

Postgres Plus® Advanced Server Guide
Version 2.0

Postgres Plus Advanced Server 8.3 R2

June 3, 2009

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

2

Postgres Plus Advanced Server Guide
by EnterpriseDB Corporation
Copyright © 2009 EnterpriseDB Corporation

EnterpriseDB Corporation, 235 Littleton Road, Westford, MA 01866, USA
T +1 978 589 5700 F +1 978 589 5701 E info@enterprisedb.com www.enterprisedb.com

Postgres Plus Advanced Server Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

3

Table of Contents
1 Introduction... 5

1.1 Typographical Conventions Used in this Guide .. 6
1.2 About the Examples Used in this Guide .. 7

1.2.1.1 Sample Database Description .. 8
2 Database Administration... 18

2.1 Database Management ... 18
2.1.1 Logging into DBA Management Server ... 18
2.1.2 Database Read/Write Activity Report .. 20
2.1.3 Add/Remove Cluster... 22
2.1.4 Monitoring .. 26

2.1.4.1 User Activity.. 26
2.1.4.2 Lock Status... 27
2.1.4.3 Buffer Cache .. 28
2.1.4.4 Configuration ... 29
2.1.4.5 View DB Logs ... 32
2.1.4.6 View Audit Logs.. 33

2.1.5 SQL... 33
2.1.5.1 iQuery .. 33
2.1.5.2 Query Profiler .. 35

2.2 Database Auditing.. 37
2.2.1 Auditing Configuration Parameters .. 38
2.2.2 View Audit Logs... 41

2.3 High Availability and Load Balancing .. 43
2.3.1 Shared Disk Failover... 44
2.3.2 Warm Standby Using Point-In-Time Recovery.. 44
2.3.3 Master-Slave Replication.. 44
2.3.4 Statement-Based Replication Middleware.. 45
2.3.5 Synchronous Multi-Master Replication.. 45
2.3.6 Asynchronous Multi-Master Replication.. 45
2.3.7 Data Partitioning ... 46
2.3.8 Multi-Server Parallel Query Execution .. 46

3 Application Development ... 47
3.1 ECPG – Embedded SQL in C.. 47

3.1.1 Preprocessor.. 47
3.1.2 Library... 47
3.1.3 Compilation and Linking .. 47
3.1.4 Installation... 48
3.1.5 Supported Platforms.. 48
3.1.6 Prerequisites.. 48

3.2 libpq C Library... 48
3.2.1 Using libpq with EnterpriseDB SPL... 49
3.2.2 EnterpriseDB libpq API.. 49

3.2.2.1 Preparing a Callable Statement.. 49
3.2.2.2 Executing a Callable Statement ... 49

Postgres Plus Advanced Server Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

4

3.2.2.3 Fetching Cursors from a Result Set ... 50
3.2.2.4 Returning the Number of Cursors Fetched from a Result Set 50
3.2.2.5 Retrieving the Out Parameter from the Result....................................... 50
3.2.2.6 Cursor Support Statements in EnterpriseDB ... 50
3.2.2.7 Array Binding .. 51
3.2.2.8 PQBulkStart ... 51
3.2.2.9 PQexecBulk ... 51
3.2.2.10 PQBulkFinish... 52
3.2.2.11 PQexecBulkPrepared ... 52
3.2.2.12 Example Code (Using PQBulkStart, PQexecBulk, PQBulkFinish) 53
3.2.2.13 Example Code (Using PQexecBulkPrepared) 54

Postgres Plus Advanced Server Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

5

1 Introduction
This guide describes the features of Postgres Plus Advanced Server that have been added
to enhance the capabilities of the standard Postgres Plus product. Enhancements have
been made in the areas of:

• Database administration
• Application development
• Database migration

This guide explains each of these areas in more detail.

Postgres Plus Advanced Server Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

6

1.1 Typographical Conventions Used in this Guide

Certain typographical conventions are used in this manual to clarify the meaning and
usage of various commands, statements, programs, examples, etc. This section provides a
summary of these conventions.

In the following descriptions a term refers to any word or group of words which may be
language keywords, user-supplied values, literals, etc. A term’s exact meaning depends
upon the context in which it is used.

• Italic font introduces a new term, typically, in the sentence that defines it for the
first time.

• Fixed-width (mono-spaced) font is used for terms that must be given
literally such as SQL commands, specific table and column names used in the
examples, programming language keywords, directory paths and file names,
parameter values, etc. For example postgresql.conf, SELECT * FROM emp;

• Italic fixed-width font is used for terms for which the user must
substitute values in actual usage. For example, DELETE FROM table_name;

• Arial bold font is used for names of reports, menus, menu picks, buttons, check
boxes, etc.

• A vertical pipe | denotes a choice between the terms on either side of the pipe. A
vertical pipe is used to separate two or more alternative terms within square
brackets (optional choices) or braces (one mandatory choice).

• Square brackets [] denote that one or none of the enclosed term(s) may be
substituted. For example, [a | b], means choose one of “a” or “b” or neither
of the two.

• Braces {} denote that exactly one of the enclosed alternatives must be specified.
For example, { a | b }, means exactly one of “a” or “b” must be specified.

• Ellipses ... denote that the proceeding term may be repeated. For example, [a |
b] ... means that you may have the sequence, “b a a b a”.

Postgres Plus Advanced Server Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

7

1.2 About the Examples Used in this Guide

The examples in this guide are shown in the type and background illustrated below.

Examples and output from examples are shown in fixed-width, blue font on a
light blue background.

The examples use the sample tables, dept, emp, and jobhist, created and loaded when
Postgres Plus Advanced Server is installed.

The tables and programs in the sample database can be re-created at any time by
executing the script, edb-sample.sql, located in the samples subdirectory of the
Postgres Plus Advanced Server home directory.

This script does the following:

• Creates the sample tables and programs in the currently connected database
• Grants all permissions on the tables to the PUBLIC group

The tables and programs will be created in the first schema of the search path in which
the current user has permission to create tables and procedures. You can display the
search path by issuing the command:

SHOW SEARCH_PATH;

Altering the search path can be done using commands in PSQL.

Postgres Plus Advanced Server Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

8

1.2.1.1 Sample Database Description

The sample database represents employees in an organization.

It contains three types of records: employees, departments, and historical records of
employees.

Each employee has an identification number, name, hire date, salary, and manager. Some
employees earn a commission in addition to their salary. All employee-related
information is stored in the emp table.

The sample company is regionally diverse, so it tracks the locations of its departments.
Each company employee is assigned to a department. Each department is identified by a
unique department number and a short name. Each department is associated with one
location. All department-related information is stored in the dept table.

The company also tracks information about jobs held by the employees. Some employees
have been with the company for a long time and have held different positions, received
raises, switched departments, etc. When a change in employee status occurs, the company
records the end date of the former position. A new job record is added with the start date
and the new job title, department, salary, and the reason for the status change. All
employee history is maintained in the jobhist table.

The following is the edb-sample.sql script:

--
-- Script that creates the 'sample' tables, views, procedures,
-- functions, triggers, etc.
--
-- Start new transaction - commit all or nothing
--
BEGIN;
/
--
-- Create and load tables used in the documentation examples.
--
-- Create the 'dept' table
--
CREATE TABLE dept (
 deptno NUMBER(2) NOT NULL CONSTRAINT dept_pk PRIMARY KEY,
 dname VARCHAR2(14) CONSTRAINT dept_dname_uq UNIQUE,
 loc VARCHAR2(13)
);
--
-- Create the 'emp' table
--
CREATE TABLE emp (
 empno NUMBER(4) NOT NULL CONSTRAINT emp_pk PRIMARY KEY,
 ename VARCHAR2(10),
 job VARCHAR2(9),
 mgr NUMBER(4),

Postgres Plus Advanced Server Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

9

 hiredate DATE,
 sal NUMBER(7,2) CONSTRAINT emp_sal_ck CHECK (sal > 0),
 comm NUMBER(7,2),
 deptno NUMBER(2) CONSTRAINT emp_ref_dept_fk
 REFERENCES dept(deptno)
);
--
-- Create the 'jobhist' table
--
CREATE TABLE jobhist (
 empno NUMBER(4) NOT NULL,
 startdate DATE NOT NULL,
 enddate DATE,
 job VARCHAR2(9),
 sal NUMBER(7,2),
 comm NUMBER(7,2),
 deptno NUMBER(2),
 chgdesc VARCHAR2(80),
 CONSTRAINT jobhist_pk PRIMARY KEY (empno, startdate),
 CONSTRAINT jobhist_ref_emp_fk FOREIGN KEY (empno)
 REFERENCES emp(empno) ON DELETE CASCADE,
 CONSTRAINT jobhist_ref_dept_fk FOREIGN KEY (deptno)
 REFERENCES dept (deptno) ON DELETE SET NULL,
 CONSTRAINT jobhist_date_chk CHECK (startdate <= enddate)
);
--
-- Create the 'salesemp' view
--
CREATE OR REPLACE VIEW salesemp AS
 SELECT empno, ename, hiredate, sal, comm FROM emp WHERE job = 'SALESMAN';
--
-- Sequence to generate values for function 'new_empno'.
--
CREATE SEQUENCE next_empno START WITH 8000 INCREMENT BY 1;
--
-- Issue PUBLIC grants
--
GRANT ALL ON emp TO PUBLIC;
GRANT ALL ON dept TO PUBLIC;
GRANT ALL ON jobhist TO PUBLIC;
GRANT ALL ON salesemp TO PUBLIC;
GRANT ALL ON next_empno TO PUBLIC;
--
-- Load the 'dept' table
--
INSERT INTO dept VALUES (10,'ACCOUNTING','NEW YORK');
INSERT INTO dept VALUES (20,'RESEARCH','DALLAS');
INSERT INTO dept VALUES (30,'SALES','CHICAGO');
INSERT INTO dept VALUES (40,'OPERATIONS','BOSTON');
--
-- Load the 'emp' table
--
INSERT INTO emp VALUES (7369,'SMITH','CLERK',7902,'17-DEC-80',800,NULL,20);
INSERT INTO emp VALUES (7499,'ALLEN','SALESMAN',7698,'20-FEB-
81',1600,300,30);
INSERT INTO emp VALUES (7521,'WARD','SALESMAN',7698,'22-FEB-81',1250,500,30);
INSERT INTO emp VALUES (7566,'JONES','MANAGER',7839,'02-APR-
81',2975,NULL,20);
INSERT INTO emp VALUES (7654,'MARTIN','SALESMAN',7698,'28-SEP-
81',1250,1400,30);
INSERT INTO emp VALUES (7698,'BLAKE','MANAGER',7839,'01-MAY-
81',2850,NULL,30);

Postgres Plus Advanced Server Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

10

INSERT INTO emp VALUES (7782,'CLARK','MANAGER',7839,'09-JUN-
81',2450,NULL,10);
INSERT INTO emp VALUES (7788,'SCOTT','ANALYST',7566,'19-APR-
87',3000,NULL,20);
INSERT INTO emp VALUES (7839,'KING','PRESIDENT',NULL,'17-NOV-
81',5000,NULL,10);
INSERT INTO emp VALUES (7844,'TURNER','SALESMAN',7698,'08-SEP-81',1500,0,30);
INSERT INTO emp VALUES (7876,'ADAMS','CLERK',7788,'23-MAY-87',1100,NULL,20);
INSERT INTO emp VALUES (7900,'JAMES','CLERK',7698,'03-DEC-81',950,NULL,30);
INSERT INTO emp VALUES (7902,'FORD','ANALYST',7566,'03-DEC-81',3000,NULL,20);
INSERT INTO emp VALUES (7934,'MILLER','CLERK',7782,'23-JAN-82',1300,NULL,10);
--
-- Load the 'jobhist' table
--
INSERT INTO jobhist VALUES (7369,'17-DEC-80',NULL,'CLERK',800,NULL,20,'New
Hire');
INSERT INTO jobhist VALUES (7499,'20-FEB-81',NULL,'SALESMAN',1600,300,30,'New
Hire');
INSERT INTO jobhist VALUES (7521,'22-FEB-81',NULL,'SALESMAN',1250,500,30,'New
Hire');
INSERT INTO jobhist VALUES (7566,'02-APR-81',NULL,'MANAGER',2975,NULL,20,'New
Hire');
INSERT INTO jobhist VALUES (7654,'28-SEP-
81',NULL,'SALESMAN',1250,1400,30,'New Hire');
INSERT INTO jobhist VALUES (7698,'01-MAY-81',NULL,'MANAGER',2850,NULL,30,'New
Hire');
INSERT INTO jobhist VALUES (7782,'09-JUN-81',NULL,'MANAGER',2450,NULL,10,'New
Hire');
INSERT INTO jobhist VALUES (7788,'19-APR-87','12-APR-
88','CLERK',1000,NULL,20,'New Hire');
INSERT INTO jobhist VALUES (7788,'13-APR-88','04-MAY-
89','CLERK',1040,NULL,20,'Raise');
INSERT INTO jobhist VALUES (7788,'05-MAY-
90',NULL,'ANALYST',3000,NULL,20,'Promoted to Analyst');
INSERT INTO jobhist VALUES (7839,'17-NOV-
81',NULL,'PRESIDENT',5000,NULL,10,'New Hire');
INSERT INTO jobhist VALUES (7844,'08-SEP-81',NULL,'SALESMAN',1500,0,30,'New
Hire');
INSERT INTO jobhist VALUES (7876,'23-MAY-87',NULL,'CLERK',1100,NULL,20,'New
Hire');
INSERT INTO jobhist VALUES (7900,'03-DEC-81','14-JAN-
83','CLERK',950,NULL,10,'New Hire');
INSERT INTO jobhist VALUES (7900,'15-JAN-
83',NULL,'CLERK',950,NULL,30,'Changed to Dept 30');
INSERT INTO jobhist VALUES (7902,'03-DEC-81',NULL,'ANALYST',3000,NULL,20,'New
Hire');
INSERT INTO jobhist VALUES (7934,'23-JAN-82',NULL,'CLERK',1300,NULL,10,'New
Hire');
--
-- Populate statistics table and view (pg_statistic/pg_stats)
--
ANALYZE dept;
ANALYZE emp;
ANALYZE jobhist;
--
-- Procedure that lists all employees' numbers and names
-- from the 'emp' table using a cursor.
--
CREATE OR REPLACE PROCEDURE list_emp
IS
 v_empno NUMBER(4);
 v_ename VARCHAR2(10);
 CURSOR emp_cur IS

Postgres Plus Advanced Server Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

11

 SELECT empno, ename FROM emp ORDER BY empno;
BEGIN
 OPEN emp_cur;
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME');
 DBMS_OUTPUT.PUT_LINE('----- -------');
 LOOP
 FETCH emp_cur INTO v_empno, v_ename;
 EXIT WHEN emp_cur%NOTFOUND;
 DBMS_OUTPUT.PUT_LINE(v_empno || ' ' || v_ename);
 END LOOP;
 CLOSE emp_cur;
END;
/
--
-- Procedure that selects an employee row given the employee
-- number and displays certain columns.
--
CREATE OR REPLACE PROCEDURE select_emp (
 p_empno IN NUMBER
)
IS
 v_ename emp.ename%TYPE;
 v_hiredate emp.hiredate%TYPE;
 v_sal emp.sal%TYPE;
 v_comm emp.comm%TYPE;
 v_dname dept.dname%TYPE;
 v_disp_date VARCHAR2(10);
BEGIN
 SELECT ename, hiredate, sal, NVL(comm, 0), dname
 INTO v_ename, v_hiredate, v_sal, v_comm, v_dname
 FROM emp e, dept d
 WHERE empno = p_empno
 AND e.deptno = d.deptno;
 v_disp_date := TO_CHAR(v_hiredate, 'MM/DD/YYYY');
 DBMS_OUTPUT.PUT_LINE('Number : ' || p_empno);
 DBMS_OUTPUT.PUT_LINE('Name : ' || v_ename);
 DBMS_OUTPUT.PUT_LINE('Hire Date : ' || v_disp_date);
 DBMS_OUTPUT.PUT_LINE('Salary : ' || v_sal);
 DBMS_OUTPUT.PUT_LINE('Commission: ' || v_comm);
 DBMS_OUTPUT.PUT_LINE('Department: ' || v_dname);
EXCEPTION
 WHEN NO_DATA_FOUND THEN
 DBMS_OUTPUT.PUT_LINE('Employee ' || p_empno || ' not found');
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE('The following is SQLERRM:');
 DBMS_OUTPUT.PUT_LINE(SQLERRM);
 DBMS_OUTPUT.PUT_LINE('The following is SQLCODE:');
 DBMS_OUTPUT.PUT_LINE(SQLCODE);
END;
/
--
-- Procedure that queries the 'emp' table based on
-- department number and employee number or name. Returns
-- employee number and name as IN OUT parameters and job,
-- hire date, and salary as OUT parameters.
--
CREATE OR REPLACE PROCEDURE emp_query (
 p_deptno IN NUMBER,
 p_empno IN OUT NUMBER,
 p_ename IN OUT VARCHAR2,
 p_job OUT VARCHAR2,
 p_hiredate OUT DATE,
 p_sal OUT NUMBER

Postgres Plus Advanced Server Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

12

)
IS
BEGIN
 SELECT empno, ename, job, hiredate, sal
 INTO p_empno, p_ename, p_job, p_hiredate, p_sal
 FROM emp
 WHERE deptno = p_deptno
 AND (empno = p_empno
 OR ename = UPPER(p_ename));
END;
/
--
-- Procedure to call 'emp_query_caller' with IN and IN OUT
-- parameters. Displays the results received from IN OUT and
-- OUT parameters.
--
CREATE OR REPLACE PROCEDURE emp_query_caller
IS
 v_deptno NUMBER(2);
 v_empno NUMBER(4);
 v_ename VARCHAR2(10);
 v_job VARCHAR2(9);
 v_hiredate DATE;
 v_sal NUMBER;
BEGIN
 v_deptno := 30;
 v_empno := 0;
 v_ename := 'Martin';
 emp_query(v_deptno, v_empno, v_ename, v_job, v_hiredate, v_sal);
 DBMS_OUTPUT.PUT_LINE('Department : ' || v_deptno);
 DBMS_OUTPUT.PUT_LINE('Employee No: ' || v_empno);
 DBMS_OUTPUT.PUT_LINE('Name : ' || v_ename);
 DBMS_OUTPUT.PUT_LINE('Job : ' || v_job);
 DBMS_OUTPUT.PUT_LINE('Hire Date : ' || v_hiredate);
 DBMS_OUTPUT.PUT_LINE('Salary : ' || v_sal);
EXCEPTION
 WHEN TOO_MANY_ROWS THEN
 DBMS_OUTPUT.PUT_LINE('More than one employee was selected');
 WHEN NO_DATA_FOUND THEN
 DBMS_OUTPUT.PUT_LINE('No employees were selected');
END;
/
--
-- Function to compute yearly compensation based on semimonthly
-- salary.
--
CREATE OR REPLACE FUNCTION emp_comp (
 p_sal NUMBER,
 p_comm NUMBER
) RETURN NUMBER
IS
BEGIN
 RETURN (p_sal + NVL(p_comm, 0)) * 24;
END;
/
--
-- Function that gets the next number from sequence, 'next_empno',
-- and ensures it is not already in use as an employee number.
--
CREATE OR REPLACE FUNCTION new_empno RETURN NUMBER
IS
 v_cnt INTEGER := 1;
 v_new_empno NUMBER;

Postgres Plus Advanced Server Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

13

BEGIN
 WHILE v_cnt > 0 LOOP
 SELECT next_empno.nextval INTO v_new_empno FROM dual;
 SELECT COUNT(*) INTO v_cnt FROM emp WHERE empno = v_new_empno;
 END LOOP;
 RETURN v_new_empno;
END;
/
--
-- EDB-SPL function that adds a new clerk to table 'emp'. This function
-- uses package 'emp_admin'.
--
CREATE OR REPLACE FUNCTION hire_clerk (
 p_ename VARCHAR2,
 p_deptno NUMBER
) RETURN NUMBER
IS
 v_empno NUMBER(4);
 v_ename VARCHAR2(10);
 v_job VARCHAR2(9);
 v_mgr NUMBER(4);
 v_hiredate DATE;
 v_sal NUMBER(7,2);
 v_comm NUMBER(7,2);
 v_deptno NUMBER(2);
BEGIN
 v_empno := new_empno;
 INSERT INTO emp VALUES (v_empno, p_ename, 'CLERK', 7782,
 TRUNC(SYSDATE), 950.00, NULL, p_deptno);
 SELECT empno, ename, job, mgr, hiredate, sal, comm, deptno INTO
 v_empno, v_ename, v_job, v_mgr, v_hiredate, v_sal, v_comm, v_deptno
 FROM emp WHERE empno = v_empno;
 DBMS_OUTPUT.PUT_LINE('Department : ' || v_deptno);
 DBMS_OUTPUT.PUT_LINE('Employee No: ' || v_empno);
 DBMS_OUTPUT.PUT_LINE('Name : ' || v_ename);
 DBMS_OUTPUT.PUT_LINE('Job : ' || v_job);
 DBMS_OUTPUT.PUT_LINE('Manager : ' || v_mgr);
 DBMS_OUTPUT.PUT_LINE('Hire Date : ' || v_hiredate);
 DBMS_OUTPUT.PUT_LINE('Salary : ' || v_sal);
 DBMS_OUTPUT.PUT_LINE('Commission : ' || v_comm);
 RETURN v_empno;
EXCEPTION
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE('The following is SQLERRM:');
 DBMS_OUTPUT.PUT_LINE(SQLERRM);
 DBMS_OUTPUT.PUT_LINE('The following is SQLCODE:');
 DBMS_OUTPUT.PUT_LINE(SQLCODE);
 RETURN -1;
END;
/
--
-- PostgreSQL PL/pgSQL function that adds a new salesman
-- to table 'emp'.
--
CREATE OR REPLACE FUNCTION hire_salesman (
 p_ename VARCHAR,
 p_sal NUMERIC,
 p_comm NUMERIC
) RETURNS NUMERIC
AS $$
DECLARE
 v_empno NUMERIC(4);
 v_ename VARCHAR(10);

Postgres Plus Advanced Server Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

14

 v_job VARCHAR(9);
 v_mgr NUMERIC(4);
 v_hiredate DATE;
 v_sal NUMERIC(7,2);
 v_comm NUMERIC(7,2);
 v_deptno NUMERIC(2);
BEGIN
 v_empno := new_empno();
 INSERT INTO emp VALUES (v_empno, p_ename, 'SALESMAN', 7698,
 CURRENT_DATE, p_sal, p_comm, 30);
 SELECT INTO
 v_empno, v_ename, v_job, v_mgr, v_hiredate, v_sal, v_comm, v_deptno
 empno, ename, job, mgr, hiredate, sal, comm, deptno
 FROM emp WHERE empno = v_empno;
 RAISE INFO 'Department : %', v_deptno;
 RAISE INFO 'Employee No: %', v_empno;
 RAISE INFO 'Name : %', v_ename;
 RAISE INFO 'Job : %', v_job;
 RAISE INFO 'Manager : %', v_mgr;
 RAISE INFO 'Hire Date : %', v_hiredate;
 RAISE INFO 'Salary : %', v_sal;
 RAISE INFO 'Commission : %', v_comm;
 RETURN v_empno;
EXCEPTION
 WHEN OTHERS THEN
 RAISE INFO 'The following is SQLERRM:';
 RAISE INFO '%', SQLERRM;
 RAISE INFO 'The following is SQLSTATE:';
 RAISE INFO '%', SQLSTATE;
 RETURN -1;
END;
$$ LANGUAGE 'plpgsql';
/
--
-- Rule to INSERT into view 'salesemp'
--
CREATE OR REPLACE RULE salesemp_i AS ON INSERT TO salesemp
DO INSTEAD
 INSERT INTO emp VALUES (NEW.empno, NEW.ename, 'SALESMAN', 7698,
 NEW.hiredate, NEW.sal, NEW.comm, 30);
--
-- Rule to UPDATE view 'salesemp'
--
CREATE OR REPLACE RULE salesemp_u AS ON UPDATE TO salesemp
DO INSTEAD
 UPDATE emp SET empno = NEW.empno,
 ename = NEW.ename,
 hiredate = NEW.hiredate,
 sal = NEW.sal,
 comm = NEW.comm
 WHERE empno = OLD.empno;
--
-- Rule to DELETE from view 'salesemp'
--
CREATE OR REPLACE RULE salesemp_d AS ON DELETE TO salesemp
DO INSTEAD
 DELETE FROM emp WHERE empno = OLD.empno;
--
-- After statement-level trigger that displays a message after
-- an insert, update, or deletion to the 'emp' table. One message
-- per SQL command is displayed.
--
CREATE OR REPLACE TRIGGER user_audit_trig

Postgres Plus Advanced Server Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

15

 AFTER INSERT OR UPDATE OR DELETE ON emp
DECLARE
 v_action VARCHAR2(24);
BEGIN
 IF INSERTING THEN
 v_action := ' added employee(s) on ';
 ELSIF UPDATING THEN
 v_action := ' updated employee(s) on ';
 ELSIF DELETING THEN
 v_action := ' deleted employee(s) on ';
 END IF;
 DBMS_OUTPUT.PUT_LINE('User ' || USER || v_action ||
TO_CHAR(SYSDATE,'YYYY-MM-DD'));
END;
/
--
-- Before row-level trigger that displays employee number and
-- salary of an employee that is about to be added, updated,
-- or deleted in the 'emp' table.
--
CREATE OR REPLACE TRIGGER emp_sal_trig
 BEFORE DELETE OR INSERT OR UPDATE ON emp
 FOR EACH ROW
DECLARE
 sal_diff NUMBER;
BEGIN
 IF INSERTING THEN
 DBMS_OUTPUT.PUT_LINE('Inserting employee ' || :NEW.empno);
 DBMS_OUTPUT.PUT_LINE('..New salary: ' || :NEW.sal);
 END IF;
 IF UPDATING THEN
 sal_diff := :NEW.sal - :OLD.sal;
 DBMS_OUTPUT.PUT_LINE('Updating employee ' || :OLD.empno);
 DBMS_OUTPUT.PUT_LINE('..Old salary: ' || :OLD.sal);
 DBMS_OUTPUT.PUT_LINE('..New salary: ' || :NEW.sal);
 DBMS_OUTPUT.PUT_LINE('..Raise : ' || sal_diff);
 END IF;
 IF DELETING THEN
 DBMS_OUTPUT.PUT_LINE('Deleting employee ' || :OLD.empno);
 DBMS_OUTPUT.PUT_LINE('..Old salary: ' || :OLD.sal);
 END IF;
END;
/
--
-- Package specification for the 'emp_admin' package.
--
CREATE OR REPLACE PACKAGE emp_admin
IS
 FUNCTION get_dept_name (
 p_deptno NUMBER
) RETURN VARCHAR2;
 FUNCTION update_emp_sal (
 p_empno NUMBER,
 p_raise NUMBER
) RETURN NUMBER;
 PROCEDURE hire_emp (
 p_empno NUMBER,
 p_ename VARCHAR2,
 p_job VARCHAR2,
 p_sal NUMBER,
 p_hiredate DATE,
 p_comm NUMBER,
 p_mgr NUMBER,

Postgres Plus Advanced Server Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

16

 p_deptno NUMBER
);
 PROCEDURE fire_emp (
 p_empno NUMBER
);
END emp_admin;
/
--
-- Package body for the 'emp_admin' package.
--
CREATE OR REPLACE PACKAGE BODY emp_admin
IS
 --
 -- Function that queries the 'dept' table based on the department
 -- number and returns the corresponding department name.
 --
 FUNCTION get_dept_name (
 p_deptno IN NUMBER
) RETURN VARCHAR2
 IS
 v_dname VARCHAR2(14);
 BEGIN
 SELECT dname INTO v_dname FROM dept WHERE deptno = p_deptno;
 RETURN v_dname;
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 DBMS_OUTPUT.PUT_LINE('Invalid department number ' || p_deptno);
 RETURN '';
 END;
 --
 -- Function that updates an employee's salary based on the
 -- employee number and salary increment/decrement passed
 -- as IN parameters. Upon successful completion the function
 -- returns the new updated salary.
 --
 FUNCTION update_emp_sal (
 p_empno IN NUMBER,
 p_raise IN NUMBER
) RETURN NUMBER
 IS
 v_sal NUMBER := 0;
 BEGIN
 SELECT sal INTO v_sal FROM emp WHERE empno = p_empno;
 v_sal := v_sal + p_raise;
 UPDATE emp SET sal = v_sal WHERE empno = p_empno;
 RETURN v_sal;
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 DBMS_OUTPUT.PUT_LINE('Employee ' || p_empno || ' not found');
 RETURN -1;
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE('The following is SQLERRM:');
 DBMS_OUTPUT.PUT_LINE(SQLERRM);
 DBMS_OUTPUT.PUT_LINE('The following is SQLCODE:');
 DBMS_OUTPUT.PUT_LINE(SQLCODE);
 RETURN -1;
 END;
 --
 -- Procedure that inserts a new employee record into the 'emp' table.
 --
 PROCEDURE hire_emp (
 p_empno NUMBER,
 p_ename VARCHAR2,

Postgres Plus Advanced Server Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

17

 p_job VARCHAR2,
 p_sal NUMBER,
 p_hiredate DATE,
 p_comm NUMBER,
 p_mgr NUMBER,
 p_deptno NUMBER
)
 AS
 BEGIN
 INSERT INTO emp(empno, ename, job, sal, hiredate, comm, mgr, deptno)
 VALUES(p_empno, p_ename, p_job, p_sal,
 p_hiredate, p_comm, p_mgr, p_deptno);
 END;
 --
 -- Procedure that deletes an employee record from the 'emp' table based
 -- on the employee number.
 --
 PROCEDURE fire_emp (
 p_empno NUMBER
)
 AS
 BEGIN
 DELETE FROM emp WHERE empno = p_empno;
 END;
END;
/
COMMIT;

Postgres Plus Advanced Server Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

18

2 Database Administration
This chapter describes the enhancements in Postgres Plus Advanced Server to aid in the
management and administration of Postgres Plus Advanced Server databases.

2.1 Database Management

The DBA Management Server allows database administrators to monitor real-time
database performance, view statistics, and to identify configuration issues for an
unlimited number of Postgres Plus and/or Postgres Plus Advanced Server databases.
Reports can be generated in both HTML and PDF formats.

2.1.1 Logging into DBA Management Server

When the DBA Management Server is launched, you are prompted with a login screen as
shown below. Once your username is authenticated the DBA Management Server home
page will appear.

Figure 1 DBA Management Server - Login

Note: In case of Internet Explorer, there may be a problem in redirection from
https://server:9363/edb-mgmtsvr/login.jsp to
http://server:9000/edb-mgmtsvr/source_stats.do

In this situation, the user may be redirected to http://server:9363/edb-
mgmtsvr/source_stats.do instead of http://server:9000/edb-
mgmtsvr/source_stats.do

Postgres Plus Advanced Server Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

19

In case this happens, update Internet Explorer using the Internet Explorer menu Tools
and choose the WindowsUpdate option from the menu, and then restart Internet
Explorer. The user will then be correctly redirected to http://server:9000/edb-
mgmtsvr/source_stats.do

Only a valid superuser username and password can gain access to the DBA Management
Server.

Upon login, the system checks for the availability of a connection configured against the
Default Data Source. This information is maintained in the enterprisedb-ds.xml file
which can be found in the mgmtsvr/server/default/deploy subdirectory of the
Postgres Plus Advanced Server home directory. In case a connection cannot be made due
to some reason such as a bad username/password combination or connection timeout, the
following error message is shown.

Figure 2 Default Data Source Connection Error

This dialog box can be closed by clicking the X symbol in the upper right corner;
however, this dialog box will be displayed upon each user login until the
enterprisedb-ds.xml file is updated.

The following is an example of the enterprisedb-ds.xml file.

<?xml version="1.0" encoding="UTF-8"?>

<!-- == -->
<!-- Datasource config for EnterpriseDB
-->
<!-- == -->

<datasources>
 <local-tx-datasource>
 <jndi-name>DefaultDS</jndi-name>

 <!-- Connection using EnterpriseDB JDBC Driver -->
 <connection-url>jdbc:edb://127.0.0.1:5445/mgmtsvr</connection-url>
 <driver-class>com.edb.Driver</driver-class>

 <!-- Connection using PostgreSQL JDBC Driver -->
 <!--
 <connection-url>jdbc:postgresql://127.0.0.1:#port/#db</connection-url>

Postgres Plus Advanced Server Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

20

 <driver-class>org.postgresql.Driver</driver-class>
 -->

 <user-name>enterprisedb</user-name>
 <password>password</password>

 <!-- The minimum connections in a pool/sub-pool. Pools are lazily
 constructed on first use -->
 <min-pool-size>1</min-pool-size>

 <!-- The maximum connections in a pool/sub-pool -->
 <max-pool-size>20</max-pool-size>

 <!-- The time before an unused connection is destroyed -->
 <!-- NOTE: This is the check period. It will be destroyed somewhere
 between 1x and 2x this timeout after last use -->
 <idle-timeout-minutes>0</idle-timeout-minutes>

 <!-- corresponding type-mapping in the standardjbosscmp-jdbc.xml
 (optional) -->
 <metadata>
 <type-mapping>PostgreSQL 8.0</type-mapping>
 </metadata>

 </local-tx-datasource>

</datasources>

2.1.2 Database Read/Write Activity Report

Database read/write activity is graphically represented by the bar charts on the DBA
Management Server home page.

• The Transactions bar chart shows the number of transactions committed.
• The Memory Reads bar chart displays the number of cache block hits.
• The Disk Reads bar chart displays the number of physical disk blocks read.

Postgres Plus Advanced Server Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

21

Figure 3 Database Read/Write Activity

In addition to the database read/write activity, the home page also contains a table
summarizing the following information on each row for each configured database.

• Database - Database name in the format hostname:port/database
• Version - The database’s major and minor version number
• Owner - The name of the database owner
• DB Size - Size of the database using KB, MB, GB, or TB as appropriate
• Active Sessions - The number of active sessions
• Server Uptime - The amount of time since the database server has been started
• Query Logging - Shows if Query Logging is currently on or off for a configured

database. The entire row is displayed in red if Query Logging is on, or black if
Query Logging is off. For more details on enabling/disabling Query Logging
refer to the Query Profiler.

The DB Size and Server Uptime columns are only available with EnterpriseDB and
PostgreSQL versions 8.1 and above.

If a server is not available, the tab for that server will appear greyed out with a red cross
on it as shown in the following figure.

Postgres Plus Advanced Server Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

22

Figure 4 Unavailable Server

The report can be refreshed by clicking on the Refresh Report link.

When multiple data sources are configured, each is assigned a different color to
differentiate each source. If a data source is not available or one of the connection
parameters defined in the configure.xml file is incorrect, an appropriate error message
is displayed.

2.1.3 Add/Remove Cluster

DBA Management Server can monitor various databases at once. These databases can be
present on the local or a remote machine. To monitor a new database cluster, select the
Add/Remove Cluster option under the home menu. Clicking on Add/Remove Cluster
will open the following Configured Clusters report:

Postgres Plus Advanced Server Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

23

Figure 5 Configured Clusters

To add a new cluster, click on the Configure New Cluster option. This will open the
following report.

Postgres Plus Advanced Server Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

24

Figure 6 Configure New Cluster

Provide the new server IP address, port number, and database name in the Server, Port
and Initial Database text fields. Click on the Configure button. The new database cluster
is now added to DBA Management Server and it will be visible on the Configured
Clusters report.

Postgres Plus Advanced Server Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

25

Figure 7 New Configured Cluster

The new database will be available on the home page in form of a new tab.

Figure 8 Read/Write Activity for New Database

Postgres Plus Advanced Server Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

26

2.1.4 Monitoring

The following reports are available for monitoring database activity:

• User Activity – Lists connected users and active SQL commands in execution
• Lock Status – Shows locks held on tables and indexes by users and what type of

locks are held
• Buffer Cache – Shows count of table and index pages held in the buffer cache
• Configuration – Displays and allows for updating of database parameter settings

for statistics collection
• View DB Logs – View the database server logs
• View Audit Logs – View the database server audit logs

Figure 9 DBA Management Server - Monitoring

2.1.4.1 User Activity

This report contains information about current user activity within a specific database.
This is primarly the number of active sessions associated with the database. The User
Activity report contains the process ID, username, the time the current command was
initiated, and the command being issued by that particular session.

Note: The current command appears in the report only if the stats_command_string
parameter for the database is set to “true”. This parameter can be viewed and set in the
Configuration report.

Postgres Plus Advanced Server Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

27

This report provides a real-time view of database activity. Keep in mind that there is a
delay of approximately ten seconds between actual execution of the query and when it is
reported in the database catalog. Hence this view lags the actual database activity by
about ten seconds.

Ten seconds is the default refresh interval for this report. This default can be changed to
any value between 5 - 99 seconds by typing in the desired refresh period in the Refresh
Interval textbox.

Figure 10 User Activity

2.1.4.2 Lock Status

This report provides access to information about the locks held by open transactions
within the database server. Each row shows an active lockable object, lock mode, the
username, the transaction number, and the SQL command holding the lock. The same
lockable object may appear mulitple times if multiple transactions are holding or waiting
against that object.

This report can be particularly useful for detecting deadlocks; however, there is a delay of
approximately ten seconds between actual execution of the SQL command and when it is
reported in the database catalog. Hence this view lags the actual database activity by
about ten seconds.

Postgres Plus Advanced Server Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

28

Ten seconds is the default refresh interval for this report, this default can be changed to
any value between 5-99 seconds by typing in the desired refresh period in the Refresh
Interval textbox.

Figure 11 Lock Status

Note: This report locks the pg_locks catalog table while it generates the output. Avoid
refreshing this report too frequently as it will result in database performance degradation.

2.1.4.3 Buffer Cache

This report shows information about real-time queries on the shared buffer cache. Each
row in this report shows the number of pages and amount of memory each relation or
index is taking from the shared buffer cache.

Postgres Plus Advanced Server Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

29

Figure 12 Buffer Cache

Note: This report locks the pg_buffercache catalog table while it generates the output.
Avoid refreshing this report too frequently as it will result in database performance
degradation.

2.1.4.4 Configuration

The parameters shown on this page are the configuration parameters that control the
collection of runtime statistics for the database selected at the top of the report.

The message in red (as seen in the following figure) shows that the readOnly element of
database mgmtsvr is set to “true” in the configure.xml file found in the
mgmtsvr/server/default/deploy/edb-mgmtsvr.war/WEB-INF subdirectory of
the Postgres Plus Advanced Server home directory.

Figure 13 Configuration – read-only mode

The following is the configure.xml file.

<?xml version="1.0" encoding="UTF-8"?>

Postgres Plus Advanced Server Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

30

<config>

 <source>

 <host>localhost</host>

 <port>5445</port>

 <database>edb</database>

 <readOnly>false</readOnly>

 </source>

 <source>

 <host>localhost</host>

 <port>5445</port>

 <database>mgmtsvr</database>

 <readOnly>true</readOnly>

 </source>
 <source> <host>172.16.172.128</host>
 <port>5444</port>
 <database>edb</database>
 <readOnly>false</readOnly>
 </source>
</config>

When the readOnly element is set to “false”, end users can freely change the status of
all the parameters as shown in the following figure for database edb.

Figure 14 Configuration – writeable mode

The stats_reset_on_server_start and stats_start_collector check boxes are disabled
as these parameters can be changed only at database server startup time.

To change any of the other parameter values, select the check-box and click on the Apply
button.

The following is a description of each check box and the parameter it enables or disables
for the database.

stats_block_level

Postgres Plus Advanced Server Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

31

This box must be checked to view the Memory Reads and Disk Reads bar charts
on the home page. Furthermore, this box must be checked for accurately viewing
all statistics related reports.

stats_command_string

When this box is checked the active SQL command of any new SQL Interactive
session is displayed in the User Activity report.

stats_reset_on_server_start

If this box is checked and the database server is restarted, the following statistics
are reset.

• Transactions bar chart
• Memory Reads bar chart
• Disk Reads bar chart
• Table IO Detail report
• Index IO Detail report

stats_row_level

When this box is checked, statistics are collected and displayed on the following
reports.

• Table IO Detail report
• Index IO Detail report

stats_start_collector

When this box is checked the database server’s stats collector process is started
upon database server start. This process is responsible for collection of database
statistics. This box should be checked if either or both of the stats_block_level
or stats_row_level boxes are checked.

Reset Collected Stats

When this checkbox is selected, the following report statistics are reset.

• Transactions bar chart
• Memory Reads bar chart
• Disk Reads bar chart
• Table IO Detail report
• Index IO Detail report

Postgres Plus Advanced Server Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

32

2.1.4.5 View DB Logs

This feature provides the ability to browse through the database server log files. The log
files of remote as well as local database servers can be viewed.

In order to produce a database server log file, the following configuration parameters
must be set in the postgresql.conf file prior to database server startup.

• log_destination must include stderr
• redirect_stderr = on
• log_directory must be set to a valid existing, destination directory
• log_filename must be set to a valid file name pattern

The Log Name drop down list contains all the logs for the selected database server. By
default, the most recent log file is displayed in the window. In the event the log file
exceeds 1 MB, the latest 1 MB of the file is shown.

To view a specific part of a log file, specify values for the following text fields.

• Offset – Offset in bytes from the beginning of the log to begin viewing.
• Length – Length of the log in bytes to view.

Figure 15 View DB Logs

Postgres Plus Advanced Server Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

33

2.1.4.6 View Audit Logs

See Section 2.2.2.

2.1.5 SQL

The SQL menu contains the following two selections:

• iQuery – SQL query executor
• Query Profiler – SQL logging and reporting

Figure 16 DBA Management Server - SQL

2.1.5.1 iQuery

iQuery is a SQL query executor that can run one or more SQL commands, execute stored
procedures, and run anonymous SPL blocks.

The database on which the commands are to be run is selected from the Database drop
down list. The commands to be executed are entered in the Query text box. Click the
Submit button to execute the commands.

The Data Output tab displays the results of any SELECT commands. The query results
are limited to a maximum of 2500 records.

Postgres Plus Advanced Server Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

34

Runtime information such as execution time, error messages, and the output generated by
SPL DBMS_OUTPUT.PUT_LINE statements or PL/pgSQL RAISE statements are
displayed on the Messages tab.

Figure 17 iQuery Data Output

The following shows the Messages tab associated with the previous query.

Postgres Plus Advanced Server Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

35

Figure 18 iQuery Messages

2.1.5.2 Query Profiler

The Query Profiler parses the selected database server log file and generates a report of
the SQL commands executed on that database. This can help database administrators
improve performance of their systems. The information made available by Query Profiler
can be utilized for two primary purposes:

• Track down the longest running SQL commands so they can be improved.
• Track down frequently used SQL commands so that these can be placed in a

stored procedure for further performance optimization.

The log_min_duration_statement configuration parameter must be set to 0 to
activate the Query Profiler for a selected database.

This can be achieved in either of the following two ways.

• At the top of the screen, check the Query Logging check box and click the Apply
button as shown in the following figure (recommended method).

Postgres Plus Advanced Server Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

36

Figure 19 Enabling Query Logging

• In the postgresql.conf file set the log_min_duration_statement
configuration parameter to 0 and reload the configuration file or restart the
database server.

Note: This latter method will turn on query logging for all databases in the database
cluster which is not recommended as performance on all databases will be impacted.

Note: Enabling Query Logging has performance implications; hence, it should only be
used to sample queries for a short period of time to gather relevant information and then
be turned off.

The resulting list of SQL commands can be ordered on the basis of Total Execution
Time, Average Execution Time, or Statement Count (the number of times a given
SQL command was repeated) by selecting the desired ranking from the Order By drop
down list.

The types of SQL commands that appear can be filtered by checking the appropriate
boxes:

• Include Inserts
• Include Updates
• Include Deletes
• Include Selects
• Include Others

Clicking the Refresh & Run Report button does not re-parse the log file over again, but
just filters statements based upon the current filtering criteria using the data from the last
time the log was parsed.

Postgres Plus Advanced Server Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

37

Clicking the Parse Log & Run Report button will re-parse the log file over again. This
is recommended if there is a lot of database activity and the log file has not been re-
parsed in a while.

Figure 20 Query Profiler

2.2 Database Auditing

Postgres Plus Advanced Server provides the capability to produce audit reports. Database
auditing allows database administrators, security administrators, auditors, and operators
to track and analyze database activities. These activities include database access and
usage along with data creation, change, or deletion. The auditing system is based on the
configuration parameters defined in the postgresql.conf file.

Using the DBA Management Server, these audit reports can be generated and viewed;
however, the audit settings in the postgresql.conf file must first be enabled.

Postgres Plus Advanced Server Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

38

2.2.1 Auditing Configuration Parameters

The following is a description of the configuration parameters that control database
auditing. These parameters are found in the postgresql.conf file.

edb_audit

Enables or disables database auditing. The values xml or csv will enable
database auditing. These values represent the file format in which auditing
information will be captured. none will disable database auditing and is also the
default. This option can only be set at server start or in the postgresql.conf
file.

edb_audit_directory

Specifies the directory where the log files will be created. The path of the
directory can be relative or absolute to the data folder. This option can only be set
at server start or in the postgresql.conf configuration file.

edb_audit_filename

Specifies the file name of the audit file where the auditing information will be
stored. The default file name will be audit-%Y-%m-%d_%H%M%S. The escape
sequences, %Y, %m etc., will be replaced by the appropriate current values
according to the system date and time. This option can only be set at server start
or in the postgresql.conf configuration file.

edb_audit_rotation_day

Specifies the day of the week on which to rotate the audit files. Valid values are
sun, mon, tue, wed, thu, fri, sat, every, and none. To disable rotation, set
the value to none. To rotate the file every day, set the
edb_audit_rotation_day value to every. To rotate the file on a specific day
of the week, set the value to the desired day of the week. none is the default
value. This option can only be set at server start or in the postgresql.conf
configuration file.

edb_audit_rotation_size

Specifies a file size threshold in megabytes when file rotation will be forced to
occur. The default value is 0 MB. If the parameter is commented out or set to 0,
rotation of the file on a size basis will not occur. This option can only be set at
server start or in the postgresql.conf configuration file.

edb_audit_rotation_seconds

Postgres Plus Advanced Server Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

39

Specifies the rotation time in seconds when a new log file should be created. To
disable this feature, set this parameter to 0. This option can only be set at server
start or in the postgresql.conf configuration file.

edb_audit_connect

Enables auditing of database connection attempts by users. To disable auditing of
all connection attempts, set edb_audit_connect to none. To audit all failed
connection attempts, set the value to failed. To audit all connection attempts,
set the value to all. This option can only be set at server start or in the
postgresql.conf configuration file.

edb_audit_disconnect

Enables auditing of database disconnections by connected users. To enable
auditing of disconnections, set the value to all. To disable, set the value to none.
This option can only be set at server start or in the postgresql.conf
configuration file.

edb_audit_statement

This configuration parameter is used to specify auditing of different categories of
SQL statements. To audit statements resulting in error, set the parameter value to
error. To audit DDL statements such as CREATE TABLE, ALTER TABLE, etc.,
set the parameter value to ddl. Modification statements such as INSERT,
UPDATE, DELETE etc., can be audited by setting edb_audit_statement to
dml. Setting the value to all will audit every statement while none disables this
feature. This option can only be set at server start or in the postgresql.conf
configuration file.

Suppose we need to audit all connections, disconnections, DDL statements and
statements resulting in an error. The audit file is to be rotated every Sunday.

• Enable auditing by the setting the edb_audit parameter to xml or csv.
• Set the file rotation day when the new file will be created by setting the parameter

edb_audit_rotation_day to sun.
• To audit all connections, set the parameter, edb_audit_connect, to all.
• To audit all disconnections, set the parameter, edb_audit_disconnect, to

all.
• To audit all DDL statements and error statements, set the parameter,

edb_audit_statement, to dll, error.

Each audit line is preceded with a fixed prefix that cannot be changed. The prefix consists
of user name, database name, remote host and port, process id, session id, transaction id,
timestamp, and event type.

Postgres Plus Advanced Server Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

40

The following is the CVS and XML output when auditing is enabled:

CSV Audit Logfile

,,,1452,,,2008-03-13 12:40:02 ,startup,"AUDIT: database system is ready"
enterprisedb,mgmtsvr,127.0.0.1(1266),1620,47d9595b.654,0,2008-03-13 12:42:03 ,connect,"AUDIT:
connection authorized: user=enterprisedb database=mgmtsvr"
enterprisedb,mgmtsvr,127.0.0.1(1266),1620,47d9595b.654,1588,2008-03-13 12:42:08 ,ddl,"AUDIT:
statement: drop table HILOSEQUENCES
 "
enterprisedb,mgmtsvr,127.0.0.1(1266),1620,47d9595b.654,1590,2008-03-13 12:42:09 ,ddl,"AUDIT:
statement: create table HILOSEQUENCES (
 SEQUENCENAME varchar(50) not null,
 HIGHVALUES integer not null,
 constraint hilo_pk primary key (SEQUENCENAME)
)
 "
enterprisedb,edb,127.0.0.1(1269),904,47d9598d.388,0,2008-03-13 12:42:53 ,connect,"AUDIT:
connection authorized: user=enterprisedb database=edb"
enterprisedb,edb,127.0.0.1(1269),904,47d9598d.388,1618,2008-03-13 12:43:02 ,ddl,"AUDIT:
statement: CREATE TABLE test (f1 INTEGER);"
enterprisedb,edb,127.0.0.1(1269),904,47d9598d.388,1620,2008-03-13 12:43:02 ,sql
statement,"AUDIT: statement: SELECT * FROM testx;"
enterprisedb,edb,127.0.0.1(1269),904,47d9598d.388,1620,2008-03-13 12:43:02 ,error,"ERROR:
relation "testx" does not exist"
enterprisedb,edb,127.0.0.1(1269),904,47d9598d.388,1621,2008-03-13 12:43:04 ,ddl,"AUDIT:
statement: DROP TABLE test;"
enterprisedb,edb,127.0.0.1(1269),904,47d9598d.388,0,2008-03-13 12:43:20 ,disconnect,"AUDIT:
disconnection: session time: 0:00:26.953 user=enterprisedb database=edb host=127.0.0.1
port=1269"
enterprisedb,mgmtsvr,127.0.0.1(1266),1620,47d9595b.654,0,2008-03-13 12:43:29
,disconnect,"AUDIT: disconnection: session time: 0:01:26.594 user=enterprisedb
database=mgmtsvr host=127.0.0.1 port=1266"
,,,3148,,,2008-03-13 12:43:35 ,shutdown,"AUDIT: database system is shut down"

XML Audit Logfile

 <event process_id="2516" time="2008-03-13 13:22:42 " type="startup">
 <message>AUDIT: database system is ready</message>
 </event>
 <event user="enterprisedb" database="mgmtsvr" remote_host_and_port="127.0.0.1(1281)"
 process_id="352" session_id="47d96338.160" transaction="0"
 time="2008-03-13 13:24:08 " type="connect">
 <message>AUDIT: connection authorized: user=enterprisedb
 database=mgmtsvr</message>
 </event>
 <event user="enterprisedb" database="mgmtsvr" remote_host_and_port="127.0.0.1(1281)"
 process_id="352" session_id="47d96338.160" transaction="1635"
 time="2008-03-13 13:24:10 " type="ddl">
 <command>AUDIT: statement: drop table HILOSEQUENCES</command>
 </event>
 <event user="enterprisedb" database="mgmtsvr" remote_host_and_port="127.0.0.1(1281)"
 process_id="352" session_id="47d96338.160" transaction="1637"
 time="2008-03-13 13:24:10 " type="ddl">
 <command>AUDIT: statement: create table HILOSEQUENCES (
 SEQUENCENAME varchar(50) not null,
 HIGHVALUES integer not null,
 constraint hilo_pk primary key (SEQUENCENAME)
)</command>
 </event>
 <event user="enterprisedb" database="edb" remote_host_and_port="127.0.0.1(1283)"
 process_id="3776" session_id="47d96378.ec0" transaction="0"
 time="2008-03-13 13:25:12 " type="connect">
 <message>AUDIT: connection authorized: user=enterprisedb database=edb</message>
 </event>
 <event user="enterprisedb" database="edb" remote_host_and_port="127.0.0.1(1283)"
 process_id="3776" session_id="47d96378.ec0" transaction="1667"

Postgres Plus Advanced Server Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

41

 time="2008-03-13 13:25:17 " type="ddl">
 <command>AUDIT: statement: CREATE TABLE test (f1 INTEGER);</command>
 </event>
 <event user="enterprisedb" database="edb" remote_host_and_port="127.0.0.1(1283)"
 process_id="3776" session_id="47d96378.ec0" transaction="1669"
 time="2008-03-13 13:25:17 " type="sql statement">
 <command>AUDIT: statement: SELECT * FROM testx;</command>
 </event>
 <event user="enterprisedb" database="edb" remote_host_and_port="127.0.0.1(1283)"
 process_id="3776" session_id="47d96378.ec0" transaction="1669"
 time="2008-03-13 13:25:17 " type="error">
 <message>ERROR: relation "testx" does not exist</message>
 </event>
 <event user="enterprisedb" database="edb" remote_host_and_port="127.0.0.1(1283)"
 process_id="3776" session_id="47d96378.ec0" transaction="1670"
 time="2008-03-13 13:25:18 " type="ddl">
 <command>AUDIT: statement: DROP TABLE test;</command>
 </event>
 <event user="enterprisedb" database="edb" remote_host_and_port="127.0.0.1(1283)"
 process_id="3776" session_id="47d96378.ec0" transaction="0"
 time="2008-03-13 13:25:22 " type="disconnect">
 <message>AUDIT: disconnection: session time: 0:00:10.094 user=enterprisedb
 database=edb host=127.0.0.1 port=1283</message>
 </event>
 <event user="enterprisedb" database="mgmtsvr" remote_host_and_port="127.0.0.1(1281)"
 process_id="352" session_id="47d96338.160" transaction="0"
 time="2008-03-13 13:25:31 " type="disconnect">
 <message>AUDIT: disconnection: session time: 0:01:23.046 user=enterprisedb
 database=mgmtsvr host=127.0.0.1 port=1281</message>
 </event>
 <event process_id="2768" time="2008-03-13 13:25:36 " type="shutdown">
 <message>AUDIT: database system is shut down</message>
 </event>

2.2.2 View Audit Logs

In the DBA Management Server, select the View Audit Logs option from the
Monitoring menu to see auditing information.

Postgres Plus Advanced Server Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

42

Figure 21 View Audit Logs

In the View Audit report, the audit options selected in the postgresql.conf file are
shown on the left-hand side of the screen. The checkboxes in the middle of the screen
provide for further screening of the types of statements that are to be shown in the report.

Figure 22 View Audit

The audited statements were generated by the following session in PSQL.

Postgres Plus Advanced Server Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

43

edb=# CREATE TABLE test (f1 INTEGER);
CREATE TABLE
edb=# INSERT INTO test VALUES (100);
INSERT 0 1
edb=# SELECT * FROM testx;
ERROR: relation "testx" does not exist
edb=# DROP TABLE test;
DROP TABLE

Note that the successful INSERT command does not appear in the audit list since
edb_audit_statement was not set to include successful DML commands.

2.3 High Availability and Load Balancing

Database servers can work together to allow a second server to take over quickly if the
primary server fails (high availability), or to allow several computers to serve the same
data (load balancing). Ideally, database servers could work together seamlessly. Web
servers serving static web pages can be combined quite easily by merely load-balancing
web requests to multiple machines. In fact, read-only database servers can be combined
relatively easily, too. Unfortunately, most database servers have a read/write mix of
requests, and read/write servers are much harder to combine. This is because though
read-only data needs to be placed on each server only once, a write to any server has to
be propagated to all servers so that future read requests to those servers return consistent
results.

This synchronization problem is the fundamental difficulty for servers working together.
Because there is no single solution that eliminates the impact of the sync problem for all
use cases, there are multiple solutions. Each solution addresses this problem in a different
way, and minimizes its impact for a specific workload.

Some solutions deal with synchronization by allowing only one server to modify the data.
Servers that can modify data are called read/write or master servers. Servers that can
reply to read-only queries are called slave servers. Servers that cannot be accessed until
they are changed to master servers are called standby servers.

Some failover and load balancing solutions are synchronous, meaning that a data-
modifying transaction is not considered committed until all servers have committed the
transaction. This guarantees that a failover will not lose any data and that all load-
balanced servers will return consistent results no matter which server is queried. In
contrast, asynchronous solutions allow some delay between the time of a commit and its
propagation to the other servers, opening the possibility that some transactions might be
lost in the switch to a backup server, and that load balanced servers might return slightly
stale results. Asynchronous communication is used when synchronous would be too
slow.

Solutions can also be categorized by their granularity. Some solutions can deal only with
an entire database server, while others allow control at the per-table or per-database level.

Postgres Plus Advanced Server Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

44

Performance must be considered in any failover or load balancing choice. There is
usually a tradeoff between functionality and performance. For example, a full
synchronous solution over a slow network might cut performance by more than half,
while an asynchronous one might have a minimal performance impact.

The rest of this chapter outlines various failover, replication, and load balancing
solutions.

2.3.1 Shared Disk Failover

Shared disk failover avoids synchronization overhead by having only one copy of the
database. It uses a single disk array that is shared by multiple servers. If the main
database server fails, the standby server is able to mount and start the database as though
it was recovering from a database crash. This allows rapid failover with no data loss.

Shared hardware functionality is common in network storage devices. Using a network
file system is also possible, though care must be taken that the file system has full POSIX
behavior. One significant limitation of this method is that if the shared disk array fails or
becomes corrupt, the primary and standby servers are both nonfunctional. Another issue
is that the standby server should never access the shared storage while the primary server
is running.

A modified version of shared hardware functionality is file system replication, where all
changes to a file system are mirrored to a file system residing on another computer. The
only restriction is that the mirroring must be done in a way that ensures the standby
server has a consistent copy of the file system – specifically, writes to the standby must
be done in the same order as those on the master. DRBD is a popular file system
replication solution for Linux.

2.3.2 Warm Standby Using Point-In-Time Recovery

A warm standby server (see the section called “Warm Standby Servers for High
Availability” in the chapter called “Backup and Restore” in the Advanced Server
Documentation) can be kept current by reading a stream of write-ahead log (WAL)
records. If the main server fails, the warm standby contains almost all of the data of the
main server, and can be quickly made the new master database server. This is
asynchronous and can only be done for the entire database server.

2.3.3 Master-Slave Replication

A master-slave replication setup sends all data modification queries to the master server.
The master server asynchronously sends data changes to the slave server. The slave can
answer read-only queries while the master server is running. The slave server is ideal for
data warehouse queries.

Postgres Plus Advanced Server Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

45

Slony-I is an example of this type of replication, with per-table granularity, and support
for multiple slaves. Because it updates the slave server asynchronously (in batches), there
is possible data loss during fail over.

2.3.4 Statement-Based Replication Middleware

With statement-based replication middleware, a program intercepts every SQL query and
sends it to one or all servers. Each server operates independently. Read-write queries are
sent to all servers, while read-only queries can be sent to just one server, allowing the
read workload to be distributed.

If queries are simply broadcast unmodified, functions like random(),
CURRENT_TIMESTAMP, and sequences would have different values on different servers.
This is because each server operates independently, and because SQL queries are
broadcast (and not actual modified rows).

If this is unacceptable, either the middleware or the application must query such values
from a single server and then use those values in write queries. Also, care must be taken
that all transactions either commit or abort on all servers, perhaps using two-phase
commit (PREPARE TRANSACTION and COMMIT PREPARED). Pgpool and Sequoia are an
example of this type of replication.

2.3.5 Synchronous Multi-Master Replication

In synchronous multi-master replication, each server can accept write requests, and
modified data is transmitted from the original server to every other server before each
transaction commits. Heavy write activity can cause excessive locking, leading to poor
performance. In fact, write performance is often worse than that of a single server. Read
requests can be sent to any server. Some implementations use shared disk to reduce the
communication overhead. Synchronous multi-master replication is best for mostly read
workloads, though its big advantage is that any server can accept write requests – there is
no need to partition workloads between master and slave servers, and because the data
changes are sent from one server to another, there is no problem with non-deterministic
functions like random().

Postgres Plus Advanced Server does not offer this type of replication, though Postgres
Plus Advanced Server two-phase commit (PREPARE TRANSACTION and COMMIT
PREPARED) can be used to implement this in application code or middleware.

2.3.6 Asynchronous Multi-Master Replication

For servers that are not regularly connected, like laptops or remote servers, keeping data
consistent among servers is a challenge. Using asynchronous multi-master replication,
each server works independently, and periodically communicates with the other servers
to identify conflicting transactions. The conflicts can be resolved by users or conflict
resolution rules.

Postgres Plus Advanced Server Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

46

2.3.7 Data Partitioning

Data partitioning splits tables into data sets. Each set can be modified by only one server.
For example, data can be partitioned by offices, e.g., EnterpriseDB U.S. and Pakistan
offices, with a server in each office. If queries combining U.S. and Pakistan data are
necessary, an application can query both servers, or master/slave replication can be used
to keep a read-only copy of the other office’s data on each server.

2.3.8 Multi-Server Parallel Query Execution

Many of the above solutions allow multiple servers to handle multiple queries, but none
allow a single query to use multiple servers to complete faster. This solution allows
multiple servers to work concurrently on a single query. This is usually accomplished by
splitting the data among servers and having each server execute its part of the query and
return results to a central server where they are combined and returned to the user.
Pgpool-II has this capability.

Postgres Plus Advanced Server Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

47

3 Application Development
This chapter describes various application programming interfaces and other
development tools.

3.1 ECPG – Embedded SQL in C

This section contains information that is needed when developing embedded SQL in C
(ECPG) programs with Postgres Plus Advanced Server. For complete details on using
ECPG, see the Advanced Server Documentation.

3.1.1 Preprocessor

The preprocessor is called ecpg. After installation it resides in the Postgres Plus
Advanced Server dbserver/bin directory.

3.1.2 Library

The ECPG library is called libecpg.a or libecpg.so. Additionally, the ECPG library
is used for communication to the database server so the source program is linked using -
lecpg -lpq.

The following are the methods present in the ECPG library. These methods are “hidden”
by default:

• ECPGdebug(int on, FILE *stream) turns on debug logging if called with
the first argument non-zero. Debug logging is done on stream. Most SQL
statements log the arguments and the corresponding result.

The most important being ECPGdo that is called on almost all SQL statements,
logs both its expanded string, i.e. the string with all the input variables inserted,
and the result from the database server. This method is quite useful when
searching for errors in SQL statements.

• ECPGstatus () returns TRUE if the user is connected to the underlying database
and FALSE otherwise.

3.1.3 Compilation and Linking

When compiling the preprocessed C code files, the compiler needs to be able to find the
ECPG header files in the Postgres Plus Advanced Server include directory. Therefore, it
may be necessary to use the -I option when invoking the compiler:

Postgres Plus Advanced Server Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

48

(e.g., -I $EDB_HOME/dbserver/include/).

.

Programs using C code with embedded SQL have to be linked against the -lpgtypes
library, for example using the linker options (on Linux):

(e.g. -L $EDB_HOME/dbserver/lib -lpgtypes)

The above paths are valid on Linux. They may vary on other platforms.

3.1.4 Installation

The ECPG interface library is part of the Postgres Plus Advanced Server installation.

The preprocessor program, ecpg, is included in a normal Postgres Plus Advanced Server
installation in the dbserver/bin directory under the Postgres Plus Advanced Server
home directory.

3.1.5 Supported Platforms

The ECPG interface library is supported on Unix, Linux, Windows, and Sun Solaris
platforms.

3.1.6 Prerequisites
• Install Postgres Plus Advanced Server.
• Locate file libpq.so in the dbserver/lib subdirectory of the Postgres Plus

Advanced Server home directory.
• Check the existence of libpq.so.5 in /usr/lib. If not found then execute the

following command:

ln -s source_filename new_file_name

Example

ln -s $EDB_HOME/dbserver/lib/libpq.so /usr/lib/libpq.so.5

3.2 libpq C Library

libpq is the C application programmer’s interface to Postgres Plus Advanced Server.
libpq is a set of library functions that allow client programs to pass queries to the Postgres
Plus Advanced Server and to receive the results of these queries.

Postgres Plus Advanced Server Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

49

libpq is also the underlying engine for several other EnterpriseDB application interfaces
including those written for C++, Perl, Python, Tcl and ECPG. So some aspects of libpq’s
behavior will be important to the user if one of those packages is used.

Client programs that use libpq must include the header file libpq-fe.h and must link
with the libpq library.

3.2.1 Using libpq with EnterpriseDB SPL

The EnterpriseDB SPL language can be used with the libpq interface library:

• Creation of procedures, functions, packages
• Calling procedures, functions, packages using prepared statements
• REF CURSOR support
• Static cursor support
• Support for structs and typedefs
• Array support
• DML and DDL operations support
• IN/OUT/IN OUT parameter support

3.2.2 EnterpriseDB libpq API

In order to provide support for SPL, the EnterpriseDB libpq interface library has provided
the following functions in the libpq application-programming interface:

3.2.2.1 Preparing a Callable Statement

PQprepareOut() is used for preparing a callable statement whereas for preparing a
prepared statement, the method PQprepare() is used.

API Definition

extern PGresult *PQprepareOut(PGconn *conn,
 const char *stmtName,
 const char *query,
 int nParams,
 const Oid *paramTypes,
 const int *paramDirection);

3.2.2.2 Executing a Callable Statement

The following method is used for executing a callable statement.

API Definition

extern int PQsendQueryPreparedOut(PGconn *conn,

Postgres Plus Advanced Server Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

50

 const char *stmtName,
 int nParams,
 const char *const * paramValues,
 const int *paramLengths,
 const int *paramFormats,
 int resultFormat);

3.2.2.3 Fetching Cursors from a Result Set

This method is used for fetching cursors from PGresult(resultset).

API Definition

extern int PQCursorResult(PGconn *conn,PGresult *res);

3.2.2.4 Returning the Number of Cursors Fetched from a Result Set

This method is used for returning the number of cursors that were fetched from
PGresult(resultset).

API Definition

extern int PQnCursor(const PGresult *res);

3.2.2.5 Retrieving the Out Parameter from the Result

PQgetOutResult() is used for retrieving PGresult which contains the values of
IN/OUT/IN OUT parameters. The values of these IN/OUT/IN OUT parameters can then
be retrieved by passing PGresult to the PQgetvalue() method.

API Definition

extern PGresult *PQgetOutResult(PGconn *conn);

3.2.2.6 Cursor Support Statements in EnterpriseDB

PQgetCursorResult() is used for fetching cursor record (PGresult) residing on a
specific index where tupe_num is a row in a recordset and field_num is a column in
the recordset table.

API Definition

extern PGresult *PQgetCursorResult(const PGresult *res, int
tupe_num, int field_num);

Postgres Plus Advanced Server Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

51

3.2.2.7 Array Binding

The feature of array binding is the ability to bind an array of data over the wire level
protocol using prepared statements. This essentially means all the data that needs to be
bound is sent over the wire in one shot. Once the back end receives the bulk data, it will
make use of that data to perform insert or update operations.

You can perform bulk operations with prepared statement. So for preparing the statement
you can call following function:

PGresult *PQprepare(PGconn *conn,
 const char *stmtName,
 const char *query,
 int nParams,
 const Oid *paramTypes);

Details of PQprepare() can be found in the prepared statement section.

The following are the functions that can be used to perform bulk operations.

• PQBulkStart
• PQexecBulk
• PQBulkFinish
• PQexecBulkPrepared

3.2.2.8 PQBulkStart

This function is used to initialize bulk operations on the server. This function call is
mandatory before sending bulk data to the server.

PQBulkStart initializes the bulk operation of the previously prepared statement
specified by stmtName. This initializes the bulk operation to receive data in a format
specified by paramFormats.

API Definition

PGresult * PQBulkStart(PGconn *conn,
 const char * Stmt_Name,
 unsigned int nCol,
 const int *paramFmts);

3.2.2.9 PQexecBulk

This function is used to send data (paramValues) to the server against the statement that
was previously initialized for bulk operation using PQBulkStart ().

Postgres Plus Advanced Server Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

52

This function can be used more than once after PQBulkStart in order to send bulk data
multiple times. See the example for more details.

API Definition

PGresult *PQexecBulk(PGconn *conn,
 unsigned int nRows,
 const char *const * paramValues,
 const int *paramLengths);

3.2.2.10 PQBulkFinish

This function stops the previously started bulk operation. After this the previously
perpared statement will not be destroyed. You can use this statement again without
preparing it again.

API Definition

PGresult *PQBulkFinish(PGconn *conn);

3.2.2.11 PQexecBulkPrepared

PQexecBulkPrepared sends a request to execute a prepared statement with given
parameters, and waits for the result/status. This function is a combined function of
PQbulkStart (), PQexecBulk (), and PQBulkFinish (). So if you are using this
function you don’t need to start or stop the bulk operation. This function starts the bulk
operation, passes the data to the server, and closes the bulk operation.

The command to be executed is specified by naming a previously prepared statement
instead of giving a query string. stmtName specifies the name of prepared statement.
This feature allows commands that will be used repeatedly to be parsed and planned just
once, rather than each time they are executed. The statement must have been prepared
previously in the current session.

API Definition

PGresult *PQexecBulkPrepared(PGconn *conn,
 const char *stmtName,
 unsigned int nCols,
 unsigned int nRows,
 const char *const *paramValues,
 const int *paramLengths,
 const int *paramFormats);

Postgres Plus Advanced Server Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

53

3.2.2.12 Example Code (Using PQBulkStart, PQexecBulk,
PQBulkFinish)

The following example uses PGBulkStart, PQexecBulk, and PQBulkFinish.

void InsertDataUsingBulkStyle(PGconn *conn)
{
 PGresult *res;
 Oid paramTypes[2];
 char *paramVals[5][2];
 int paramLens[5][2];
 int paramFmts[2];
 int i;

 int a[5] = { 10, 20, 30, 40, 50 };
 char b[5][10] = { "Test_1", "Test_2", "Test_3", "Test_4",
"Test_5" };

 paramTypes[0] = 23;
 paramTypes[1] = 1043;
 res = PQprepare(conn, "stmt_1", "INSERT INTO testtable1 values($1, $2
)", 2, paramTypes);
 PQclear(res);

 paramFmts[0] = 1; /* Binary format */
 paramFmts[1] = 0;

 for(i = 0; i < 5; i++)
 {
 a[i] = htonl(a[i]);
 paramVals[i][0] = &(a[i]);
 paramVals[i][1] = b[i];

 paramLens[i][0] = 4;
 paramLens[i][1] = strlen(b[i]);
 }

 res = PQBulkStart(conn, "stmt_1", 2, paramFmts);
 PQclear(res);
 printf("< -- PQBulkStart -- >\n");

 res = PQexecBulk(conn, 5, (const char *const *)paramVals, (const int
*)paramLens);
 PQclear(res);
 printf("< -- PQexecBulk -- >\n");

 res = PQexecBulk(conn, 5, (const char *const *)paramVals, (const int
*)paramLens);
 PQclear(res);
 printf("< -- PQexecBulk -- >\n");

 res = PQBulkFinish(conn);
 PQclear(res);
 printf("< -- PQBulkFinish -- >\n");
}

Postgres Plus Advanced Server Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

54

3.2.2.13 Example Code (Using PQexecBulkPrepared)

The following example uses PQexecBulkPrepared.

void InsertDataUsingBulkStyleCombinedVersion(PGconn *conn)
{
 PGresult *res;
 Oid paramTypes[2];
 char *paramVals[5][2];
 int paramLens[5][2];
 int paramFmts[2];
 int i;

 int a[5] = { 10, 20, 30, 40, 50 };
 char b[5][10] = { "Test_1", "Test_2", "Test_3", "Test_4",
"Test_5" };

 paramTypes[0] = 23;
 paramTypes[1] = 1043;
 res = PQprepare(conn, "stmt_2", "INSERT INTO testtable1 values($1, $2
)", 2, paramTypes);
 PQclear(res);

 paramFmts[0] = 1; /* Binary format */
 paramFmts[1] = 0;

 for(i = 0; i < 5; i++)
 {
 a[i] = htonl(a[i]);
 paramVals[i][0] = &(a[i]);
 paramVals[i][1] = b[i];

 paramLens[i][0] = 4;
 paramLens[i][1] = strlen(b[i]);
 }

res = PQexecBulkPrepared(conn, "stmt_2", 2, 5, (const char *const
*)paramVals,(const int *)paramLens, (const int *)paramFmts);
 PQclear(res);
}

