIDateTimeFromText Convert the given string to Oracle datetime type in the
OCIDateTime descriptor according to the specified format.

OCIDateTimeGetDate Get the date portion of a datetime value.
OCIDateTimeGetTime Get the time portion of a datetime value.
OCIDateTimeGetTimeZoneName Get the time zone name portion of a datetime value.
OCIDateTimeGetTimeZoneOffset Get the time zone (hour, minute) portion of a datetime value.

OCIDateTimeSubtract Take two datetime values as input and return their difference as an
interval.

OCIDateTimeSysTimeStamp Get the system current date and time as a timestamp with time
zone.

OCIDateTimeToArray Convert an OCIDateTime descriptor to an array.

OCIDateTimeToText Convert the given date to a string according to the specified
format.

Table 9-61 NUMBER Functions

Function Description
OCINumberAbs Compute the absolute value.
OCINumberAdd Adds NUMBERs.
OCINumberArcCos Compute the arc cosine.
OCINumberArcSin Compute the arc sine.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

512

Function Description
OCINumberArcTan Compute the arc tangent.
OCINumberArcTan2 Compute the arc tangent of two NUMBERs.
OCINumberAssign Assign one NUMBER to another.
OCINumberCeil Compute the ceiling of NUMBER.
OCINumberCmp Compare NUMBERs.
OCINumberCos Compute the cosine.
OCINumberDec Decrement a NUMBER.
OCINumberDiv Divide two NUMBERs.
OCINumberExp Raise e to the specified NUMBER power.
OCINumberFloor Compute the floor of a NUMBER.
OCINumberFromInt Convert an integer to an Oracle NUMBER.
OCINumberFromReal Convert a real to an Oracle NUMBER.
OCINumberFromText Convert a string to an Oracle NUMBER.
OCINumberHypCos Compute the hyperbolic cosine.
OCINumberHypSin Compute the hyperbolic sine.
OCINumberHypTan Compute the hyperbolic tangent.
OCINumberInc Increments a NUMBER.
OCINumberIntPower Raise a given base to an integer power.
OCINumberIsInt Test if a NUMBER is an integer.
OCINumberIsZero Test if a NUMBER is zero.
OCINumberLn Compute the natural logarithm.
OCINumberLog Compute the logarithm to an arbitrary base.
OCINumberMod Modulo division.
OCINumberMul Multiply NUMBERs.
OCINumberNeg Negate a NUMBER.
OCINumberPower Exponentiation to base e.
OCINumberPrec Round a NUMBER to a specified number of decimal places.
OCINumberRound Round a NUMBER to a specified decimal place.
OCINumberSetPi Initialize a NUMBER to Pi.
OCINumberSetZero Initialize a NUMBER to zero.
OCINumberShift Multiply by 10, shifting specified number of decimal places.
OCINumberSign Obtain the sign of a NUMBER.
OCINumberSin Compute the sine.
OCINumberSqrt Compute the square root of a NUMBER.
OCINumberSub Subtract NUMBERs.
OCINumberTan Compute the tangent.
OCINumberToInt Convert a NUMBER to an integer.
OCINumberToReal Convert a NUMBER to a real.
OCINumberToRealArray Convert an array of NUMBER to a real array.
OCINumberToText Converts a NUMBER to a string.
OCINumberTrunc Truncate a NUMBER at a specified decimal place.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

513

Table 9-62 String Functions

Function Description
OCIStringAllocSize Get allocated size of string memory in bytes.
OCIStringAssign Assign string to a string.
OCIStringAssignText Assign text string to a string.
OCIStringPtr Get string pointer.
OCIStringResize Resize string memory.
OCIStringSize Get string size.

Table 9-63 Cartridge Services and File I/O Interface Functions

Function Description
OCIFileClose Close an open file.
OCIFileExists Test to see if the file exists.
OCIFileFlush Write buffered data to a file.
OCIFileGetLength Get the length of a file.
OCIFileInit Initialize the OCIFile package.
OCIFileOpen Open a file.
OCIFileRead Read from a file into a buffer.
OCIFileSeek Change the current position in a file.
OCIFileTerm Terminate the OCIFile package.
OCIFileWrite Write buflen bytes into the file.

Table 9-64 Supported Data Types

Function Description
ANSI_DATE ANSI date
SQLT_AFC ANSI fixed character
SQLT_AVC ANSI variable character
SQLT_BDOUBLE Binary double
SQLT_BIN Binary data
SQLT_BFLOAT Binary float
SQLT_CHR Character string
SQLT_DAT Oracle date
SQLT_DATE ANSI date
SQLT_FLT Float
SQLT_INT Integer
SQLT_LBI Long binary
SQLT_LNG Long
SQLT_LVB Longer long binary
SQLT_LVC Longer longs (character)
SQLT_NUM Oracle numeric
SQLT_ODT OCI date type

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

514

Function Description
SQLT_STR Zero-terminated string
SQLT_TIMESTAMP Timestamp
SQLT_TIMESTAMP_TZ Timestamp with time zone
SQLT_TIMESTAMP_LTZ Timestamp with local time zone
SQLT_UIN Unsigned integer
SQLT_VBI VCS format binary
SQLT_VCS Variable character
SQLT_VNU Number with preceding length byte
SQLT_VST OCI string type

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

515

10 Oracle Catalog Views
The Oracle Catalog Views provide information on Oracle compatible database objects in
a manner compatible with the Oracle data dictionary views found in an Oracle database.

10.1 ALL_ALL_TABLES

The ALL_ALL_TABLES view provides information about the tables accessible by the
current user.

Name Type Description
owner TEXT User name of the table’s owner.
schema_name TEXT Name of the schema in which the table belongs.
table_name TEXT The name of the table.

tablespace_name TEXT Name of the tablespace in which the table resides if other than
the default tablespace.

temporary TEXT Y if the table is temporary; N if the table is permanent.

10.2 ALL_CONS_COLUMNS

The ALL_CONS_COLUMNS view provides information about the columns specified in
constraints placed on tables accessible by the current user.

Name Type Description
Owner TEXT User name of the constraint’s owner.
schema_name TEXT Name of the schema in which the constraint belongs.
constraint_name TEXT The name of the constraint.
table_name TEXT The name of the table to which the constraint belongs.
column_name TEXT The name of the column referenced in the constraint.
Position SMALLINT The position of the column within the object definition.
constraint_def TEXT The definition of the constraint.

10.3 ALL_CONSTRAINTS

The ALL_CONSTRAINTS view provides information about the constraints placed on
tables accessible by the current user.

Name Type Description
owner TEXT User name of the constraint’s owner.
schema_name TEXT Name of the schema in which the constraint belongs.
constraint_name TEXT The name of the constraint.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

516

Name Type Description

constraint_type TEXT

The constraint type. Possible values are:
C – check constraint
F – foreign key constraint
P – primary key constraint
U – unique key constraint
R – referential integrity constraint
V – constraint on a view
O – with read-only, on a view

table_name TEXT Name of the table to which the constraint belongs.
search_condition TEXT Search condition that applies to a check constraint.
r_owner TEXT Owner of a table referenced by a referential constraint.
r_constraint_name TEXT Name of the constraint definition for a referenced table.

delete_rule TEXT

The delete rule for a referential constraint. Possible values
are:

C – cascade
R – restrict
N – no action

deferrable BOOLEAN Specified if the constraint is deferrable (Y or N).
deferred BOOLEAN Specifies if the constraint has been deferred (Y or N).
index_owner TEXT User name of the index owner.
index_name TEXT The name of the index.
constraint_def TEXT The definition of the constraint.

10.4 ALL_DB_LINKS

The ALL_DB_LINKS view provides information about the database links accessible by
the current user.

Name Type Description
owner TEXT User name of the database link’s owner.
schema_name TEXT Name of the schema in which the link belongs.
db_link TEXT The name of the database link.

type CHARACTER
VARYING Type of remote server. Value will be either REDWOOD or EDB

username TEXT User name of the user logging in.
host TEXT Name or IP address of the remote server.

10.5 ALL_IND_COLUMNS

The ALL_IND_COLUMNS view provides information about columns included in indexes
on the tables accessible by the current user.

Name Type Description
index_owner TEXT User name of the index’s owner.
schema_name TEXT Name of the schema in which the index belongs.
index_name TEXT The name of the index.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

517

Name Type Description
table_owner TEXT User name of the table owner.
table_name TEXT The name of the table to which the index belongs.
column_name TEXT The name of the column.
column_position SMALLINT The position of the column within the index.
column_length SMALLINT The length of the column (in bytes).
char_length NUMERIC The length of the column (in characters).

descend CHAR(1) Sorted order of the column on disk. Always set to Y
(descending); included for compatibility only.

10.6 ALL_INDEXES

The ALL_INDEXES view provides information about the indexes on tables that may be
accessed by the current user.

Name Type Description
owner TEXT User name of the index’s owner.
index_schema TEXT Name of the schema in which the index belongs.
index_name TEXT The name of the index.

index_type TEXT The index type is always BTREE. Included for compatibility
only.

table_owner TEXT User name of the owner of the indexed table.
table_name TEXT The name of the indexed table.
table_type TEXT Included for compatibility only. Always set to TABLE.
uniqueness TEXT Indicates if the index is UNIQUE or NONUNIQUE.

compression CHAR(1) Always set to N (not compressed). Included for compatibility
only.

tablespace_name TEXT Name of the tablespace in which the table resides if other than
the default tablespace.

logging TEXT Always set to LOGGING. Included for compatibility only.

status TEXT Whether or not the state of the object is valid. (VALID or
INVALID).

partitioned CHAR(3) Indicates that the index is partitioned. Currently, always set to
NO.

temporary CHAR(1) Indicates that an index is on a temporary table. Always set to
N; included for compatibility only.

secondary CHAR(1) Included for compatibility only. Always set to N.
join_index CHAR(3) Included for compatibility only. Always set to NO.
dropped CHAR(3) Included for compatibility only. Always set to NO.

10.7 ALL_OBJECTS

The ALL_OBJECTS view provides information on the following database objects – tables,
indexes, sequences, views, triggers, functions, procedures, packages, and package bodies.
Note that only SPL triggers, functions, procedures, packages, and package bodies are
shown – PL/pgSQL triggers and functions do not appear in the ALL_OBJECTS view.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

518

Name Type Description
owner VARCHAR2 User name of the object’s owner.
schemaname VARCHAR2 Name of the schema in which the object belongs.
object_name VARCHAR2 Name of the object.

object_type VARCHAR2
Type of the object – possible values are: INDEX, FUNCTION,
PACKAGE, PACKAGE BODY, PROCEDURE, SEQUENCE,
SYNONYM, TABLE, TRIGGER, and VIEW.

status VARCHAR2 Whether or not the state of the object is valid. Currently,
always set to VALID.

10.8 ALL_SOURCE

The ALL_SOURCE view provides a source code listing of the following program types –
functions, procedures, triggers, package specifications, and package bodies.

Name Type Description
owner VARCHAR2 User name of the program’s owner.
schemaname VARCHAR2 Name of the schema in which the program belongs.
name VARCHAR2 Name of the program.

type VARCHAR2 Type of program – possible values are: FUNCTION, PACKAGE,
PACKAGE BODY, PROCEDURE, and TRIGGER.

line INTEGER Source code line number relative to a given program.
text VARCHAR2 Line of source code text.

10.9 ALL_SYNONYMS

The ALL_SYNONYMS view provides information on all synonyms that may be referenced
by the current user.

Name Type Description
owner VARCHAR2 User name of the synonym’s owner.
schemaname VARCHAR2 Name of the schema in which the synonym belongs.
name VARCHAR2 Name of the program.

type VARCHAR2 Type of program – possible values are: FUNCTION, PACKAGE,
PACKAGE BODY, PROCEDURE, and TRIGGER.

line INTEGER Source code line number relative to a given program.
text VARCHAR2 Line of source code text.

10.10 ALL_TAB_COLUMNS

The ALL_TAB_COLUMNS view provides information on all columns in all user-defined
tables.

Name Type Description
owner VARCHAR2 User name of the table’s owner.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

519

Name Type Description
schemaname VARCHAR2 Name of the schema in which the table belongs.
table_name VARCHAR2 Name of the table.
column_name VARCHAR2 Name of the column.
data_type VARCHAR2 Data type of the column.
data_length INTEGER Length of text columns.
data_precision INTEGER Precision (number of digits) for NUMBER columns.
data_scale INTEGER Scale of NUMBER columns.
column_id INTEGER Relative position of the column within the table.

nullable CHARACTER Whether or not the column is nullable – possible values are: Y
– column is nullable; N – column does not allow null.

data_default VARCHAR2 Default value assigned to the column.

10.11 ALL_TABLES

The ALL_TABLES view provides information on all user-defined tables.

Name Type Description
owner VARCHAR2 User name of the table’s owner.
schemaname VARCHAR2 Name of the schema in which the table belongs.
table_name VARCHAR2 Name of the table.

table_space VARCHAR2 Name of the tablespace in which the table resides if other than
the default tablespace.

status VARCHAR2 Whether or not the state of the table is valid. Currently,
always set to VALID.

10.12 ALL_TRIGGERS

The ALL_TRIGGERS view provides information about the triggers on tables that may be
accessed by the current user.

Name Type Description
owner TEXT User name of the trigger’s owner.
trigger_name TEXT The name of the trigger.

trigger_type TEXT

The type of the trigger. Possible values are:
BEFORE ROW
BEFORE STATEMENT
AFTER ROW
AFTER STATEMENT

triggering_event TEXT The event that fires the trigger.

table_owner TEXT The user name of the owner of the table on which the trigger
is defined.

base_object_type TEXT Included for compatibility only. Value will always be TABLE.
table_name TEXT The name of the table on which the trigger is defined.

referencing_name
TEXT Included for compatibility only. Value will always be

REFERENCING NEW AS NEW OLD AS OLD.
status TEXT Status indicates if the trigger is enabled (VALID) or disabled

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

520

Name Type Description
(NOTVALID).

description
TEXT Included for compatibility only. Value will always be SEE

TRIGGER BODY FOR TEXT.
trigger_body TEXT The body of the trigger.
action_statement TEXT The SQL command that executes when the trigger fires.

10.13 ALL_TYPES

The ALL_TYPES view provides information about the object types available to the
current user.

Name Type Description
owner text The owner of the object type.
schema_name text The name of the schema in which the type is defined.
type_name text The name of the type.
type_oid oid The object identifier (OID) of the type.

typecode text

The typecode of the type. Possible values are:
OBJECT
COLLECTION
OTHER

attributes integer The number of attributes in the type.

10.14 ALL_USERS

The ALL_USERS view provides information on all user names.

Name Type Description
username VARCHAR2 Name of the user.
user_id VARCHAR2 Numeric user id assigned to the user.
created TIMESTAMP Always NULL; Included for compatibility only.

10.15 ALL_VIEW_COLUMNS

The ALL_VIEW_COLUMNS view provides information on all columns in all user-defined
views.

Name Type Description
Owner VARCHAR2 User name of the view’s owner.
schemaname VARCHAR2 Name of the schema in which the view belongs.
view_name VARCHAR2 Name of the view.
column_name VARCHAR2 Name of the column.
data_type VARCHAR2 Data type of the column.
data_length INTEGER Length of text columns.
data_precision INTEGER Precision (number of digits) for NUMBER columns.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

521

Name Type Description
data_scale INTEGER Scale of NUMBER columns.
column_id INTEGER Relative position of the column within the view.

nullable CHARACTER Whether or not the column is nullable – possible values are: Y
– column is nullable; N – column does not allow null.

data_default VARCHAR2 Default value assigned to the column.

10.16 ALL_VIEWS

The ALL_VIEWS view provides information on all user-defined views.

Name Type Description
Owner VARCHAR2 User name of the view’s owner.
schemaname VARCHAR2 Name of the schema in which the view belongs.
view_name VARCHAR2 Name of the view.

status VARCHAR2 Whether or not the state of the view is valid. Currently,
always set to VALID.

10.17 DBA_ALL_TABLES

The DBA_ALL_TABLES view provides information about all tables in the database.

Name Type Description
owner VARCHAR2 User name of the table’s owner.
schema_name VARCHAR2 Name of the schema in which the table belongs.
table_name VARCHAR2 Name of the table.

tablespace_name VARCHAR2 Name of the tablespace in which the table resides if other than
the default tablespace.

status VARCHAR2 Whether or not the state of the table is valid. Currently,
always set to VALID.

temporary TEXT Y if the table is temporary; N if the table is permanent.

10.18 DBA_CONS_COLUMNS

The DBA_CONS_COLUMNS view provides information about all columns that are included
in constraints that are specified in on all tables in the database.

Name Type Description
owner TEXT User name of the constraint’s owner.
schema_name TEXT Name of the schema in which the constraint belongs.
constraint_name TEXT The name of the constraint.
table_name TEXT The name of the table to which the constraint belongs.
column_name TEXT The name of the column referenced in the constraint.
position SMALLINT The position of the column within the object definition.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

522

Name Type Description
constraint_def TEXT The definition of the constraint.

10.19 DBA_CONSTRAINTS

The DBA_CONSTRAINTS view provides information about all constraints on tables in the
database.

Name Type Description
owner TEXT User name of the constraint’s owner.
schema_name TEXT Name of the schema in which the constraint belongs.
constraint_name TEXT The name of the constraint.

constraint_type TEXT

The constraint type. Possible values are:
C – check constraint
F – foreign key constraint
P – primary key constraint
U – unique key constraint
R – referential integrity constraint
V – constraint on a view
O – with read-only, on a view

table_name TEXT Name of the table to which the constraint belongs.
search_condition TEXT Search condition that applies to a check constraint.
r_owner TEXT Owner of a table referenced by a referential constraint.
r_constraint_name TEXT Name of the constraint definition for a referenced table.

delete_rule TEXT

The delete rule for a referential constraint. Possible values
are:

C – cascade
R - restrict
N – no action

deferrable BOOLEAN Specified if the constraint is deferrable (Y or N).
deferred BOOLEAN Specifies if the constraint has been deferred (Y or N).
index_owner TEXT User name of the index owner.
index_name TEXT The name of the index.
constraint_def TEXT The definition of the constraint.

10.20 DBA_DB_LINKS

The DBA_DB_LINKS view provides information about all database links in the database.

Name Type Description
owner TEXT User name of the database link’s owner.
schema_name TEXT Name of the schema in which the link belongs.
db_link TEXT The name of the database link.

type CHARACTER
VARYING Type of remote server. Value will be either REDWOOD or EDB

username TEXT User name of the user logging in.
host TEXT Name or IP address of the remote server.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

523

10.21 DBA_IND_COLUMNS

The DBA_IND_COLUMNS view provides information about all columns included in
indexes, on all tables in the database.

Name Type Description
index_owner TEXT User name of the index’s owner.
schema_name TEXT Name of the schema in which the index belongs.
index_name TEXT Name of the index.
table_owner TEXT User name of the table’s owner.
table_name TEXT Name of the table in which the index belongs.
column_name TEXT Name of column or attribute of object column.
column_position SMALLINT The position of the column in the index.
column_length SMALLINT The length of the column (in bytes).
char_length NUMERIC The length of the column (in characters).

descend CHAR(1) Sorted order of the column on disk. Always set to Y
(descending); included for compatibility only.

10.22 DBA_INDEXES

The DBA_INDEXES view provides information about all indexes in the database.

Name Type Description
owner TEXT User name of the index’s owner.
index_schema TEXT Name of the schema in which the index belongs.
index_name TEXT The name of the index.

index_type TEXT The index type is always BTREE. Included for compatibility
only.

table_owner TEXT User name of the owner of the indexed table.
table_name TEXT The name of the indexed table.

table_type TEXT Included for compatibility only. Currently, always set to
TABLE.

uniqueness TEXT Indicates if the index is UNIQUE or NONUNIQUE.

compression CHAR(1) Always set to N (not compressed). Included for compatibility
only.

tablespace_name TEXT Name of the tablespace in which the table resides if other than
the default tablespace.

logging TEXT Included for compatibility only. Currently always set to
LOGGING.

status TEXT Whether or not the state of the object is valid. (VALID or
INVALID).

partitioned CHAR(3) Indicates that the index is partitioned. Currently, always set to
NO.

temporary CHAR(1) Indicates that an index is on a temporary table. Currently,
always set to N.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

524

Name Type Description
secondary CHAR(1) Included for compatibility only. Currently always set to N.
join_index CHAR(3) Included for compatibility only. Currently always set to NO.
dropped CHAR(3) Included for compatibility only. Currently always set to NO.

10.23 DBA_JOBS

The DBA_JOBS view provides information about all jobs in the database.

Name Type Description
Job INTEGER The identifier of the job (Job ID).
log_user TEXT The name of the user that submitted the job.
priv_user TEXT Same as log_user. Included for compatibility only.
schema_user TEXT The name of the schema used to parse the job.

last_date TIMESTAMP WITH
TIME ZONE The last date that this job executed successfully.

last_sec TEXT Same as last_date.

this_date TIMESTAMP WITH
TIME ZONE The date that the job began executing.

this_sec TEXT Same as this_date

next_date TIMESTAMP WITH
TIME ZONE The next date that this job will be executed.

next_sec TEXT Same as next_date.
Total_time INTERVAL The execution time of this job (in seconds).

broken TEXT
If Y, no attempt will be made to run this job.
If N, this job will attempt to execute.

interval TEXT Determines how often the job will repeat.

What TEXT The job definition (PL/SQL code block) that runs when the
job executes.

failures BIGINT The number of times that the job has failed to complete since
it’s last successful execution.

nls_env VARCHAR2
(4000) Always NULL. Provided for compatibility only.

misc_env BYTEA Always NULL. Provided for compatibility only.
instance NUMERIC Always 0. Provided for compatibility only.

10.24 DBA_OBJECTS

The DBA_OBJECTS view provides information about all objects in the database.

Name Type Description
owner VARCHAR2 User name of the object’s owner.
schema_name VARCHAR2 Name of the schema in which the object belongs.
object_name VARCHAR2 Name of the object.

object_type VARCHAR2
Type of the object – possible values are: INDEX, FUNCTION,
PACKAGE, PACKAGE BODY, PROCEDURE, SEQUENCE,
SYNONYM, TABLE, TRIGGER, and VIEW.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

525

Name Type Description

status VARCHAR2 Whether or not the state of the object is valid. Currently,
always set to VALID.

temporary TEXT Y if the table is temporary; N if the table is permanent.

10.25 DBA_ROLE_PRIVS

The DBA_ROLE_PRIVS view provides information on all roles that have been granted to
users. A row is created for each role to which a user has been granted.

Name Type Description
grantee VARCHAR2 User name to whom the role was granted.
granted_role VARCHAR2 Name of the role granted to the grantee.

admin_option VARCHAR2 YES if the role was granted with the admin option, NO
otherwise.

default_role VARCHAR2

YES if the role is automatically enabled when the grantee
creates a session, NO otherwise. Based on rolinherit in
pg_roles. If rolinherit is TRUE, default_role is YES.
If rolinherit is FALSE, default_role is NO.

10.26 DBA_ROLES

The DBA_ROLES view provides information on all roles with the NOLOGIN attribute
(groups).

Name Type Description
role VARCHAR2 Name of a role having the NOLOGIN attribute – i.e., a group.

password_required VARCHAR2 Whether or not a password is required to use the role. Always
N. Included for compatibility only.

10.27 DBA_SOURCE

The DBA_SOURCE view provides the source code listing of all objects in the database.

Name Type Description
owner VARCHAR2 User name of the program’s owner.
schemaname VARCHAR2 Name of the schema in which the program belongs.
name VARCHAR2 Name of the program.

type VARCHAR2 Type of program – possible values are: FUNCTION, PACKAGE,
PACKAGE BODY, PROCEDURE, and TRIGGER.

line INTEGER Source code line number relative to a given program.
text VARCHAR2 Line of source code text.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

526

10.28 DBA_SYNONYMS

The DBA_SYNONYM view provides information about all synonyms in the database.

Name Type Description
owner VARCHAR2 User name of the synonym’s owner.
schema_name TEXT Name of the schema in which the program belongs.
synonym_name VARCHAR2 Name of the synonym.

table_owner VARCHAR2 User name of the table’s owner on which the synonym is
defined.

table_name VARCHAR2 Name of the table on which the synonym is defined.
db_link VARCHAR2 Name of any associated database link.

10.29 DBA_TABLES

The DBA_TABLES view provides information about all tables in the database.

Name Type Description
owner TEXT User name of the table’s owner.
schemaname TEXT Name of the schema in which the table belongs.
table_name TEXT Name of the table.

table_space TEXT Name of the tablespace in which the table resides if other than
the default tablespace.

status CHAR(5) Whether or not the state of the table is valid. Currently,
always set to VALID.

temporary CHAR(1) Y if the table is temporary; N if the table is permanent.

10.30 DBA_TRIGGERS

The DBA_TRIGGERS view provides information about all triggers in the database.

Name Type Description
owner TEXT User name of the trigger’s owner.
trigger_name TEXT The name of the trigger.

trigger_type TEXT

The type of the trigger. Possible values are:
BEFORE ROW
BEFORE STATEMENT
AFTER ROW
AFTER STATEMENT

triggering_event TEXT The event that fires the trigger.

table_owner TEXT The user name of the owner of the table on which the trigger
is defined.

base_object_type TEXT Included for compatibility only. Value will always be TABLE.
table_name TEXT The name of the table on which the trigger is defined.

referencing_name
TEXT Included for compatibility only. Value will always be

REFERENCING NEW AS NEW OLD AS OLD.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

527

Name Type Description

status
TEXT Status indicates if the trigger is enabled (VALID) or disabled

(NOTVALID).

description
TEXT Included for compatibility only. Value will always be SEE

TRIGGER BODY FOR TEXT.
trigger_body TEXT The body of the trigger.
action_statement TEXT The SQL command that executes when the trigger fires.

10.31 DBA_TYPES

The DBA_TYPES view provides information about all object types in the database.

Name Type Description
Owner TEXT The owner of the object type.
schema_name TEXT The name of the schema in which the type is defined.
type_name TEXT The name of the type.
type_oid OID The object identifier (OID) of the type.

typecode TEXT

The typecode of the type. Possible values are:
OBJECT
COLLECTION
OTHER

attributes INTEGER The number of attributes in the type.

10.32 DBA_USERS

The DBA_USERS view provides information about all users of the database.

Name Type Description
Username TEXT User name of the user.
user_id OID ID number of the user.
password VARCHAR2(30) The password (encrypted) of the user.

account_status VARCHAR2(32)

The current status of the account. Possible values
are:

EXPIRED & LOCKED
OPEN
LOCKED

lock_date
TIMESTAMP
W/O ZONE

Included for compatibility only. The value is always
NULL.

expiry_date TIMESTAMP
W/O ZONE The expiration date of the account.

default_tablespace VARCHAR2(30) The default tablespace associated with the account.

temporary_tablespace VARCHAR2(30) Included for compatibility only. The value will
always be '' (an empty string).

created
TIMESTAMP
W/O ZONE

Included for compatibility only. The value is always
NULL.

profile VARCHAR2(30) Included for compatibility only. The value is always
NULL.

initial_rsrc_consumer_group VARCHAR2(30) Included for compatibility only. The value is always

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

528

Name Type Description
NULL.

external_name
VARCHAR2
(4000)

Included for compatibility only. The value is always
NULL.

10.33 DBA_VIEWS

The DBA_VIEWS view provides information about all views in the database.

Name Type Description
owner VARCHAR2 User name of the view’s owner.
schema_name VARCHAR2 Name of the schema in which the view belongs.
view_name VARCHAR2 Name of the view.
text TEXT The text of the SELECT statement that defines the view.

10.34 USER_ALL_TABLES

The USER_ALL_TABLES view provides information about all tables owned by the current
user.

Name Type Description
schema_name TEXT Name of the schema in which the table belongs.
table_name TEXT Name of the table.

tablespace_name TEXT Name of the tablespace in which the table resides if other than
the default tablespace.

status VARCHAR2(5) Whether or not the state of the table is valid. Currently,
always set to VALID.

temporary TEXT Y if the table is temporary; N if the table is permanent.

10.35 USER_CONS_COLUMNS

The USER_CONS_COLUMNS view provides information about all columns that are
included in constraints in tables that are owned by the current user.

Name Type Description
owner TEXT User name of the constraint’s owner.
schema_name TEXT Name of the schema in which the constraint belongs.
constraint_name TEXT The name of the constraint.
table_name TEXT The name of the table to which the constraint belongs.
column_name TEXT The name of the column referenced in the constraint.
position SMALLINT The position of the column within the object definition.
constraint_def TEXT The definition of the constraint.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

529

10.36 USER_CONSTRAINTS

The USER_CONSTRAINTS view provides information about all constraints placed on
tables that are owned by the current user.

Name Type Description
schema_name TEXT Name of the schema in which the constraint belongs.
constraint_name TEXT The name of the constraint.

constraint_type TEXT

The constraint type. Possible values are:
C – check constraint
F – foreign key constraint
P – primary key constraint
U – unique key constraint
R – referential integrity constraint
V – constraint on a view
O – with read-only, on a view

table_name TEXT Name of the table to which the constraint belongs.
search_condition TEXT Search condition that applies to a check constraint.
r_owner TEXT Owner of a table referenced by a referential constraint.
r_constraint_name TEXT Name of the constraint definition for a referenced table.

delete_rule TEXT

The delete rule for a referential constraint. Possible values
are:

C – cascade
R – restrict
N – no action

deferrable BOOLEAN Specified if the constraint is deferrable (Y or N).
deferred BOOLEAN Specifies if the constraint has been deferred (Y or N).
index_owner TEXT User name of the index owner.
index_name TEXT The name of the index.
constraint_def TEXT The definition of the constraint.

10.37 USER_DB_LINKS

The USER_DB_LINKS view provides information about all database links that are owned
by the current user.

Name Type Description
schema_name TEXT Name of the schema in which the link belongs.
db_link TEXT The name of the database link.
type VARCHAR2 Type of remote server. Value will be either REDWOOD or EDB
username TEXT User name of the user logging in.
password TEXT Password used to authenticate on the remote server.
host TEXT Name or IP address of the remote server.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

530

10.38 USER_IND_COLUMNS

The USER_IND_COLUMNS view provides information about all columns referred to in
indexes on tables that are owned by the current user.

Name Type Description
schema_name TEXT Name of the schema in which the index belongs.
index_name TEXT The name of the index.
table_owner TEXT User name of the table owner.
table_name TEXT The name of the table to which the index belongs.
column_name TEXT The name of the column.
column_position SMALLINT The position of the column within the index.
column_length SMALLINT The length of the column (in bytes).
char_length NUMERIC The length of the column (in characters).

descend CHAR(1) Sorted order of the column on disk. Always set to Y
(descending); included for compatibility only.

10.39 USER_INDEXES

The USER_INDEXES view provides information about all indexes on tables that are
owned by the current user.

Name Type Description
owner TEXT User name of the index’s owner.
index_schema TEXT Name of the schema in which the index belongs.
index_name TEXT The name of the index.

index_type TEXT The index type is always BTREE. Included for compatibility
only.

table_owner TEXT User name of the owner of the indexed table.
table_name TEXT The name of the indexed table.

table_type TEXT Included for compatibility only. Currently, always set to
TABLE.

uniqueness TEXT Indicates if the index is UNIQUE or NONUNIQUE.

compression CHAR(1) Always set to N (not compressed). Included for compatibility
only.

tablespace_name TEXT Name of the tablespace in which the table resides if other than
the default tablespace.

logging TEXT Included for compatibility only. Currently always set to
LOGGING.

status TEXT Whether or not the state of the object is valid. (VALID or
INVALID).

partitioned CHAR(3) Indicates that the index is partitioned. Currently, always set to
NO.

temporary CHAR(1) Indicates that an index is on a temporary table. Currently,
always set to N.

secondary CHAR(1) Included for compatibility only. Currently always set to N.
join_index CHAR(3) Included for compatibility only. Currently always set to NO.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

531

Name Type Description
dropped CHAR(3) Included for compatibility only. Currently always set to NO.

10.40 USER_JOBS

The USER_JOBS view provides information about all jobs owned by the current user.

Name Type Description
job INTEGER The identifier of the job (Job ID).
log_user TEXT The name of the user that submitted the job.
priv_user TEXT Same as log_user. Included for compatibility only.
schema_user TEXT The name of the schema used to parse the job.

last_date TIMESTAMP WITH
TIME ZONE The last date that this job executed successfully.

last_sec TEXT Same as last_date.

this_date TIMESTAMP WITH
TIME ZONE The date that the job began executing.

this_sec TEXT Same as this_date

next_date TIMESTAMP WITH
TIME ZONE The next date that this job will be executed.

next_sec TEXT Same as next_date.
total_time integer The execution time of this job (in seconds).

broken TEXT
If Y, no attempt will be made to run this job.
If N, this job will attempt to execute.

interval TEXT Determines how often the job will repeat.

what TEXT The job definition (PL/SQL code block) that runs when the
job executes.

failures BIGINT The number of times that the job has failed to complete since
it’s last successful execution.

nls_env VARCHAR2(4000) Always NULL. Provided for compatibility only.
misc_env BYTEA Always NULL. Provided for compatibility only.
instance NUMERIC Always 0. Provided for compatibility only.

10.41 USER_OBJECTS

The USER_OBJECTS view provides information about all objects that are owned by the
current user.

Name Type Description
owner VARCHAR2 User name of the object’s owner.
schemaname VARCHAR2 Name of the schema in which the object belongs.
object_name VARCHAR2 Name of the object.

object_type VARCHAR2
Type of the object – possible values are: INDEX, FUNCTION,
PACKAGE, PACKAGE BODY, PROCEDURE, SEQUENCE,
SYNONYM, TABLE, TRIGGER, and VIEW.

status VARCHAR2 Whether or not the state of the object is valid. Currently,

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

532

Name Type Description
always set to VALID.

10.42 USER_SOURCE

The USER_SOURCE view provides information about all programs owned by the current
user.

Name Type Description
schema_name VARCHAR2 Name of the schema in which the program belongs.
name VARCHAR2 Name of the program.

type VARCHAR2 Type of program – possible values are: FUNCTION, PACKAGE,
PACKAGE BODY, PROCEDURE, and TRIGGER.

line INTEGER Source code line number relative to a given program.
text VARCHAR2 Line of source code text.

10.43 USER_SYNONYMS
The

ALL_SYNONYMS view provides information about all synonyms owned by the current
user.

Name Type Description
owner TEXT User name of the synonym’s owner.
synonym_name TEXT Name of the synonym.

object_owner
TEXT User name of the table’s owner on which the synonym is

defined.
object_name TEXT Name of the table on which the synonym is defined.
synac1 ACLITEM[] The access control list for the synonym.
status VARCHAR2(5) Always VALID; included for compatibility only.
db_link TEXT Name of any associated database link.

10.44 USER_TAB_COLUMNS

The USER_TAB_COLUMNS view displays information about all columns in tables owned
by the current user.

Name Type Description
owner TEXT User name of the table’s owner.
schemaname TEXT Name of the schema in which the table belongs.
table_name TEXT Name of the table.
column_name TEXT Name of the column.
data_type VARCHAR2 Data type of the column.
data_length INTEGER Length of text columns.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

533

Name Type Description
data_precision INTEGER Precision (number of digits) for NUMBER columns.
data_scale INTEGER Scale of NUMBER columns.
column_id INTEGER Relative position of the column within the table.

nullable BPCHAR Whether or not the column is nullable – possible values are: Y
– column is nullable; N – column does not allow null.

data_default VARCHAR2 Default value assigned to the column.

10.45 USER_TABLES

The USER_TABLES view displays information about all tables owned by the current user.

Name Type Description
owner TEXT User name of the table’s owner.
schemaname TEXT Name of the schema in which the table belongs.
table_name TEXT Name of the table.

table_space
TEXT Name of the tablespace in which the table resides if other than

the default tablespace.

status VARCHAR2(5) Whether or not the state of the table is valid. Currently,
always set to VALID.

10.46 USER_TRIGGERS

The USER_TRIGGERS view displays information about all triggers on tables owned by
the current user.

Name Type Description
trigger_name TEXT The name of the trigger.

trigger_type TEXT

The type of the trigger. Possible values are:
BEFORE ROW
BEFORE STATEMENT
AFTER ROW
AFTER STATEMENT

triggering_event TEXT The event that fires the trigger.

table_owner TEXT The user name of the owner of the table on which the trigger
is defined.

base_object_type TEXT Included for compatibility only. Value will always be TABLE.
table_name TEXT The name of the table on which the trigger is defined.

referencing_name
TEXT Included for compatibility only. Value will always be

REFERENCING NEW AS NEW OLD AS OLD.

status
TEXT Status indicates if the trigger is enabled (VALID) or disabled

(NOTVALID).

description
TEXT Included for compatibility only. Value will always be SEE

TRIGGER BODY FOR TEXT.
trigger_body TEXT The body of the trigger.
action_statement TEXT The SQL command that executes when the trigger fires.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

534

10.47 USER_TYPES

The USER_TYPES view provides information about all object types owned by the current
user.

Name Type Description
schema_name TEXT The name of the schema in which the type is defined.
type_name TEXT The name of the type.
type_oid OID The object identifier (OID) of the type.

typecode TEXT

The typecode of the type. Possible values are:
OBJECT
COLLECTION
OTHER

attributes INTEGER The number of attributes in the type.

10.48 USER_USERS

The USER_USERS view provides information about the current user.

Name Type Description
username TEXT User name of the user.
user_id OID ID number of the user.

account_status VARCHAR2(32)

The current status of the account. Possible values
are:

EXPIRED & LOCKED
OPEN
LOCKED

lock_date
TIMESTAMP
W/O ZONE

Included for compatibility only. The value is always
NULL.

expiry_date TIMESTAMP
W/O ZONE The expiration date of the account.

default_tablespace VARCHAR2(30) The default tablespace associated with the account.

temporary_tablespace VARCHAR2(30) Included for compatibility only. The value will
always be '' (an empty string).

created
TIMESTAMP
W/O ZONE

Included for compatibility only. The value will
always be NULL.

initial_rsrc_consumer_group VARCHAR2(30) Included for compatibility only. The value will
always be NULL.

external_name
VARCHAR2
(4000)

Included for compatibility only. The value will
always be NULL.

10.49 USER_VIEW_COLUMNS

The USER_VIEW_COLUMNS view provides information about all columns in views owned
by the current user.

Name Type Description
Owner VARCHAR2 User name of the view’s owner.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

535

Name Type Description
schemaname VARCHAR2 Name of the schema in which the view belongs.
view_name VARCHAR2 Name of the view.
column_name VARCHAR2 Name of the column.
data_type VARCHAR2 Data type of the column.
data_length INTEGER Length of text columns.
data_precision INTEGER Precision (number of digits) for NUMBER columns.
data_scale INTEGER Scale of NUMBER columns.
column_id INTEGER Relative position of the column within the view.

nullable CHARACTER Whether or not the column is nullable – possible values are: Y
– column is nullable; N – column does not allow null.

data_default VARCHAR2 Default value assigned to the column.

10.50 USER_VIEWS

The USER_VIEWS view provides information about all views owned by the current user.

Name Type Description
Owner VARCHAR2 User name of the view’s owner.
schemaname VARCHAR2 Name of the schema in which the view belongs.
view_name VARCHAR2 Name of the view.

status VARCHAR2 Whether or not the state of the view is valid. Currently,
always set to VALID.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

536

11 Utilities
The sections in this chapter describe various utility programs. These include:

• EDB*Plus
• EDB*Loader
• EDB*Wrap
• Dynamic Runtime Instrumentation

11.1 EDB*Plus

EDB*Plus is a utility program that provides a command line user interface to the Postgres
Plus Advanced Server. EDB*Plus accepts SQL commands, SPL anonymous blocks, and
EDB*Plus commands. EDB*Plus commands are compatible with Oracle SQL*Plus
commands and provide various capabilities including:

• Querying certain database objects
• Executing stored procedures
• Formatting output from SQL commands
• Executing batch scripts
• Recording output

The following section describes how to connect to an Postgres Plus Advanced Server
database using EDB*Plus. The final section provides a summary of the EDB*Plus
commands.

11.1.1 Starting EDB*Plus

EDB*Plus can be started by selecting it from the application menu or by running the
EDB*Plus program directly from the operating system command line. For the latter, the
EDB*Plus program is invoked by running edbplus from the edbplus subdirectory
located under the Postgres Plus Advanced Server home directory as follows:

edbplus [-S[ILENT]] [login | /NOLOG] [@scriptfile[.ext]]

-SILENT

If specified, the EDB*Plus sign-on banner is suppressed along with all prompts.

login

Login information for connecting to the database server and database. login
takes the following format. (There must be no white space within the login
information.)

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

537

username[/password][@{connectstring | variable }]

username is a database username with which to connect to the database.
password is the password for username. If password is omitted, but a
password is required, EDB*Plus will prompt for the password. Either
@connectstring or @variable may be specified where connectstring is
the database connection string or variable is a variable defined in the
login.sql file that contains a database connection string. (The login.sql file
can be found in the edbplus subdirectory of the Postgres Plus Advanced Server
home directory.) In either case, the database connection string takes the following
format. (There must be no white space within the connection string.)

host[:port][/dbname]]

host is the hostname on which the database server resides. If neither
@connectstring nor @variable nor /NOLOG is specified, the default host is
assumed to be the localhost. port is the port number receiving connections on the
database server. If not specified, the default is 5444. dbname is the name of the
database to connect to. If not specified the default is edb.

/NOLOG

If /NOLOG is specified, EDB*Plus is started without establishing a database
connection. SQL commands and EDB*Plus commands that require a database
connection cannot be used in this mode. The CONNECT command can be
subsequently given to connect to a database after starting EDB*Plus with the
/NOLOG option.

scriptfile[.ext]

scriptfile is the name of a file residing in the current working directory,
containing SQL and/or EDB*Plus commands that will be automatically executed
after startup of EDB*Plus. ext is the filename extension. If the filename
extension is sql, then the .sql extension may be omitted when specifying
scriptfile. When creating a script file, always name the file with an extension,
otherwise it will not be accessible by EDB*Plus. (EDB*Plus will always assume
a .sql extension on filenames that are specified with no extension.)

The following example shows user enterprisedb with password, password,
connecting to database edb running on a database server on the localhost at port 5444.

C:\EnterpriseDB\8.3\edbplus>edbplus enterprisedb/password
Connected to EnterpriseDB 8.3.0.10 (localhost:5444/edb) AS enterprisedb

EDB*Plus: Release 8.3 - Beta (Build 12)
Copyright (c) 2008, EnterpriseDB Corporation. All rights reserved.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

538

SQL>

The following example shows user enterprisedb with password, password,
connecting to database edb running on a database server on the localhost at port 5445.

C:\EnterpriseDB\8.3\edbplus>edbplus enterprisedb/password@localhost:5445/edb
Connected to EnterpriseDB 8.3.0.10 (localhost:5445/edb) AS enterprisedb

EDB*Plus: Release 8.3 - Beta (Build 12)
Copyright (c) 2008, EnterpriseDB Corporation. All rights reserved.

SQL>

Using variable hr_5445 in the login.sql file, the following illustrates how it is used
to connect to database hr on localhost at port 5445.

C:\EnterpriseDB\8.3\edbplus>edbplus enterprisedb/password@hr_5445
Connected to EnterpriseDB 8.3.0.10 (localhost:5445/hr) AS enterprisedb

EDB*Plus: Release 8.3 - Beta (Build 12)
Copyright (c) 2008, EnterpriseDB Corporation. All rights reserved.

SQL>

The following is the content of the login.sql file used in the previous example.

define edb="localhost:5445/edb"
define hr_5445="localhost:5445/hr"

The following example executes a script file, dept_query.sql after connecting to
database edb on server localhost at port 5444.

C:\EnterpriseDB\8.3\edbplus>edbplus enterprisedb/password @dept_query
Connected to EnterpriseDB 8.3.0.10 (localhost:5444/edb) AS enterprisedb

SQL>
SELECT * FROM dept;

DEPTNO DNAME LOC
------ -------------- -------------
 10 ACCOUNTING NEW YORK
 20 RESEARCH DALLAS
 30 SALES CHICAGO
 40 OPERATIONS BOSTON

SQL>
EXIT

The following is the content of file dept_query.sql used in the previous example.

SET PAGESIZE 9999
SET ECHO ON
SELECT * FROM dept;

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

539

EXIT

11.1.2 Command Summary

This section contains a summary of EDB*Plus commands.

11.1.2.1 ACCEPT

The ACCEPT command displays a prompt and waits for the user’s keyboard input. The
value input by the user is placed in the specified variable.

ACC[EPT] variable

The following example creates a new variable named my_name, accepts a value of John
Smith, then displays the value using the DEFINE command.

SQL> ACCEPT my_name
Enter value for my_name: John Smith
SQL> DEFINE my_name
DEFINE MY_NAME = "John Smith"

11.1.2.2 APPEND

APPEND is a line editor command appends the given text to the end of the current line in
the SQL buffer

A[PPEND] text

In the following example, a SELECT command is built in the SQL buffer using the
APPEND command. Note that two spaces are placed between the APPEND command and
the WHERE clause in order to separate dept and WHERE by one space in the SQL buffer.

SQL> APPEND SELECT * FROM dept
SQL> LIST
 1* SELECT * FROM dept
SQL> APPEND WHERE deptno = 10
SQL> LIST
 1* SELECT * FROM dept WHERE deptno = 10

11.1.2.3 CHANGE

CHANGE is a line editor command performs a search-and-replace on the current line in the
SQL buffer.

C[HANGE] /from/[to/]

If to/ is specified, the first occurrence of text from in the current line is changed to text
to. If to/ is omitted, the first occurrence of text from in the current line is deleted.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

540

The following sequence of commands makes line 3 the current line, then changes the
department number in the WHERE clause from 20 to 30.

SQL> LIST
 1 SELECT empno, ename, job, sal, comm
 2 FROM emp
 3 WHERE deptno = 20
 4* ORDER BY empno
SQL> 3
 3* WHERE deptno = 20
SQL> CHANGE /20/30/
 3* WHERE deptno = 30
SQL> LIST
 1 SELECT empno, ename, job, sal, comm
 2 FROM emp
 3 WHERE deptno = 30
 4* ORDER BY empno

11.1.2.4 CLEAR

The CLEAR command removes the contents of the SQL buffer, deletes all column
definitions set with the COLUMN command, or clears the screen.

CL[EAR] [BUFF[ER] | SQL | COL[UMNS] | SCR[EEN]]

BUFFER | SQL

Clears the SQL buffer.

COLUMNS

Removes column definitions.

SCREEN

Clears the screen. This is the default if no options are specified.

11.1.2.5 COLUMN

The COLUMN command controls formatting of output. The formatting attributes set by
using the COLUMN command remain in effect only for the duration of the current session.

COL[UMN]
 [column
 { CLE[AR] |
 { FOR[MAT] spec |
 HEA[DING] text |
 { OFF | ON }
 } [...]
 }
]

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

541

If the COLUMN command is specified with no subsequent options, formatting options for
current columns in effect for the session are displayed.

If the COLUMN command is followed by a column name, then the column name may be
followed by one of the following:

• No other options
• CLEAR
• Any combination of FORMAT, HEADING, and one of OFF or ON

column

Name of a column in a table to which subsequent column formatting options are
to apply. If no other options follow column, then the current column formatting
options if any, of column are displayed.

CLEAR

The CLEAR option reverts all formatting options back to their defaults for
column. If the CLEAR option is specified, it must be the only option specified.

spec

Format specification to be applied to column. For character columns, spec takes
the following format:

An

n is a positive integer that specifies the column width in characters within which
to display the data. Data in excess of n will wrap around with the specified
column width.

For numeric columns, spec is comprised of the following elements.

Table 10-65 Numeric Column Format Elements

Element Description
$ Display a leading dollar sign.
, Display a comma in the indicated position.
. Marks the location of the decimal point.
0 Display leading zeros.
9 Number of significant digits to display.

If loss of significant digits occurs due to overflow of the format, then all #’s are
displayed.

text

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

542

Text to be used for the column heading of column.

OFF | ON

If OFF is specified, formatting options are reverted back to their defaults, but are
still available within the session. If ON is specified, the formatting options
specified by previous COLUMN commands for column within the session are re-
activated.

The following example shows the effect of changing the display width of the job
column.

SQL> SET PAGESIZE 9999
SQL> COLUMN job FORMAT A5
SQL> COLUMN job
COLUMN JOB ON
FORMAT A5
wrapped
SQL> SELECT empno, ename, job FROM emp;

EMPNO ENAME JOB
----- ---------- -----
 7369 SMITH CLERK
 7499 ALLEN SALES
 MAN

 7521 WARD SALES
 MAN

 7566 JONES MANAG
 ER

 7654 MARTIN SALES
 MAN

 7698 BLAKE MANAG
 ER

 7782 CLARK MANAG
 ER

 7788 SCOTT ANALY
 ST

 7839 KING PRESI
 DENT

 7844 TURNER SALES
 MAN

 7876 ADAMS CLERK
 7900 JAMES CLERK
 7902 FORD ANALY
 ST

 7934 MILLER CLERK

14 rows retrieved.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

543

The following example applies a format to the sal column.

SQL> COLUMN sal FORMAT $99,999.00
SQL> COLUMN
COLUMN JOB ON
FORMAT A5
wrapped

COLUMN SAL ON
FORMAT $99,999.00
wrapped
SQL> SELECT empno, ename, job, sal FROM emp;

EMPNO ENAME JOB SAL
----- ---------- ----- -----------
 7369 SMITH CLERK $800.00
 7499 ALLEN SALES $1,600.00
 MAN

 7521 WARD SALES $1,250.00
 MAN

 7566 JONES MANAG $2,975.00
 ER

 7654 MARTIN SALES $1,250.00
 MAN

 7698 BLAKE MANAG $2,850.00
 ER

 7782 CLARK MANAG $2,450.00
 ER

 7788 SCOTT ANALY $3,000.00
 ST

 7839 KING PRESI $5,000.00
 DENT

 7844 TURNER SALES $1,500.00
 MAN

 7876 ADAMS CLERK $1,100.00
 7900 JAMES CLERK $950.00
 7902 FORD ANALY $3,000.00
 ST

 7934 MILLER CLERK $1,300.00

14 rows retrieved.

11.1.2.6 CONNECT

Change the database connection to a different user and/or connect to a different database.
There must be no white space between any of the parameters following the CONNECT
command.

CONNECT username[/password][@{connectstring | variable }]

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

544

The CONNECT command parameters have the same meaning as those of the login
parameter for starting up EDB*Plus from the command line. See the description of the
login parameter in Section 11.1.1.

In the following example, the database connection is changed to database edb on the
localhost at port 5445 with username, smith.

SQL> CONNECT smith/mypassword@localhost:5445/edb
Connected to EnterpriseDB 8.3.0.10 (localhost:5445/edb) AS smith

From within the session shown above, the connection is changed to username
enterprisedb. Also note that the host defaults to the localhost, the port defaults to
5444 (which is not the same as the port previously used), and the database defaults to
edb.

SQL> CONNECT enterprisedb/password
Connected to EnterpriseDB 8.3.0.10 (localhost:5444/edb) AS enterprisedb

11.1.2.7 DEFINE

The DEFINE command creates or replaces the value of a user variable (also called a
substitution variable).

DEF[INE] [variable [= text]]

If the DEFINE command is given without any parameters, all current variables and their
values are displayed.

If DEFINE variable is given, only variable is displayed with its value.

DEFINE variable = text assigns text to variable. text may be optionally
enclosed within single or double quotation marks. Quotation marks must be used if text
contains space characters.

The following example defines two variables, dept and name.

SQL> DEFINE dept = 20
SQL> DEFINE name = 'John Smith'
SQL> DEFINE
DEFINE EDB = "localhost:5445/edb"
DEFINE DEPT = "20"
DEFINE NAME = "John Smith"

Note: The variable EDB is read from the login.sql file located in the edbplus
subdirectory of the Postgres Plus Advanced Server home directory.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

545

11.1.2.8 DEL

DEL is a line editor command that deletes one or more lines from the SQL buffer.

DEL [n | n m | n * | n L[AST] | * | * n | * L[AST] |
 L[AST]]

The parameters specify which lines are to be deleted from the SQL buffer. Two
parameters specify the start and end of a range of lines to be deleted. If the DEL command
is given with no parameters, the current line is deleted.

The following are the meanings of the parameters.

n

n is an integer representing the nth line

n m

n and m are integers where m is greater than n representing the nth through the mth
lines

*

Current line

LAST

Last line

In the following example, the fifth and sixth lines containing columns sal and comm,
respectively, are deleted from the SELECT command in the SQL buffer.

SQL> LIST
 1 SELECT
 2 empno
 3 ,ename
 4 ,job
 5 ,sal
 6 ,comm
 7 ,deptno
 8* FROM emp
SQL> DEL 5 6
SQL> LIST
 1 SELECT
 2 empno
 3 ,ename
 4 ,job
 5 ,deptno
 6* FROM emp

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

546

11.1.2.9 DESCRIBE

The DESCRIBE command displays a list of columns, data types, and lengths for a table or
view; a list of parameters for a procedure or function; or a list of procedures and
functions and their respective parameters for a package.

DESCRIBE [schema.]object

schema

Name of the schema containing the object to be described.

object

Name of the table, view, procedure, function, or package to be displayed.

11.1.2.10 DISCONNECT

The DISCONNECT command closes the current database connection, but does not
terminate EDB*Plus.

DISC[ONNECT]

11.1.2.11 EDIT

The EDIT command invokes an external editor to edit the contents of an operating system
file or the SQL buffer.

ED[IT] [filename[.ext]]

filename[.ext]

filename is the name of the file to open with an external editor. ext is the
filename extension. If the filename extension is sql, then the .sql extension
may be omitted when specifying filename. EDIT always assumes a .sql
extension on filenames that are specified with no extension. If the filename
parameter is omitted from the EDIT command, the contents of the SQL buffer are
brought into the editor.

11.1.2.12 EXIT

The EXIT command terminates the EDB*Plus session and returns control to the
operating system. QUIT is a synonym for EXIT. Specifying no parameters is equivalent to
EXIT SUCCESS COMMIT.

{ EXIT | QUIT } [SUCCESS | FAILURE | WARNING | value |

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

547

 variable] [COMMIT | ROLLBACK]

SUCCESS | FAILURE |WARNING

Returns an operating system dependent return code indicating successful
operation, failure, or warning for SUCCESS, FAILURE, and WARNING,
respectively. The default is SUCCESS.

value

An integer value that is returned as the return code.

variable

A variable created with the DEFINE command whose value is returned as the
return code.

COMMIT | ROLLBACK

If COMMIT is specified, uncommitted updates are committed upon exit. If
ROLLBACK is specified, uncommitted updates are rolled back upon exit. The
default is COMMIT.

11.1.2.13 GET

The GET command loads the contents of the given file to the SQL buffer.

GET filename[.ext] [LIS[T] | NOL[IST]]

filename[.ext]

filename is the name of the file to load into the SQL buffer. ext is the filename
extension. If the filename extension is sql, then the .sql extension may be
omitted when specifying filename. GET always assumes a .sql extension on
filenames that are specified with no extension.

LIST | NOLIST

If LIST is specified, the content of the SQL buffer is displayed after the file is
loaded. If NOLIST is specified, no listing is displayed. The default is LIST.

11.1.2.14 HELP

The HELP command obtains an index of topics or help on a specific topic. The question
mark (?) is synonymous with specifying HELP.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

548

{ HELP | ? } { INDEX | topic }

INDEX

Displays an index of available topics.

topic

The name of a specific topic – e.g., an EDB*Plus command, for which help is
desired.

11.1.2.15 HOST

The HOST command executes an operating system command from EDB*Plus.

HO[ST] os_command

os_command

The operating system command to be executed.

11.1.2.16 INPUT

INPUT is a line editor command that adds a line of text to the SQL buffer after the current
line.

I[NPUT] text

The following sequence of INPUT commands constructs a SELECT command.

SQL> INPUT SELECT empno, ename, job, sal, comm
SQL> INPUT FROM emp
SQL> INPUT WHERE deptno = 20
SQL> INPUT ORDER BY empno
SQL> LIST
 1 SELECT empno, ename, job, sal, comm
 2 FROM emp
 3 WHERE deptno = 20
 4* ORDER BY empno

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

549

11.2 EDB*Loader

EDB*Loader is a high-performance bulk data loader that provides an Oracle compatible
interface for Postgres Plus Advanced Server. The EDB*Loader command-line utility
loads data from a file into one (or more) tables, using a subset of the parameters offered
by SQL*Loader.

EDB*Loader includes support for conventional path data loading. Conventional path
data loading is slower than direct path loading, but is fully recoverable. All constraints
are enforced during conventional path loading. Rules, triggers and inheritance based
partitions are enforced during conventional loading.

EDB*Loader also supports direct path loading; direct path loading is faster than
conventional path loading, but is non-recoverable. UNIQUE and NOT NULL constraints
are enforced during direct loading. The following features are not supported during
direct path loading:

• Foreign key constraints
• Rules, triggers and inheritance based partitions
• Loading into a non empty table

EDB*Loader can load delimiter-separated values, or fixed-width entries.

11.2.1 Invoking EDB*Loader

Use the following command to invoke EBD*Loader from the command line:

edbldr -d dbname -p port userid={user[/passwd]|/} control=control_file_path
log=log_file_path bad=bad_file_path parfile=param_file_path skip=skip_count
skip_index_maintenance={true|false} direct={true|false} errors=error_count

Parameters:

-d dbname

Specifies the database name.

-p port

Specifies the port number.

userid={username[/password]|/}

Specifies the username and password to use when connecting to the database.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

550

If omitted, the EDB*Loader utility will prompt for the username and or password.
If “/” is included, EDB*Loader will attempt to connect to the database using
operating system authentication.

control=control_ file_name

Specifies the name of the control file. The default extension is .ctl.

log=log_file_name

Specifies the name of the log file. The log file is written to the same directory
location as the control file. The default extension is .log.

direct={TRUE|FALSE}

Indicates the technique to use for the load. A value of FALSE results in a
conventional based path load. A value of TRUE specifies direct path loading. The
default value is FALSE.

errors=error_count

Specifies a limit on the number of errors that can be permitted before aborting the
load operation. The default value for error_count is 50.

skip=skip_count

Specifies the number of initial rows that should be skipped from the input data file
from the load.

skip_index_maintenance={TRUE|FALSE}

If this parameter is TRUE, index maintenance will not be performed as part of the
load for direct path loads. Any indexes related to the involved table will be
marked as invalid. To validate the indexes, execute a REINDEX command for
each table.

parfile=param_file_name

Specifies the name of the parameter file. This file does not have a default
extension. All parameters that are accepted on the command line may be included
in the parameter file.

bad=bad_file_name

Specifies the name of the bad-record file. It is written to the same directory
location as the control file. The default extension is .bad.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

551

discard=discard_file_name

Specifies the name of the discard file. The discard file is written to the same
directory location as the control file. The default extension is .dsc. Only those
records which cannot be loaded into any of the involved tables, because of failure
to match the corresponding WHEN clause, will be logged into this file. The discard
file contains those records that fail to satisfy the WHERE clause.

11.2.2 The EDB*Loader Control File

When you invoke EDB*Loader, the list of arguments must include the name of a control
file. The control file includes the instructions that EDB*Loader uses to build the table (or
tables) from the input file; it includes information such as:

• The fully qualified name of the input file
• The name of the table or tables
• The name of the columns within the table or tables
• The delimiters or other selection criteria used to choose the column content
• The fully qualified names of the bad and discard files

The following code snippets demonstrate code that might be included as part of a control
file for the EDB*Loader utility.

The first example loads data from a file named /tmp/mydata.csv into a table named
emp. The data within the input file is delimited by a comma; each comma tells
EDB*Loader to place the next piece of data into the next column. The column names are
specified within parentheses:(empno, empname, sal, deptno).

LOAD DATA
INFILE '/tmp/mydata.csv'
BADFILE '/tmp/mydata.bad'
DISCARDFILE '/tmp/mydata.dsc'
INSERT INTO TABLE emp
 FIELDS TERMINATED BY "," ENCLOSED BY '”'
 (empno, empname, sal, deptno)

The following code snippet demonstrates column syntax specification, using the FILLER
keyword. EDB* loader ignores columns that include the FILLER keyword.

LOAD DATA
INSERT INTO TABLE table_1
 FIELDS TERMINATED BY ','
 (field1, field2 FILLER, field3)

The following example demonstrates fixed-width column specification. EDB*Loader
determines the content placed within each column by its position within the input file.

LOAD DATA
INSERT INTO TABLE table_1
 (field1 POSITION (1:2),

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

552

 field2 FILLER POSITION (4:8),
 field3 POSITION (60:80)
)

This example demonstrates multiple-table specification. EDB*Loader can load multiple
tables from the same input file using selective loading.

LOAD DATA
INFILE '/tmp/mydata.csv'
APPEND INTO TABLE emp1 WHEN (1:3) = '100'
 (empno POSITION (1:3), sal POSITION (5:7), deptno POSITION (9:11))
APPEND INTO TABLE emp2 WHEN (1:3) = '200'
 (empno POSITION (1:3), sal POSITION (5:7), deptno POSITION (9:11))

11.2.3 Notes

TRAILING NULLCOLS support:

If TRAILING NULLCOLS is specified, any trailing columns that cannot be populated
from the input data file are assumed to be NULL.

 LOAD DATA
 INSERT INTO TABLE emp TRAILING NULLCOLS
 (empno, sal, deptno)

For example, if an input row contains the following:

 7824,$1200

The deptno column is assigned a NULL value because the input row only contains two
values.

TRUNCATE/REPLACE keyword support:

If the TRUNCATE or REPLACE keywords are used, the involved table will be truncated
before loading.

 LOAD DATA TRUNCATE INTO TABLE table_1 ..
 LOAD DATA REPLACE INTO TABLE table_1..

Unsupported Features:

This release does not support specification of data within the control file, or columns that
include default value expressions.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

553

11.3 EDB*Wrap

The EDB*Wrap utility protects proprietary source code and programs (functions, stored
procedures, triggers, and packages) from unauthorized scrutiny. The EDB*Wrap
program translates a file that contains SPL or PL/pgSQL source code (the plaintext) into
a file that contains the same code in a form that is nearly impossible to read. Once you
have the obfuscated form of the code, you can send that code to the PostgreSQL server
and the server will store those programs in obfuscated form. While EDB*Wrap does
obscure code, table definitions are still exposed.

Everything you wrap is stored in obfuscated form. If you wrap an entire package, the
package body source, as well as the prototypes contained in the package header and the
functions and procedures contained in the package body are stored in obfuscated form.

If you wrap a CREATE PACKAGE statement, you hide the package API from other
developers. You may want to wrap the package body, but not the package header so
users can see the package prototypes and other public variables that are defined in the
package body. To allow users to see what protoypes the package contains, use EDBWrap
to obfuscate only the 'CREATE PACKAGE BODY' statement in the edbwrap input file,
omitting the 'CREATE PACKAGE' statement. The package header source will be
stored plaintext, while the package body source and package functions and procedures
will be stored obfuscated.

Once wrapped, source code and programs cannot be unwrapped or debugged. Reverse
engineering is possible, but would be very difficult.

The entire source file is wrapped into one unit. Any psql meta-commands included in
the wrapped file will not be recognized when the file is executed; executing an
obfuscated file that contains a psql meta-command will cause a syntax error. edbwrap
does not validate SQL source code - if the plaintext form contains a syntax error,
edbwrap will not complain. Instead, the server will report an error and abort the entire
file when you try to execute the obfuscated form.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

554

11.3.1 Using EDB*Wrap to Obfuscate Source Code

EDB*Wrap is a command line utility; it accepts a single input source file, obfuscates the
contents and returns a single output file. When you invoke the edbwrap utility, you
must provide the name of the file that contains the source code to obfuscate. You may
also specify the name of the file where edbwrap will write the obfuscated form of the
code. edbwrap offers three different command-line styles. The first style is compatible
with Oracle's wrap utility:

edbwrap iname=input_file [oname=output_file]

The iname=input_file argument specifies the name of the input file; if input_file
does not contain an extension, edbwrap will search for a file named input_file.sql

The oname=output_file argument (which is optional) specifies the name of the output
file; if output_file does not contain an extension, edbwrap will append .plb to the
name.

If you do not specify an output file name, edbwrap writes to a file whose name is
derived from the input file name: edbwrap strips the suffix (typically .sql) from the
input file name and adds .plb.

edbwrap offers two other command-line styles that may feel more familiar:

edbwrap --iname input_file [--oname output_file]
edbwrap -i input_file [-o output_file]

You may mix command-line styles; the rules for deriving input and output file names are
identical regardless of which style you use.

Once edbwrap has produced a file that contains obfuscated code, you typically feed that
file into the PostgreSQL server using a client application such as edb-psql. The server
executes the obfuscated code line by line and stores the source code for SPL and
PL/pgSQL programs in wrapped form.

In summary, to obfuscate code with EDB*Wrap, you:

1. Create the source code file. 
2. Invoke EDB*Wrap to obfuscate the code. 
3. Import the file as if it were in plaintext form. 

The following sequence demonstrates edbwrap functionality.

First, create the source code for the list_emp procedure (in plaintext form):

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

555

[bash] cat listemp.sql
CREATE OR REPLACE PROCEDURE list_emp
IS
 v_empno NUMBER(4);
 v_ename VARCHAR2(10);
 CURSOR emp_cur IS
 SELECT empno, ename FROM emp ORDER BY empno;
BEGIN
 OPEN emp_cur;
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME');
 DBMS_OUTPUT.PUT_LINE('----- -------');
 LOOP
 FETCH emp_cur INTO v_empno, v_ename;
 EXIT WHEN emp_cur%NOTFOUND;
 DBMS_OUTPUT.PUT_LINE(v_empno || ' ' || v_ename);
 END LOOP;
 CLOSE emp_cur;
END;
/

You can import the list_emp procedure with a client application such as Postgres
Studio or edb-psql:

[bash] edb-psql edb
Welcome to edb-psql 8.3.0.104, the EnterpriseDB interactive terminal.

Type: \copyright for distribution terms
 \h for help with SQL commands
 \? for help with edb-psql commands
 \g or terminate with semicolon to execute query
 \q to quit

edb=# \i listemp.sql
CREATE PROCEDURE

You can view the plaintext source code (stored in the server) by examining the pg_proc
system table:

edb=# SELECT prosrc FROM pg_proc WHERE proname = 'list_emp';
 prosrc
--

 v_empno NUMBER(4);
 v_ename VARCHAR2(10);
 CURSOR emp_cur IS
 SELECT empno, ename FROM emp ORDER BY empno;
 BEGIN
 OPEN emp_cur;
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME');
 DBMS_OUTPUT.PUT_LINE('----- -------');
 LOOP
 FETCH emp_cur INTO v_empno, v_ename;
 EXIT WHEN emp_cur%NOTFOUND;
 DBMS_OUTPUT.PUT_LINE(v_empno || ' ' || v_ename);
 END LOOP;
 CLOSE emp_cur;
 END
(1 row)

edb=# quit

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

556

Next, obfuscate the plaintext file with EDB*Wrap:

[bash] edbwrap -i listemp.sql
EDB*Wrap Utility: Release 8.3.0.104

Copyright (c) 2004-2009 EnterpriseDB Corporation. All Rights Reserved.

Using encoding UTF8 for input
Processing listemp.sql to listemp.plb

Examining the contents of the output file (listemp.plb) file reveals that the
code is obfuscated:

[bash] cat listemp.plb
$__EDBwrapped__$
UTF8
d+6DL30RVaGjYMIzkuoSzAQgtBw7MhYFuAFkBsfYfhdJ0rjwBv+bHr1FCyH6j9SgH
movU+bYI+jR+hR2jbzq3sovHKEyZIp9y3/GckbQgualRhIlGpyWfE0dltDUpkYRLN
/OUXmk0/P4H6EI98sAHevGDhOWI+58DjJ44qhZ+l5NNEVxbWDztpb/s5sdx4660qQ
Ozx3/gh8VkqS2JbcxYMpjmrwVr6fAXfb68Ml9mW2Hl7fNtxcb5kjSzXvfWR2XYzJf
KFNrEhbL1DTVlSEC5wE6lGlwhYvXOf22m1R2IFns0MtF9fwcnBWAs1YqjR00j6+fc
er/f/efAFh4=
$__EDBwrapped__$

You may notice that the second line of the wrapped file contains an encoding name (in
this case, the encoding is UTF8). When you obfuscate a file, edbwrap infers the
encoding of the input file by examining the locale. For example, if you are running
edbwrap while your locale is set to en_US.utf8, edbwrap assumes that the input
file is encoded in UTF8. Be sure to examine the output file after running edbwrap; if
the locale contained in the wrapped file does not match the encoding of the input file, you
should change your locale and rewrap the input file.

You can import the obfuscated code into the PostgreSQL server using the same tools that
work with plaintext code:

[bash] edb-psql edb
Welcome to edb-psql 8.3.0.104, the EnterpriseDB interactive terminal.

Type: \copyright for distribution terms
 \h for help with SQL commands
 \? for help with edb-psql commands
 \g or terminate with semicolon to execute query
 \q to quit

edb=# \i listemp.plb
CREATE PROCEDURE

Now, the pg_proc system table contains the obfuscated code:

edb=# SELECT prosrc FROM pg_proc WHERE proname = 'list_emp';
 prosrc
--
 $__EDBwrapped__$
 UTF8
 dw4B9Tz69J3WOsy0GgYJQa+G2sLZ3IOyxS8pDyuOTFuiYe/EXiEatwwG3h3tdJk
 ea+AIp35dS/4idbN8wpegM3s994dQ3R97NgNHfvTQnO2vtd4wQtsQ/Zc4v4Lhfj
 nlV+A4UpHI5oQEnXeAch2LcRD87hkU0uo1ESeQV8IrXaj9BsZr+ueROnwhGs/Ec

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

557

 pva/tRV4m9RusFn0wyr38u4Z8w4dfnPW184Y3o6It4b3aH07WxTkWrMLmOZW1jJ
 Nu6u4o+ezO64G9QKPazgehslv4JB9NQnuocActfDSPMY7R7anmgw
 $__EDBwrapped__$
(1 row)

Invoke the obfuscated code in the same way that you would invoke the plaintext form:

edb=# exec list_emp;
EMPNO ENAME
----- -------
7369 SMITH
7499 ALLEN
7521 WARD
7566 JONES
7654 MARTIN
7698 BLAKE
7782 CLARK
7788 SCOTT
7839 KING
7844 TURNER
7876 ADAMS
7900 JAMES
7902 FORD
7934 MILLER

EDB-SPL Procedure successfully completed
edb=# quit

When you use pg_dump to backup a database, wrapped programs remain obfuscated in
the archive file.

Be aware that audit logs produced by the Postgres server will show wrapped programs in
plaintext form. Source code is also displayed in plaintext in SQL error messages
generated during the execution of a program.

Note: At this time, the bodies of the objects created by the following statements will not
be stored in obfuscated form:

CREATE [OR REPLACE] TYPE type_name AS OBJECT
CREATE [OR REPLACE] TYPE type_name UNDER type_name
CREATE [OR REPLACE] TYPE BODY type_name

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

558

11.4 Dynamic Runtime Instrumentation Tools Architecture
(DRITA)

The Dynamic Runtime Instrumentation Tools Architecture (DRITA) allows a DBA to
query catalog views to determine the wait events that affect the performance of individual
sessions or the system as a whole. DRITA records the number of times each event occurs
as well as the time spent waiting; you can use this information to diagnose performance
problems.

DRITA compares snapshots to evaluate the performance of a system. A snapshot is a
saved set of system performance data at a given point in time. Each snapshot is identified
by a unique ID number; you can use snapshot ID numbers with DRITA reporting
functions to return system performance statistics.

DRITA consumes minimal system resources.

11.4.1 Initialization Parameters

DRITA includes a configuration parameter, timed_statistics, to control the
collection of timing data. This is a dynamic parameter that can be set in the
postgresql.conf file or while a session is in progress. The valid values are TRUE or
FALSE; the default value is FALSE.

11.4.2 Setting up and Using DRITA
To use DRITA, you must first create a small set of tables and functions. To create the
tables and functions that store and report information, run the following scripts:

snap_tables.sql
snap_functions.sql

After creating the required tables and functions, take a beginning snapshot. The
beginning snapshot will be compared to a later snapshot to gauge system performance.
To take a beginning snapshot:

SELECT * from edbsnap()

Then, run the workload that you would like to evaluate; when the workload has
completed (or at a strategic point during the workload), take an ending snapshot:

SELECT * from edbsnap()

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

559

11.4.3 DRITA Functions

11.4.3.1 get_snaps()

The get_snaps() function returns a list of snapshot ID’s; you can use the snapshot ID’s
to run one or more reporting functions. To view a list of snapshot ID’s and the time they
were taken, enter the following command:

SELECT * FROM get_snaps();

 get_snaps

 1 15-JUN-09 17:43:50.072733
 5 15-JUN-09 18:18:15.792194
 6 16-JUN-09 09:55:03.969197
 7 16-JUN-09 11:00:01.083305
 8 16-JUN-09 11:07:59.481583
 9 16-JUN-09 11:34:45.338325
 10 16-JUN-09 11:38:05.415392
 11 16-JUN-09 11:42:31.551796
 12 16-JUN-09 11:49:44.698102
 13 16-JUN-09 11:53:11.371272
 14 16-JUN-09 11:53:32.627307
 15 16-JUN-09 12:49:38.718433
 16 16-JUN-09 14:20:00.781601
 17 16-JUN-09 14:35:17.584266
 18 16-JUN-09 14:42:22.257647
 19 16-JUN-09 14:43:07.621677
(16 rows)

11.4.3.2 sys_rpt()

The sys_rpt() function returns system wait information. The signature is:

sys_rpt(beginning_id, ending_id, top_n)

Parameters

beginning_id

beginning_id is an integer value that represents the beginning session
identifier.

ending_id

ending_id is an integer value that represents the ending session identifier.

top_n

top_n represents the number of rows to return

This example demonstrates a call to the sys_rpt()function:

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

560

SELECT * FROM sys_rpt(18, 19, 10);

 sys_rpt

 WAIT NAME COUNT WAIT TIME % WAIT

 db file read 31 0.187628 80.75
 query plan 20 0.027784 11.96
 infinitecache read 63 0.004523 1.95
 wal flush 6 0.004067 1.75
 wal write 1 0.004063 1.75
 wal file sync 1 0.003664 1.58
 infinitecache write 5 0.000548 0.24
 db file write 5 0.000082 0.04
 wal write lock acquire 0 0.000000 0.00
 bgwriter communication lock acquire 0 0.000000 0.00
(12 rows)

11.4.3.3 sess_rpt()

The sess_rpt() function returns session wait information. The signature is:

sess_rpt(beginning_id, ending_id, top_n)

Parameters

beginning_id

beginning_id is an integer value that represents the beginning session
identifier.

ending_id

ending_id is an integer value that represents the ending session identifier.

top_n

top_n represents the number of rows to return

The following example demonstrates a call to the sess_rpt()function:

SELECT * FROM sess_rpt(18, 19, 10);

 sess_rpt

ID USER WAIT NAME COUNT TIME(ms) %WAIT SES %WAIT ALL
 --

 17373 enterprise db file read 30 0.175713 85.24 85.24
 17373 enterprise query plan 18 0.014930 7.24 7.24
 17373 enterprise wal flush 6 0.004067 1.97 1.97
 17373 enterprise wal write 1 0.004063 1.97 1.97
 17373 enterprise wal file sync 1 0.003664 1.78 1.78

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

561

 17373 enterprise infinitecache read 38 0.003076 1.49 1.49
 17373 enterprise infinitecache write 5 0.000548 0.27 0.27
 17373 enterprise db file write 5 0.000082 0.04 0.04
 17373 enterprise wal write lock acquire 0 0.000000 0.00 0.00
 17373 enterprise bgwriter comm lock ac 0 0.000000 0.00 0.00
(12 rows)

11.4.3.4 sessid_rpt()

The sessid_rpt() function returns session ID information for a specified backend.
The signature is:

sessid_rpt(beginning_id, ending_id, backend_id)

Parameters

beginning_id

beginning_id is an integer value that represents the beginning session
identifier.

ending_id

ending_id is an integer value that represents the ending session identifier.

backend_id

backend_id is an integer value that represents the backend identifier.

The following code sample demonstrates a call to sessid_rpt():

SELECT * FROM sessid_rpt(18, 19, 17373);

 sessid_rpt

 ID USER WAIT NAME COUNT TIME(ms) %WAIT SES %WAIT ALL
 --
 17373 enterprise db file read 30 0.175713 85.24 85.24
 17373 enterprise query plan 18 0.014930 7.24 7.24
 17373 enterprise wal flush 6 0.004067 1.97 1.97
 17373 enterprise wal write 1 0.004063 1.97 1.97
 17373 enterprise wal file sync 1 0.003664 1.78 1.78
 17373 enterprise infinitecache read 38 0.003076 1.49 1.49
 17373 enterprise infinitecache write 5 0.000548 0.27 0.27
 17373 enterprise db file write 5 0.000082 0.04 0.04
 17373 enterprise wal write lock acquire 0 0.000000 0.00 0.00
 17373 enterprise bgwriter comm lock ac 0 0.000000 0.00 0.00
(12 rows)

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

562

11.4.3.5 sesshist_rpt()

The sesshist_rpt() function returns session wait information for a specified
backend. The signature is:

sesshist_rpt(beginning_id, ending_id, backend_id)

Parameters

beginning_id

beginning_id is an integer value that represents the beginning session
identifier.

ending_id

ending_id is an integer value that represents the ending session identifier.

backend_id

backend_id is an integer value that represents the backend identifier.

The following example demonstrates a call to the sesshist_rpt()function:

SELECT * FROM sesshist_rpt (18, 17373);

 sesshist_rpt
 --
 ID USER SEQ WAIT NAME
 ELAPSED(ms) File Name # of Blk Sum of Blks
 --
 17373 enterprise 1 infinitecache read
 84 1249 pg_attribute 44 1
 17373 enterprise 2 query plan
 12 0 N/A 0 0
 17373 enterprise 3 infinitecache read
 110 1255 pg_proc 64 1
 17373 enterprise 4 db file read
 3326 16421 session_waits_pk 2 1
 17373 enterprise 5 db file read
 4201 16421 session_waits_pk 3 1
 17373 enterprise 6 db file read
 5386 16421 session_waits_pk 0 1
 17373 enterprise 7 db file read
 13414 16416 edb$session_waits 3 1
 17373 enterprise 8 db file read
 4609 1260 pg_authid 0 1
 17373 enterprise 9 query plan
 12842 0 N/A 0 0
 17373 enterprise 10 infinitecache read
 50 2619 pg_statistic 10 1
 17373 enterprise 11 infinitecache read
 51 2696 pg_statistic_relid_a 1 1
 17373 enterprise 12 infinitecache read

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

563

 51 1249 pg_attribute 8 1
 17373 enterprise 13 infinitecache read
 65 2654 pg_amop_opr_opc_inde 1 1
 17373 enterprise 14 infinitecache read
 77 2654 pg_amop_opr_opc_inde 3 1
 17373 enterprise 15 infinitecache read
 81 2696 pg_statistic_relid_a 4 1
 17373 enterprise 16 db file read
 11915 2696 pg_statistic_relid_a 3 1
 17373 enterprise 17 infinitecache read
 32 2696 pg_statistic_relid_a 3 1
 17373 enterprise 18 query plan
 12 0 N/A 0 0
 17373 enterprise 19 infinitecache read
 50 1249 pg_attribute 12 1
 17373 enterprise 20 infinitecache read
 52 2659 pg_attribute_relid_a 2 1
 17373 enterprise 21 infinitecache read
 52 1255 pg_proc 2 1
 17373 enterprise 22 infinitecache read
 58 2617 pg_operator 3 1
 17373 enterprise 23 infinitecache read
 52 2690 pg_proc_oid_index 5 1
 17373 enterprise 24 infinitecache read
 58 1255 pg_proc 28 1
 17373 enterprise 25 infinitecache read
 50 2618 pg_rewrite 4 1
(27 rows)

11.4.3.6 truncsnap()

Use the truncsnap() function to purge all records from the snapshot tables:

SELECT * FROM truncsnap();

 truncsnap

 Snapshots truncated.
(1 row)

A call to the get_snaps() function after calling the truncsnap() function shows that
all records have been purged from the snapshot tables:

SELECT * FROM get_snaps
 get_snaps

(0 rows)

11.4.3.7 purgesnap()

The purgesnap() function purges a range of snapshots within the snap tables. Pass the
snapshot ID’s for the start of the range and the end of the range to purge:

SELECT * FROM purgesnap(6, 9);

 purgesnap

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

564

 Snapshots in range 6 to 9 deleted.
(1 row)

A call to the get_snaps() function after calling the purgesnap() function shows that
columns 6 through 9 have been purged from the snapshot tables:

 SELECT * FROM get_snaps
 get_snaps

 1 15-JUN-09 17:43:50.072733
 5 15-JUN-09 18:18:15.792194
 10 16-JUN-09 11:38:05.415392
 11 16-JUN-09 11:42:31.551796
 12 16-JUN-09 11:49:44.698102
 13 16-JUN-09 11:53:11.371272
 14 16-JUN-09 11:53:32.627307
 15 16-JUN-09 12:49:38.718433
 16 16-JUN-09 14:20:00.781601
 17 16-JUN-09 14:35:17.584266
 18 16-JUN-09 14:42:22.257647
 19 16-JUN-09 14:43:07.621677
(12 rows)

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

565

11.5 Simulating Statspack AWR Reports

The snapshot tables and functions described in this section return information comparable
to the information contained in an Oracle Statspack/AWR (Automatic Workload
Repository) report. When taking a snapshot, performance data from system catalog
tables is saved into history tables. The reporting functions listed below report on the
differences between two given snapshots.

Catalog Table  New DRITA Table  Reporting Function 
pg_stat_database edb$stat_database stat_db_rpt()
pg_stat_all_tables edb$stat_all_tables stat_tables_rpt()
pg_stat_io_tables edb$statio_all_tables statio_tables_rpt()
Pgstat_all_indexes edb$stat_all_indexes stat_indexes_rpt()
pg_statio_all_indexes edb$statio_all_indexes statio_indexes_rpt()

The reporting functions can be executed individually or you can execute all five functions
by calling the edbreport() function.

11.5.1.1 edbreport()

The edbreport() function includes data from the other reporting functions, plus
additional system information. The signature is:

edb_report(beginning_id, ending_id)

Parameters

beginning_id

beginning_id is an integer value that represents the beginning session
identifier.

ending_id

ending_id is an integer value that represents the ending session identifier.

The following code sample demonstrates a call to the edbreport() function:

SELECT * FROM edbreport(18, 19);

 edbreport

EnterpriseDB Report for database edb 16-JUN-09
Version: EnterpriseDB 8.3.0.106 on i686-pc-linux-gnu, compiled by GCC gcc
(GCC) 4.1.0

 Begin snapshot: 18 at 16-JUN-09 14:42:22.257647
 End snapshot: 19 at 16-JUN-09 14:43:07.621677

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

566

 Size of database edb is 2124 MB
 Tablespace: pg_default Size: 2136 MB Owner: enterprisedb
 Tablespace: pg_global Size: 283 kB Owner: enterprisedb

 Schema: public Size: 2114 MB Owner: enterprisedb

 Top 10 Relations by pages

 TABLE RELPAGES

 accounts 222231
 history 513
 pg_proc 92
 edb$statio_all_indexes 86
 edb$stat_all_indexes 86
 pg_depend 56
 tellers 53
 edb$stat_all_tables 51
 edb$statio_all_tables 49
 pg_attribute 43

 Top 10 Indexes by pages

 INDEX RELPAGES

 accounts_pkey 46127
 pg_proc_proname_args_nsp_index 81
 pg_depend_reference_index 48
 pg_depend_depender_index 46
 edb$stat_idx_pk 40
 edb$statio_idx_pk 40
 pg_attribute_relid_attnam_index 33
 pg_operator_oprname_l_r_n_index 20
 edb$statio_tab_pk 19
 edb$stat_tab_pk 19

 Top 10 Relations by DML

 SCHEMA RELATION UPDATES DELETES INSERTS

 public accounts 7399697 0 7000000
 public tellers 199699 0 700
 public branches 199699 0 70
 public history 0 150000 199699
 sys edb$stat_all_indexes 0 336 2128
 sys edb$statio_all_indexes 0 336 2128
 sys edb$stat_all_tables 0 264 1672
 sys edb$statio_all_tables 0 264 1672
 sys edb$session_wait_history 0 75 525
 sys edb$session_waits 0 9 125

 DATA from pg_stat_database

 DATABASE NUMBACKENDS XACT COMMIT XACT ROLLBACK BLKS READ BLKS HIT HIT RATIO

 edb 0 5 0 59 2538 97.73

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

567

 DATA from pg_buffercache

 RELATION BUFFERS

 accounts 21884
 pg_proc 34
 pg_proc_proname_args_nsp_index 27
 edb$statio_all_indexes 24
 edb$stat_all_indexes 24
 pg_attribute 23
 pg_operator 19
 edb$statio_all_tables 17
 edb$stat_all_tables 17
 edb$stat_idx_pk 14

 DATA from pg_stat_all_tables ordered by seq scan

 SCHEMA RELATION SEQ REL READ IDX
 SCAN TUP SCAN TUP READ INS UPD DEL
 --
 pg_catalog pg_class 8 2952 78 65 0 0 0
 pg_catalog pg_index 4 448 23 28 0 0 0
 pg_catalog pg_namespace 4 76 1 1 0 0 0
 pg_catalog pg_database 3 6 0 0 0 0 0
 pg_catalog pg_authid 2 1 0 0 0 0 0
 sys edb$snap 1 15 0 0 1 0 0
 public accounts 0 0 0 0 0 0 0
 public branches 0 0 0 0 0 0 0
 sys wait_history 0 0 0 0 25 0 0
 sys session_waits 0 0 0 0 0 10 0

 DATA from pg_stat_all_tables ordered by rel tup read

 SCHEMA RELATION SEQ SCAN REL TUP READ
 IDX SCAN IDX TUP READ INS UPD DEL

--
pg_catalog pg_class 8 2952
 78 65 0 0 0
 pg_catalog pg_index 4 448
 23 28 0 0 0
 pg_catalog pg_namespace 4 76
 1 1 0 0 0
 sys edb$snap 1 15
 0 0 1 0 0
 pg_catalog pg_database 3 6
 0 0 0 0 0
 pg_catalog pg_authid 2 1
 0 0 0 0 0
 public accounts 0 0
 0 0 0 0 0
 public branches 0 0
 0 0 0 0 0
 sys edb$session_wait_history 0 0
 0 0 25 0 0
 sys edb$session_waits 0 0

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

568

 0 0 10 0 0

 DATA from pg_statio_all_tables

 SCHEMA RELATION
 HEAP HEAP IDX IDX TOAST TOAST TIDX TIDX
 READ HIT READ HIT READ HIT READ HIT
 --
 pg_catalog pg_class
 0 137 3 104 0 0 0 0
 pg_catalog pg_attribute
 1 121 1 264 0 0 0 0
 sys edb$stat_all_indexes
 5 111 5 225 0 0 0 0
 sys edb$statio_all_indexes
 5 111 5 225 0 0 0 0
 sys edb$stat_all_tables
 4 87 4 175 0 0 0 0
 sys edb$statio_all_tables
 4 87 4 175 0 0 0 0
 pg_catalog pg_opclass
 0 38 1 5 0 0 0 0
 pg_catalog pg_proc
 0 37 0 92 0 0 0 0
 pg_catalog pg_index
 1 30 1 22 0 0 0 0
 sys edb$session_wait_history
 1 24 0 48 0 0 0 0

 DATA from pg_stat_all_indexes

 SCHEMA RELATION INDEX
 IDX SCAN IDX TUP READ IDX TUP FETCH
 --
 pg_catalog pg_cast pg_cast_source_target_index
 140 21 21
 pg_catalog pg_attribute pg_attribute_relid_attnum_index
 134 303 303
 pg_catalog pg_class pg_class_oid_index
 48 48 48
 pg_catalog pg_proc pg_proc_oid_index
 44 44 44
 pg_catalog pg_class pg_class_relname_nsp_index
 30 17 17
 pg_catalog pg_statistic pg_statistic_relid_att_index
 21 10 10
 pg_catalog pg_rewrite pg_rewrite_rel_rulename_index
 15 15 15
 pg_catalog pg_index pg_index_indrelid_index
 13 18 18
 sys edb$system_waits system_waits_pk
 12 38 6
 pg_catalog pg_index pg_index_indexrelid_index
 10 10 10

 DATA from pg_statio_all_indexes

 SCHEMA RELATION INDEX
 IDX BLKS READ IDX BLKS HIT
 --

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

569

 pg_catalog pg_attribute pg_attribute_relid_attnum_index
 1 264
 sys edb$stat_all_indexes edb$stat_idx_pk
 5 225
 sys edb$statio_all_indexes edb$statio_idx_pk
 5 225
 sys edb$stat_all_tables edb$stat_tab_pk
 4 175
 sys edb$statio_all_tables edb$statio_tab_pk
 4 175
 pg_catalog pg_cast pg_cast_source_target_index
 0 139
 pg_catalog pg_proc pg_proc_oid_index
 0 82
 pg_catalog pg_class pg_class_relname_nsp_index
 3 56
 pg_catalog pg_class pg_class_oid_index
 0 48
 sys edb$session_wait_history session_waits_hist_pk
 0 48

 System Wait Information

 WAIT NAME COUNT WAIT TIME % WAIT

 db file read 31 0.187628 80.75
 query plan 20 0.027784 11.96
 infinitecache read 63 0.004523 1.95
 wal flush 6 0.004067 1.75
 wal write 1 0.004063 1.75
 wal file sync 1 0.003664 1.58
 infinitecache write 5 0.000548 0.24
 db file write 5 0.000082 0.04
 wal write lock acquire 0 0.000000 0.00
 bgwriter communication lock acquire 0 0.000000 0.00

 Database Parameters from postgresql.conf

 PARAMETER SETTING CONTEXT MINVAL MAXVAL
 --
 add_missing_from off user
 allow_system_table_mods off postmaster
 archive_command sighup
 archive_timeout 0 sighup 0 2147483647
 array_nulls on user
 authentication_timeout 10 sighup 1 600
 autovacuum on sighup
 autovacuum_analyze_scale_factor 0.1 sighup 0 100
 autovacuum_analyze_threshold 250 sighup 0 2147483647
 autovacuum_freeze_max_age 200000000 postmaster 10000000 2000000000
 autovacuum_naptime 60 sighup 1 2147483647
 autovacuum_vacuum_cost_delay -1 sighup -1 1000
 autovacuum_vacuum_cost_limit -1 sighup -1 10000
 autovacuum_vacuum_scale_factor 0.2 sighup 0 100
 autovacuum_vacuum_threshold 1000 sighup 0 2147483647

 ...

(384 rows)

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

570

11.5.1.2 stat_db_rpt()

The signature is:

stat_db_rpt(beginning_id, ending_id)

Parameters

beginning_id

beginning_id is an integer value that represents the beginning session
identifier.

ending_id

ending_id is an integer value that represents the ending session identifier.

The following example demonstrates the stat_db_rpt() function:

SELECT * FROM stat_db_rpt(18, 19);

 stat_db_rpt

 DATA from pg_stat_database

 DATABASE NUMBACKENDS XACT COMMIT XACT ROLLBACK BLKS READ BLKS HIT HIT RATIO
 --
 edb 0 5 0 59 2538 97.73
(5 rows)

11.5.1.3 stat_tables_rpt()

The signature is:

function_name(beginning_id, ending_id, top_n, scope)

Parameters

beginning_id

beginning_id is an integer value that represents the beginning session
identifier.

ending_id

ending_id is an integer value that represents the ending session identifier.

top_n

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

571

top_n represents the number of rows to return

scope

scope determines the scope of the statistics returned (ALL, USER or SYS).

The following code sample demonstrates the stat_tables_rpt() function:

SELECT * FROM stat_tables_rpt(18, 19, 10, 'ALL');

stat_tables_rpt

DATA from pg_stat_all_tables ordered by seq scan

SCHEMA RELATION
 SEQ SCAN REL TUP READ IDX SCAN IDX TUP READ INS UPD DEL

pg_catalog pg_class
 8 2952 78 65 0 0 0
pg_catalog pg_index
 4 448 23 28 0 0 0
pg_catalog pg_namespace
 4 76 1 1 0 0 0
pg_catalog pg_database
 3 6 0 0 0 0 0
pg_catalog pg_authid
 2 1 0 0 0 0 0
sys edb$snap
 1 15 0 0 1 0 0
public accounts
 0 0 0 0 0 0 0
public branches
 0 0 0 0 0 0 0
sys edb$session_wait_history
 0 0 0 0 25 0 0
sys edb$session_waits
 0 0 0 0 10 0 0

DATA from pg_stat_all_tables ordered by rel tup read

SCHEMA RELATION
 SEQ SCAN REL TUP READ IDX SCAN IDX TUP READ INS UPD DEL

pg_catalog pg_class
 8 2952 78 65 0 0 0
pg_catalog pg_index
 4 448 23 28 0 0 0
pg_catalog pg_namespace
 4 76 1 1 0 0 0
sys edb$snap
 1 15 0 0 1 0 0
pg_catalog pg_database
 3 6 0 0 0 0 0
pg_catalog pg_authid
 2 1 0 0 0 0 0
public accounts
 0 0 0 0 0 0 0
public branches
 0 0 0 0 0 0 0
sys edb$session_wait_history

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

572

 0 0 0 0 25 0 0
sys edb$session_waits
 0 0 0 0 10 0 0
(29 rows)

11.5.1.4 statio_tables_rpt()

The signature is:

statio_tables_rpt(beginning_id, ending_id, top_n, scope)

Parameters

beginning_id

beginning_id is an integer value that represents the beginning session
identifier.

ending_id

ending_id is an integer value that represents the ending session identifier.

top_n

top_n represents the number of rows to return

scope

scope determines the scope of the statistics returned (ALL, USER or SYS).

The following example demonstrates the statio_tables_rpt() function:

SELECT * FROM statio_tables_rpt(18, 19, 10, 'ALL');

 statio_tables_rpt

 DATA from pg_statio_all_tables

SCHEMA RELATION
 HEAP HEAP IDX IDX TOAST TOAST TIDX TIDX
 READ HIT READ HIT READ HIT READ HIT
 --
 pg_catalog pg_class
 0 137 3 104 0 0 0 0
 pg_catalog pg_attribute
 1 121 1 264 0 0 0 0
 sys edb$stat_all_indexes
 5 111 5 225 0 0 0 0
 sys edb$statio_all_indexes
 5 111 5 225 0 0 0 0
 sys edb$stat_all_tables
 4 87 4 175 0 0 0 0

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

573

 sys edb$statio_all_tables
 4 87 4 175 0 0 0 0
 pg_catalog pg_opclass
 0 38 1 5 0 0 0 0
 pg_catalog pg_proc
 0 37 0 92 0 0 0 0
 pg_catalog pg_index
 1 30 1 22 0 0 0 0
 sys edb$session_wait_history
 1 24 0 48 0 0 0 0
(15 rows)

11.5.1.5 stat_indexes_rpt()

The signature is:

stat_indexes_rpt(beginning_id, ending_id, top_n, scope)

Parameters

beginning_id

beginning_id is an integer value that represents the beginning session
identifier.

ending_id

ending_id is an integer value that represents the ending session identifier.

top_n

top_n represents the number of rows to return

scope

scope determines the scope of the statistics returned (ALL, USER or SYS).

The following code sample demonstrates the stat_indexes_rpt() function:

SELECT * FROM stat_indexes_rpt(18, 19, 10, 'ALL');

 stat_indexes_rpt
 --
 DATA from pg_stat_all_indexes

 SCHEMA RELATION INDEX
 IDX SCAN IDX TUP READ IDX TUP FETCH
 --
 pg_catalog pg_cast pg_cast_source_target_index
 140 21 21
 pg_catalog pg_attribute pg_attribute_relid_attnum_index
 134 303 303

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

574

 pg_catalog pg_class pg_class_oid_index
 48 48 48
 pg_catalog pg_proc pg_proc_oid_index
 44 44 44
 pg_catalog pg_class pg_class_relname_nsp_index
 30 17 17
 pg_catalog pg_statistic pg_statistic_relid_att_index
 21 10 10
 pg_catalog pg_rewrite pg_rewrite_rel_rulename_index
 15 15 15
 pg_catalog pg_index pg_index_indrelid_index
 13 18 18
 sys edb$system_waits system_waits_pk
 12 38 6
 pg_catalog pg_index pg_index_indexrelid_index
 10 10 10
(14 rows)

11.5.1.6 statio_indexes_rpt()

The signature is:

statio_indexes_rpt(beginning_id, ending_id, top_n, scope)

Parameters

beginning_id

beginning_id is an integer value that represents the beginning session
identifier.

ending_id

ending_id is an integer value that represents the ending session identifier.

top_n

top_n represents the number of rows to return

scope

scope determines the scope of the statistics returned (ALL, USER or SYS).

The following example demonstrates the statio_indexes_rpt() function:

SELECT * FROM statio_indexes_rpt(18, 19, 10, 'ALL');

 statio_indexes_rpt
 --

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

575

 DATA from pg_statio_all_indexes

 SCHEMA RELATION INDEX
 IDX BLKS READ IDX BLKS HIT
 --
 pg_catalog pg_attribute pg_attribute_relid_attnum_index
 1 264
 sys edb$stat_all_indexes edb$stat_idx_pk
 5 225
 sys edb$statio_all_indexes edb$statio_idx_pk
 5 225
 sys edb$stat_all_tables edb$stat_tab_pk
 4 175
 sys edb$statio_all_tables edb$statio_tab_pk
 4 175
 pg_catalog pg_cast pg_cast_source_target_index
 0 139
 pg_catalog pg_proc pg_proc_oid_index
 0 82
 pg_catalog pg_class pg_class_relname_nsp_index
 3 56
 pg_catalog pg_class pg_class_oid_index
 0 48
 sys edb$session_wait_history session_waits_hist_pk
 0 48
(14 rows)

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

576

11.6 Performance Tuning Recommendations

To use DRITA reports for performance tuning, review the top five events in a given
report, looking for any event that takes a disproportionately large percentage of resources.
In a streamlined system, user I/O will probably make up the largest number of waits.
Waits should be evaluated in the context of CPU usage and total time; an event may not
be significant if it takes 2 minutes out of a total measurement interval of 2 hours, if the
rest of the time is consumed by CPU time. The component of response time (CPU
"work" time or other "wait" time) that consumes the highest percentage of overall time
should be evaluated.

When evaluating events, watch for:

Event type  Description 
Checkpoint waits Checkpoint waits may indicate that checkpoint parameters need to 

be adjusted, (checkpoint_segments and checkpoint_timeout).
WAL‐related waits WAL‐related waits may indicate wal_buffers are under‐sized.
SQL Parse waits If the number of waits is high, try to use prepared statements.
db file random reads If high, check that appropriate indexes and statistics exist.
db file random writes If high, may need to decrease bgwriter_delay.
btree random lock acquires May indicate indexes are being rebuilt.  Schedule index builds during 

less active time.

Performance reviews should also include careful scrutiny of the hardware, the operating
system, the network and the application SQL statements.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

577

11.7 Event Descriptions

Event Name Description

add in shmem lock acquire Obsolete/unused
bgwriter communication
lock acquire

The bgwriter (background writer) process has waited for the short-
term lock that synchronizes messages between the bgwriter and a
backend process.

btree vacuum lock acquire The server has waited for the short-term lock that synchronizes access
to the next available vacuum cycle ID.

buffer free list lock
acquire

The server has waited for the short-term lock that synchronizes access
to the list of free buffers (in shared memory).

checkpoint lock acquire: A server process has waited for the short-term lock that prevents
simultaneous checkpoints.

checkpoint start lock
acquire

The server has waited for the short-term lock that synchronizes access
to the bgwriter checkpoint schedule.

clog control lock acquire The server has waited for the short-term lock that synchronizes access
to the commit log.

control file lock acquire The server has waited for the short-term lock that synchronizes write
access to the control file (this should usually be a low number).

db file extend A server process has waited for the operating system while adding a
new page to the end of a file.

db file read A server process has waited for the completion of a read (from disk).
db file write A server process has waited for the completion of a write (to disk).
db file sync A server process has waited for the operating system to flush all

changes to disk.
first buf mapping lock
acquire

The server has waited for a short-term lock that synchronizes access
to the shared-buffer mapping table.

freespace lock acquire The server has waited for the short-term lock that synchronizes access
to the freespace map.

Infinite Cache read The server has waited for an Infinite Cache read request.
Infinite Cache write The server has waited for an Infinite Cache write request.
lwlock acquire The server has waited for a short-term lock that has not been

described elsewhere in this section.
multi xact gen lock
acquire

The server has waited for the short-term lock that synchronizes access
to the next available multi-transaction ID (when a SELECT...FOR
SHARE statement executes).

multi xact member lock
acquire

The server has waited for the short-term lock that synchronizes access
to the multi-transaction member file (when a SELECT...FOR SHARE
statement executes).

multi xact offset lock
acquire

The server has waited for the short-term lock that synchronizes access
to the multi-transaction offset file (when a SELECT...FOR SHARE
statement executes).

oid gen lock acquire The server has waited for the short-term lock that synchronizes access
to the next available OID (object ID).

query plan The server has computed the execution plan for a SQL statement.
rel cache init lock
acquire

The server has waited for the short-term lock that prevents
simultaneous relation-cache loads/unloads.

shmem index lock acquire The server has waited for the short-term lock that synchronizes access
to the shared-memory map.

sinval lock acquire The server has waited for the short-term lock that synchronizes access

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

578

to the cache invalidation state.
sql parse The server has parsed a SQL statement.
subtrans control lock
acquire

The server has waited for the short-term lock that synchronizes access
to the subtransaction log.

tablespace create lock
acquire

The server has waited for the short-term lock that prevents
simultaneous CREATE TABLESPACE or DROP TABLESPACE
commands.

two phase state lock
acquire

The server has waited for the short-term lock that synchronizes access
to the list of prepared transactions.

wal insert lock acquire The server has waited for the short-term lock that synchronizes write
access to the write-ahead log. A high number may indicate that WAL
buffers are sized too small.

wal write lock acquire The server has waited for the short-term lock that synchronizes write-
ahead log flushes.

wal file sync The server has waited for the write-ahead log to sync to disk (related
to the wal_sync_method parameter which, by default, is 'fsync' -
better performance can be gained by changing this parameter to
open_sync).

wal flush The server has waited for the write-ahead log to flush to disk.
wal write The server has waited for a write to the write-ahead log buffer (expect

this value to be high).
xid gen lock acquire The server has waited for the short-term lock that synchronizes access

to the next available transaction ID.

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

579

11.8 Catalog Views

The DRITA catalog views provide access to performance information relating to system
waits.

11.8.1 edb$system_waits

The edb$system_waits view summarizes the number of waits and the total wait time
per session for each wait named. It also displays the average and max wait times.
edb$system_waits summarizes the following information:

 Column | Type | Modifiers | Definition
------------+---------------+-----------+------------------
 edb_id | numeric | |identifier
 dbname | text | |database name
 wait_name | text | |name of the event
 wait_count | numeric | |number of times the event occurs
 avg_wait | numeric(50,6) | |average wait time in microseconds
 max_wait | numeric | |maximum wait time in microseconds
 total_wait | numeric | |total wait time in microseconds
 wait_name | text | |name of the event

The following example shows the result of a SELECT statement on the
edb$system_waits view:

select * from sys.edb$system_waits;

 edb_id | dbname |wait_name | wait_count |avg_wait | max_wait | totalwait
--------+--------+-----------+------------+---------+----------+----------
 1 | edb |db fileread| 301 |0.011516 | 0.629986 | 2.742500
 1 | edb |wal flush | 26 |0.010364 | 0.085380 | 0.269452
 1 | edb |wal write | 26 |0.010355 | 0.085371 | 0.269232
 1 | edb |query plan | 277 |0.001367 | 0.049425 | 0.192442
 2 | edb |wal flush | 28 |0.040443 | 0.095150 | 0.431984
 2 | edb |wal write | 28 |0.040434 | 0.095093 | 0.431698
 2 | edb |query plan | 299 |0.001479 | 0.049425 | 0.262596

11.8.2 edb$session_waits

The edb$session_waits view summarizes the number of waits and the total wait time
per session for each wait named and identified by backend ID. It also displays the
average and max wait times. edb$session_waits summarizes the following
information:

 Column | Type | Modifiers |Definition
 -----------------+---------------+-----------+----------------
 backend_id | bigint | |session identifier
 wait_count | bigint | |number of times the event
 occurs
 avg_wait_time | numeric | |average wait time in
 microseconds

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

580

 max_wait_time | numeric(50,6) | |maximum wait time in
 microseconds
 total_wait_time | numeric(50,6) | |total wait time in
 microseconds
 wait_name | text | |name of the event

The following code sample shows the result of a SELECT statement on the
edb$session_waits view:

SELECT * FROM sys.edb$session_waits;

 edb_id | dbname | backend_id | wait_name | wait_count | avg_wait_time |
max_wait_time| total_wait_time | usename | current_query
--------+--------+------------+---------------+------------+---------------+-
-------------+-----------------+--------------+---------------------------
 1 | edb | 22935 | db file read | 175 | 0.008399 |
 0.629986 | 1.469887 | enterprisedb | <IDLE>
 1 | edb | 22988 | db file read | 116 | 0.009556 |
 0.040627 | 1.108438 | enterprisedb | select * from edbsnap();
 1 | edb | 22988 | wal flush | 26 | 0.010364 |
 0.085380 | 0.269452 | enterprisedb | select * from edbsnap();
(3 rows)

11.8.3 edb$session_wait_history

The edb$session_wait_history view contains the last 25 wait events for each
backend ID active during the session. The edb$session_wait_history view
includes the following information:

 Column | Type | Modifiers | Definition
 ------------+--------+-----------+--------------------------
 edb_id | numeric| |identifier
 dbname | text | |database name
 backend_id | bigint | |session identifier
 seq | bigint | |number between 1 and 25
 wait_name | text | |name of the event
 elapsed | bigint | |elapsed time in microseconds
 p1 | bigint | |variable #1- meaning dependent on
 event
 p2 | bigint | |variable #2- meaning dependent on
 event
 p3 | bigint | |variable #3- meaning dependent on
 event

The following code sample shows the result of a SELECT statement on the
edb$session_wait_history view:

SELECT * FROM sys.edb$session_wait_history;

 edb_id | dbname | backend_id | seq | wait_name | elapsed | p1 | p2 | p3
--------+--------+------------+-----+---------------+---------+----+----+----
 1 | edb | 22935 | 1 | query plan | 54 | 0 | 0 | 0
 1 | edb | 22935 | 2 | db file read | 1116 |2689| 8 | 1
 1 | edb | 22935 | 3 | db file read | 983 |1255| 32 | 1
 1 | edb | 22935 | 4 | db file read | 13717 |2691| 19 | 1
 1 | edb | 22935 | 5 | query plan | 75 | 0| 0 | 0

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

581

 1 | edb | 22935 | 6 | db file read | 11053 |1255| 7 | 1
 1 | edb | 22935 | 7 | db file read | 404 |2689| 4 | 1
 (7 rows)

Oracle Compatibility Developer’s Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

582

12 Acknowledgements
The PostgreSQL 8.3 Documentation provided the baseline for portions of this Oracle
Compatibility Developer’s Guide that is common to PostgreSQL, and is hereby
acknowledged:

Portions of this EnterpriseDB™ Software and Documentation may utilize the following copyrighted
material, the use of which is hereby acknowledged.

PostgreSQL Documentation, Database Management System

PostgreSQL is Copyright © 1996-2007 by the PostgreSQL Global Development Group and is distributed
under the terms of the license of the University of California below.

Postgres95 is Copyright © 1994-5 by the Regents of the University of California.

Permission to use, copy, modify, and distribute this software and its documentation for any purpose,
without fee, and without a written agreement is hereby granted, provided that the above copyright notice
and this paragraph and the following two paragraphs appear in all copies.

IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY
FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES,
INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS
DOCUMENTATION, EVEN IF THE UNIVERSITY OF CALIFORNIA HAS BEEN ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.

THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE
PROVIDED HEREUNDER IS ON AN "AS IS" BASIS, AND THE UNIVERSITY OF
CALIFORNIA HAS NO OBLIGATIONS TO PROVIDE MAINTENANCE, SUPPORT, UPDATES,
ENHANCEMENTS, OR MODIFICATIONS.

