

Postgres Plus® Advanced Server
Performance Features Guide

Postgres Plus Advanced Server 8.3 R2

July 2, 2009

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

2

Postgres Plus Advanced Server Performance Features Guide, Version 1.0
by EnterpriseDB Corporation

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

EnterpriseDB Corporation, 235 Littleton Road, Westford, MA 01866, USA
T +1 978 589 5700 F +1 978 589 5701 E info@enterprisedb.com www.enterprisedb.com

Postgres Plus Advanced Server Performance Features Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

3

Table of Contents

1  Introduction..5 
1.1  Typographical Conventions Used in this Guide...6 

2  Infinite Cache...7 
2.1  Configuring the Infinite Cache Server..10 

2.1.1  edb_enable_icache...10 
2.1.2  edb_icache_servers ..11 
2.1.3  edb_icache_compression_level ...12 

2.2  Controlling the edb-icache Daemons..13 
2.2.1  Command Line Options...14 
2.2.2  edb-icache-tool ..15 

2.3  Warming the edb-icache Servers ..15 
2.3.1  The edb_icache_warm() Functions..16 

2.3.1.1  edb_icache_warm(table-spec) ..16 
2.3.1.2  edb_icache_warm(table-spec, startbyte, endbyte):16 

2.3.2  Using the edb_icache_warm Binary..16 
2.4  Retrieving Statistics from Infinite Cache ...18 

2.4.1  edb_icache_stats()..18 
2.4.2  edb_icache_server_list...20 
2.4.3  edb_icache_server_enable() ..21 
2.4.4  Infinite Cache Log Entries...22 

2.5  Allocating Memory to the Cache Servers...22 
3  Asynchronous Pre-Fetch..23 

3.1  effective_io_concurrency ...25 
3.2  edb_prefetch_indexscans..26 

4  Dynatune..27 
4.1.1  edb_dynatune...27 
4.1.2  edb_dynatune_profile ..28 

5  Dynamic Runtime Instrumentation Tools Architecture (DRITA)...............................29 
5.1  Initialization Parameters ...29 
5.2  Setting up and Using DRITA ...29 
5.3  DRITA Functions ...30 

5.3.1.1  get_snaps()..30 

Postgres Plus Advanced Server Performance Features Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

4

5.3.1.2  sys_rpt() ..30 
5.3.1.3  sess_rpt()...31 
5.3.1.4  sessid_rpt()..32 
5.3.1.5  sesshist_rpt() ...33 
5.3.1.6  truncsnap() ..34 
5.3.1.7  purgesnap() ...34 

5.4  Simulating Statspack AWR Reports...36 
5.4.1.1  edbreport() ..36 
5.4.1.2  stat_db_rpt()..41 
5.4.1.3  stat_tables_rpt() ..41 
5.4.1.4  statio_tables_rpt() ...43 
5.4.1.5  stat_indexes_rpt() ...44 
5.4.1.6  statio_indexes_rpt() ..45 

5.5  Performance Tuning Recommendations...46 
5.6  Event Descriptions..48 
5.7  Catalog Views...50 

5.7.1.1  edb$system_waits ...50 
5.7.1.2  edb$session_waits...50 
5.7.1.3  edb$session_wait_history ...51 

6  Optimizer Hints ...53 
6.1  Default Optimization Modes ..55 
6.2  Access Method Hints..56 
6.3  Joining Relations Hints...60 
6.4  Global Hints..62 
6.5  Conflicting Hints ..65 

Postgres Plus Advanced Server Performance Features Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

5

1 Introduction
This guide describes the performance features found in Postgres Plus Advanced Server.
The primary performance features include:

• InfiniteCache lets you utilize memory on other computers connected to your
network to increase the amount of memory in the shared buffer cache.

• Asynchronous Pre-Fetch reduces disk-idle time by distributing I/O across the
drives in a RAID array.

• Dynatune makes optimal use of the system resources that are available on the host
machine.

• The Dynamic Runtime Instrumentation Tools Architecture (DRITA) records wait
events that affect system performance and offers a set of tools for inspecting those
events.

• Optimizer Hints are directives that you embed in comment-like syntax
immediately following the SELECT, UPDATE, or DELETE key words to influence
the query optimizer.

Postgres Plus Advanced Server Performance Features Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

6

1.1 Typographical Conventions Used in this Guide

Certain typographical conventions are used in this manual to clarify the meaning and
usage of various commands, statements, programs, examples, etc. This section provides a
summary of these conventions.

In the following descriptions a term refers to any word or group of words that are
language keywords, user-supplied values, literals, etc. A term’s exact meaning depends
upon the context in which it is used.

• Italic font introduces a new term, typically, in the sentence that defines it for the
first time.

• Fixed-width (mono-spaced) font is used for terms that must be given
literally such as SQL commands, specific table and column names used in the
examples, programming language keywords, etc. For example, SELECT * FROM
emp;

• Italic fixed-width font is used for terms for which the user must
substitute values in actual usage. For example, DELETE FROM table_name;

• A vertical pipe | denotes a choice between the terms on either side of the pipe. A
vertical pipe is used to separate two or more alternative terms within square
brackets (optional choices) or braces (one mandatory choice).

• Square brackets [] denote that one or none of the enclosed term(s) may be
substituted. For example, [a | b], means choose one of “a” or “b” or neither
of the two.

• Braces {} denote that exactly one of the enclosed alternatives must be specified.
For example, { a | b }, means exactly one of “a” or “b” must be specified.

• Ellipses ... denote that the proceeding term may be repeated. For example, [a |
b] ... means that you may have the sequence, “b a a b a”.

Postgres Plus Advanced Server Performance Features Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

7

2 Infinite Cache
Database performance is typically governed by two competing factors:

• Memory access is fast; disk access is slow.
• Memory space is scarce; disk space is abundant.

Postgres Plus Advanced Server (Advanced Server) tries very hard to minimize disk I/O
by keeping frequently used data in memory. When the first server process starts, it
creates an in-memory data structure known as the buffer cache. The buffer cache is
organized as a collection of 8K (8192 byte) pages: each page in the buffer cache
corresponds to a page in some table or index. The buffer cache is shared between all
processes servicing a given database.

When you select a row from a table, Advanced Server reads the page that contains the
row into the shared buffer cache. If there isn't enough free space in the cache, Advanced
Server evicts some other page from the cache. If Advanced Server evicts a page that has
been modified, that data is written back out to disk; otherwise, it is simply discarded.
Index pages are cached in the shared buffer cache as well.

Figure 1.1 demonstrates the flow of data in a typical Advanced Server session:

Figure 1.1 – Data Flow

Postgres Plus Advanced Server Performance Features Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

8

A client application sends a query to the Postgres server and the server searches the
shared buffer cache for the required data. If the requested data is found in the cache, the
server immediately sends the data back to the client. If not, the server reads the page that
holds the data into the shared buffer cache, evicting one or more pages if necessary. If
the server decides to evict a page that has been modified, that page is written to disk.

As you can see, a query will execute much faster if the required data is found in the
shared buffer cache.

One way to improve performance is to increase the amount of memory that you can
devote to the shared buffer cache. However, most computers impose a strict limit on the
amount of RAM that you can install. To help circumvent this limit, Infinite Cache lets
you utilize memory from other computers connected to your network.

With Infinite Cache properly configured, Advanced Server will dedicate a portion of the
memory installed on each cache server as a secondary memory cache. When a client
application sends a query to the server, the server first searches the shared buffer cache
for the required data; if the requested data is not found in the cache, the server searches
for the necessary page in one of the cache servers.

Figure 1.2 shows the flow of data in an Advanced Server session with Infinite Cache:

Figure 1.2 – Data flow with Infinite Cache

Postgres Plus Advanced Server Performance Features Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

9

When a client application sends a query to the server, the server searches the shared
buffer cache for the required data. If the requested data is found in the cache, the server
immediately sends the data back to the client. If not, the server sends a request for the
page to a specific cache server; if the cache server holds a copy of the page it sends the
data back to the server and the server copies the page into the shared buffer cache. If the
required page is not found in the primary cache (the shared buffer cache) or in the
secondary cache (the cloud of cache servers), Advanced Server must read the page from
disk.

As you can see, Infinite Cache can improve performance by utilizing RAM from other
computers on your network in order to avoid reading frequently accessed data from disk.

Infinite Cache offers a second performance advantage: compression.

Without Infinite Cache, Advanced Server will read each page from disk as an 8K chunk;
when a page resides in the shared buffer cache, it consumes 8K of RAM. With Infinite
Cache, Postgres can compress each page before sending it to a cache server. A
compressed page can take significantly less room in the secondary cache, making more
space available for other data and effectively increasing the size of the cache. A
compressed page consumes less network bandwidth as well, decreasing the amount of
time required to retrieve a page from the secondary cache.

The fact that Infinite Cache can compress each page may make it attractive to configure a
secondary cache server on the same computer that runs your Postgres server. If, for
example, your computer is configured with 6GB of RAM, you may want to allocate a
smaller amount (say 1GB) for the primary cache (the shared buffer cache) and a larger
amount (4GB) to the secondary cache (Infinite Cache), reserving 1GB for the operating
system. Since the secondary cache resides on the same computer, there is very little
overhead involved in moving data between the primary and secondary cache. All data
stored in the Infinite Cache is compressed so the secondary cache can hold many more
pages than would fit into the (uncompressed) shared buffer cache. If you had allocated
5GB to the shared buffer cache, the cache could hold no more than 65000 pages
(approximately). By assigning 4GB of memory to Infinite Cache, the cache may be able
to hold 130000 pages (at 2x compression), 195000 pages (at 3x compression) or more.
The compression factor that you achieve is determined by the amount of redundancy in
the data itself and the edb_icache_compression_level parameter.

To use Infinite Cache, you must specify a list of one or more cache servers (computers on
your network) and start the edb_icache daemon on each of those servers.

Postgres Plus Advanced Server Performance Features Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

10

2.1 Configuring the Infinite Cache Server

The postgresql.conf file includes three configuration parameters that control the
behavior of the Infinite Cache feature. The configuration file is read each time you start
Advanced Server. To set a parameter, open postgresql.conf (located in the
$PGDATA directory) and edit the section of the configuration file shown below:

- Infinite Cache
#edb_enable_icache = off
#edb_icache_servers = '' #'host1:port1,host2,ip3:port3,ip4'
#edb_icache_compression_level = 6

Remove the pound sign that precedes each parameter that you want to set at startup, and
specify the parameter settings. When you've updated and saved the configuration file,
start Advanced Server for the changes to take effect.

The following example shows a typical collection of Infinite Cache settings:

edb_enable_icache = on
edb_icache_servers = 'localhost, 1.2.3.4:11000, 5.6.7.8'
edb_icache_compression_level = 6

2.1.1 edb_enable_icache

The edb_enable_icache parameter enables or disables Infinite Cache. If
edb_enable_icache is set to on, Infinite Cache is enabled; if the parameter is set to
off, Infinite Cache is disabled.

If you set edb_enable_icache to on, you must also specify a list of cache servers by
setting the edb_icache_servers parameter (described in the next section).

The default value of edb_enable_icache is off.

Postgres Plus Advanced Server Performance Features Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

11

2.1.2 edb_icache_servers

The edb_icache_servers parameter specifies a list of one or more servers with active
edb-icache daemons. edb_icache_servers is a string value that takes the form of a
comma-separated list of hostname:port pairs. You can specify each pair in any of the
following forms:

• hostname
• IP-address
• hostname:portnumber
• IP-address:portnumber

If you do not specify a portnumber, Infinite Cache assumes that the cache server is
listening at port 11211. This configuration parameter will take effect only if
edb_enable_icache is set to on.

Postgres Plus Advanced Server Performance Features Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

12

2.1.3 edb_icache_compression_level

The edb_icache_compression_level parameter controls the compression level
that is applied to each page before storing it in the distributed Infinite Cache.

When Advanced Server reads data from disk, it typically reads the data in 8K increments.
If edb_icache_compression_level is set to 0, each time Advanced Server sends an
8K page to the Infinite Cache server that page is stored (uncompressed) in 8K of cache
memory. If the edb_icache_compression_level parameter is set to 9, Advanced
Server applies the maximum compression possible before sending it to the Infinite Cache
server, so a page that previously took 8K of cached memory might take 2K of cached
memory. Exact compression numbers are difficult to predict, as they are dependent on
the nature of the data on each page.

This parameter must be an integer in the range 0 to 9.

• A compression level of 0 disables compression; it uses no CPU time for
compression, but requires more storage space and network resources to process.

• A compression level of 9 invokes the maximum amount of compression; it
increases the load on the CPU, but less data flows across the network, so network
demand is reduced. Each page takes less room on the Infinite Cache server, so
memory requirements are reduced.

• A compression level of 5 or 6 is a reasonable compromise between the amount of
compression received and the amount of CPU time invested.

By default, edb_icache_compression_level is set to 6.

The compression level must be set by the superuser and can be changed for the current
session while the server is running. The following command disables the compression
mechanism for the currently active session:

 SET edb_icache_compression_level = 0

Postgres Plus Advanced Server Performance Features Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

13

2.2 Controlling the edb-icache Daemons

edb-icache is a high-performance memory caching daemon that distributes and stores
data in shared buffers. Advanced Server transparently interacts with edb-icache
daemons to store and retrieve data.

Before starting Advanced Server, the edb-icache daemons must be running on each
server node. Log into each server and start the edb-icache server (on that host) by
issuing the following command:

 # edb-icache -u enterprisedb -d -m 1024

where:

-u specifies the user name

-m specifies the amount of memory to be used by edb-icache (default is 64MB)

-d designates that the service should run in the background

To kill an edb-icache daemon, execute the command:

 # killall -HUP edb-icache

on each cache server.

Postgres Plus Advanced Server Performance Features Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

14

2.2.1 Command Line Options

To view the command line options for the edb-icache daemon, use the following
command from the edb_Infinite Cache subdirectory, located in the Advanced
Server installation directory:

 # edb-icache -h

The command line options are:

Parameter Description
-p <port_number> The TCP port number the Infinite Cache daemon is listening on.  The default 

is 11211. 
-U <UDP_number> The UDP port number the Infinite Cache daemon is listening on.  The 

default is 0 (off). 
-s <pathname> The Unix socket pathname the Infinite Cache daemon is listening on.  If 

included, the server limits access to the host on which the Infinite Cache 
daemon is running, and disables network support for Infinite Cache.  

-a <mask> The access mask for the Unix socket, in octal form.  The default value is 
0700. 

-l <ip_addr> Specifies the IP address that the daemon is listening on.  If an individual 
address is not specified, the default value is INDRR_ANY; all IP addresses 
assigned to the resource are available to the daemon.  

-d run as a daemon 
-r maximize core file limit 
-u <username> Assume the identity of the given user (when run as root). 
-m <numeric> max memory to user for items in megabytes, default is 64 MB 
-M return error on memory exhausted (rather than removing items) 
-c <numeric> Max simultaneous connections, default is 1024 
-k lock down all paged memory.  Note that there is a limit on how much 

memory you may lock.  Trying to allocate more than that would fail, so be 
sure you set the limit correctly for the user you started the daemon with 
(not for ‐u <username> user; under sh this is done with 'ulimit ‐S ‐l 
NUM_KB'). 

-v verbose (print errors/warnings while in event loop) 
-vv very verbose (include client commands and responses) 
-h print the help and exit 
-i print memcached and libevent licenses 
-b run a managed instance (mnemonic: buckets) 
-P <file> save PID in <file>, only used with ‐d option 
-f <factor> chunk size growth factor, default 1.25 
-n <bytes> minimum space allocated for key+value+flags, default 48 

Postgres Plus Advanced Server Performance Features Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

15

2.2.2 edb-icache-tool

edb-icache-tool provides a command line interface that queries the edb-icache
daemon to retrieve statistical information about a specific cache node. The syntax is:

 edb-icache-tool <host[:port]> stats

host specifies the address of the host that you are querying.

port specifies the port that the daemon is listening on.

The following command retrieves statistical information about an Infinite Cache server
located at the address, 192.168.23.85 and listening on port 11211:

 # edb-icache-tool 192.168.23.85:11211 stats

Field Value
bytes 1051681421
bytes_read 1410538244
bytes_written 42544414583
cmd_get 5139685
cmd_set 126588
connection_structures 104
curr_connections 4
curr_items 126588
evictions 0
get_hits 5139530
get_misses 155
limit_maxbytes 1073741824
pid 3047
pointer_size 32
rusage_system 109.077417
rusage_user 21.423743
threads 1
time 1242367107
total_connections 115
total_items 126588
uptime 1095
version 1.2.6

2.3 Warming the edb-icache Servers

When Advanced Server starts, the primary and secondary caches are empty. When
Advanced Server processes a client request, Advanced Server reads the required data
from disk and stores a copy in each cache. You can improve server performance by
warming (or pre-loading) the data into the memory cache before a client asks for it.

There are two advantages to warming the cache. Advanced Server will find data in the
cache the first time it is requested by a client application, instead of waiting for it to be
read from disk. Also, manually warming the cache with the data that your applications
are most likely to need saves time by avoiding future random disk reads. If you don't

Postgres Plus Advanced Server Performance Features Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

16

warm the cache at startup, Postgres Plus Advanced Server performance may not reach
full speed until the client applications happen to load commonly used data into the cache.

There are several ways to load pages to warm the Infinite Cache server nodes. You can
use the edb_icache_warm binary to warm the caches from the command line, or you
can use the edb_icache_warm() functions from within edb-psql or via scripts to warm
the cache.

2.3.1 The edb_icache_warm() Functions

The edb_icache_warm() functions come in two variations; the first variation warms
not only the table, but any indexes associated with the table. If you use the second
variation, you must make additional calls to warm any associated indexes.

2.3.1.1 edb_icache_warm(table-spec)

This function warms the given table-spec and any associated indexes into the cache. You
may specify table-spec as a table name, OID, or regclass value.

 # edb-psql edb -c "select edb_icache_warm('accounts')"

When you call edb_icache_warm(table-spec), Advanced Server reads every page
in the given table, compresses each page (if configured to do so), and then sends the
compressed data to an Infinite Cache server. edb_icache_warm(table-spec) will
also read, compress, and cache every page in each index defined for the given table.

2.3.1.2 edb_icache_warm(table-spec, startbyte, endbyte):

This function warms the pages that contain the specified range of bytes into the cache.
You must make subsequent calls to specify indexes separately when using this function.

 # edb-psql edb -c "select edb_icache_warm('accounts', 1, 10000)"

Note that this function is typically called by a utility program (such as
edb_icache_warm) to spread the warming process among several processes that
operate in parallel.

2.3.2 Using the edb_icache_warm Binary

You can use the edb_icache_warm command-line utility to load the cache servers with
specified tables, allowing fast access to relevant data from the cache.

The syntax for edb_icache_warm is:

 # edb_icache_warm -d database -t tablename

Postgres Plus Advanced Server Performance Features Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

17

The only required parameter is tablename. tablename can be specified with or
without the -t option. All other parameters are optional; if omitted, default values are
inferred from Advanced Server environment variables.

The options for edb_icache_warm are:

Option Variable Description
-h hostname The name of the host running Advanced Server.  Include this 

parameter if you are running Advanced Server on a remote host.   
The default value is PGHOST. 

-p portname Port in use by Advanced Server.  Default value is PGPORT. 
-j process count Number of (parallel) processes used to warm the cache.  The default 

value is 1. 
-U username The Advanced Server username.  Unless specified, this defaults to 

PGUSER. 
-d database The name of database containing the tables to be warmed.  Default 

value is PGDATABASE. 
-t tablename Name of table to be warmed.  The index for the table is also warmed.  

Required. 

Postgres Plus Advanced Server Performance Features Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

18

2.4 Retrieving Statistics from Infinite Cache

You can view Infinite Cache statistics by using the edb_icache_stats() function at
the edb-psql command line (or any other query tool).

2.4.1 edb_icache_stats()

This function returns a result set that reflects the state of an Infinite Cache node or nodes
and the related usage statistics. The result set includes:

Statistic Description
hostname Host name (or IP address) of server
port Port number at which edb‐icache daemon is listening
state Health of this server
write_failures Number of write failures
bytes Total number of bytes in use
bytes_read Total number of bytes received by this server (from the network)
bytes_written Total number of bytes sent by this server (to the network)
cmd_get Cumulative number of read requests sent to this server
cmd_set Cumulative number of write requests sent to this server
connection_structures Number of connection structures allocated by the server
curr_connections Number of open connections
curr_items Number of items currently stored by the server
evictions Number of valid items removed from cache to free memory for new 

items
get_hits Number of read requests satisfied by this server
get_misses Number of read requests not satisfied by this server
limit_maxbytes Number of bytes allocated on this server for storage
pid Process ID (on cache server)
pointer_size Default pointer size on host OS (usually 32 or 64)
rusage_user Accumulated user time for this process (seconds.microseconds)
rusage_system Accumulated system time for this process (seconds.microseconds)
threads Number of worker threads requested
total_time Number of seconds since this server's base date (usually midnight, 

January 1, 1970, UTC)
total_connections Total number of connections opened since the server started running
total_items Total number of items stored by this server (cumulative)
uptime Amount of time that server has been active
version edb‐icache version

Postgres Plus Advanced Server Performance Features Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

19

You can use SQL queries to view Infinite Cache statistics. To view the server status of
all Infinite Cache nodes:

SELECT hostname, port, state FROM edb_icache_stats()

 hostname | port | state
---------------+-------+--------
 192.168.23.85 | 11211 | UNHEALTHY
 192.168.23.85 | 11212 | ACTIVE
(2 rows)

To view complete statistics (shown here using edb-psql's expanded display mode, \x) for
a specified node:

SELECT * FROM edb_icache_stats() WHERE hostname = '192.168.23.85:11211'

-[RECORD 1]-----------+--------------
hostname | 192.168.23.85
port | 11211
state | ACTIVE
write_failures | 0
bytes | 225029460
bytes_read | 225728252
bytes_written | 192806774
cmd_get | 23313
cmd_set | 27088
connection_structures | 53
curr_connections | 3
curr_items | 27088
evictions | 0
get_hits | 23266
get_misses | 47
limit_maxbytes | 805306368
pid | 4240
pointer_size | 32
rusage_user | 0.481926
rusage_system | 1.583759
threads | 1
total_time | 1242199782
total_connections | 66
total_items | 27088
uptime | 714
version | 1.2.6

Postgres Plus Advanced Server Performance Features Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

20

2.4.2 edb_icache_server_list

The edb_icache_server_list view exposes information about the status and health
of all Infinite Cache servers listed in the edb_icache_servers GUC. The
edb_icache_server_list view is created using the edb_icache stats() API;
this view exposes the following information for each server:

Statistic Description

hostname Host name (or IP address) of server
port Port number at which edb‐icache daemon is listening
state Health of this server
write_failures Number of write failures
total_memory Number of bytes allocated to the cache on this server
memory_used Number of bytes currently used by the cache
memory_free Number of unused bytes remaining in the cache
hit_ratio Percentage of cache hits 

The state column will contain one of the following four values, reflecting the health of
the given server:

Server State Description
Active The server is known to be up and running.
Unhealthy An error occurred while interacting with the cache server.  Postgres will 

attempt to re‐establish the connection with the server.
Offline Postgres can no longer contact the given server.
Manual Offline You have taken the server offline with the edb_icache_server_enable() 

function.

The following SELECT statement returns the health of each node in the Infinite Cache
server farm:

SELECT hostname, port, state FROM edb_icache_server_list

 hostname | port | state
---------------+-------+-------
 192.168.23.85 | 11211 | ACTIVE
 192.168.23.85 | 11212 | ACTIVE
(2 rows)

Postgres Plus Advanced Server Performance Features Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

21

To view complete details about a specific Infinite Cache node (shown here using edb-
psql's \x expanded-view option):

SELECT * FROM edb_icache_server_list WHERE hostname = '192.168.23.85:11211'

-[RECORD 1]-----------+--------------
hostname | 192.168.23.85
port | 11211
state | ACTIVE
write_failures | 0
total_memory | 805306368
memory_used | 225029460
memory_free | 580276908
hit_ratio | 99.79

2.4.3 edb_icache_server_enable()

You can use the edb_icache_server_enable() function to take the Infinite Cache
server offline for maintenance or other planned downtime. The syntax is:

 void edb_icache_server_enable(host TEXT, port INTEGER, online BOOL)

host specifies the host that you want to disable. The host name may be specified by
name or numeric address.

port specifies the port number that the Infinite Cache server is listening on.

online specifies the state of the Infinite Cache server. The value of online must be
true or false.

To take a server offline, specify the host that you want to disable, the port number that
the Infinite Cache server is listening on, and false. To bring the Infinite Cache server
back online, specify the host name and port number, and pass a value of true.

The state of a server taken offline with the edb_icache_server_enable() function is
MANUAL OFFLINE. Postgres Plus Advanced Server will not automatically reconnect to
an Infinite Cache server that you have taken offline with
edb_icache_server_enable(..., false); you must bring the server back online
by calling edb_icache_server_enable(..., true).

Postgres Plus Advanced Server Performance Features Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

22

2.4.4 Infinite Cache Log Entries

When you start Advanced Server, a message that includes Infinite Cache status, cache
node count and cache node size is written to the server log. The following example
shows the server log for an active Infinite Cache installation with two 750 MB cache
servers:

** EnterpriseDB Dynamic Tuning Agent**************************************
* System Utilization: 66 % *
* Autovacuum Naptime: 60 Seconds *
* Infinite Cache: on *
* Infinite Cache Servers: 2 *
* Infinite Cache Size: 1.500 GB *
**

2.5 Allocating Memory to the Cache Servers

As mentioned earlier in this document, each computer imposes a limit on the amount of
physical memory that you can install. However, modern operating systems typically
simulate a larger address space so that programs can transparently access more memory
than is actually installed. This "virtual memory" allows a computer to run multiple
programs which may simultaneously require more memory than is physically available.
For example, you may run an e-mail client, a web browser, and a database server which
each require 1GB of memory on a machine that contains only 2GB of physical RAM.
When the operating system runs out of physical memory, it starts swapping bits and
pieces of the currently running programs to disk to make room to satisfy your current
demand for memory.

This can bring your system to a grinding halt.

Since the primary goal of Infinite Cache is to improve performance by limiting disk I/O,
you should avoid dedicating so much memory to Infinite Cache that the operating system
must start swapping data to disk. If the operating system begins to swap to disk, you lose
the benefits offered by Infinite Cache.

The overall demand for physical memory can vary throughout the day; if the server is
frequently idle, you may never encounter swapping. If you have dedicated a large
portion of physical memory to the cache, and system usage increases, the operating
system may start swapping. To get the best performance and avoid disk swapping,
dedicate a server node to Infinite Cache so other applications on that computer will not
compete for physical memory.

Postgres Plus Advanced Server Performance Features Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

23

3 Asynchronous Pre-Fetch
Asynchronous Pre-Fetch is a new feature in Advanced Server, release 8.3 R2 that
exploits RAID array I/O systems, eliminating disk-idle time by ensuring I/O is
continuously distributed across the drives in the RAID array.

RAID is a collection of techniques that distribute data across multiple disk drives in a
manner that is transparent to the application. A RAID array (an array of disk drives
managed by a RAID controller) can use striping, mirroring or a combination of the two
methods to improve reliability and performance. When you write data to a striped RAID
array, the controller splits the data into multiple chunks and writes each chunk to a
different drive. When you write data to a mirrored array, the controller writes an exact
copy of the data to each drive in the array.

Without Asynchronous Pre-Fetch, Postgres Plus Advanced Server traverses each table
one page at a time, waiting for each disk read to complete before requesting the next page
from the disk. Since the server never has more than one outstanding I/O request in
progress, the operating system can only keep a single disk busy at any given point in
time. In other words, without Asynchronous Pre-Fetch, the Postgres server effectively
serializes all disk I/O.

Postgres Plus Advanced Server Performance Features Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

24

With Asynchronous Pre-Fetch, the server will prefetch pages that it is likely to need in
the very near future. To understand the performance benefits offered by Asynchronous
Pre-Fetch, consider a typical index scan operation. Advanced Server starts by reading the
page that contains the root of the index; that page may point to other pages in the index
and it may point to the pages that contain the actual table data. As it processes the entries
in an index page, the server accesses the related table data by reading the pages pointed to
by each entry. If the table data is stored on a mirrored RAID array, any member of the
array can satisfy a read request because each member contains an exact copy of all data;
the RAID controller can route the read request to any idle array member.

Since an index page typically points to many other pages, the Asynchronous Pre-Fetch
feature will schedule many read requests that can be carried out in parallel; the RAID
controller can distribute the pending requests between all members of the array to
improve performance.

Asynchronous Pre-Fetch also offers a performance boost to striped arrays because the
controller can read two or more pages (in parallel) without waiting for the first read to
complete.

Two parameter values control the behavior of Asynchronous Pre-Fetch; they are
effective_io_concurrency and edb_prefetch_indexscans. You can modify
the parameter settings in the postgresql.conf file.

Postgres Plus Advanced Server Performance Features Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

25

3.1 effective_io_concurrency

When effective_io_concurrency is set to 0 all I/O is performed synchronously;
Advanced Server issues a single I/O request and waits for that request to complete before
proceeding. When it is set to 1, each block is requested asynchronously immediately
following the previous operation, allowing the database to perform CPU work while the
I/O proceeds simultaneously. In either case only a single drive in the I/O subsystem can
be active leaving other drives participating in the same array idle.

To keep all the drives in the array active, Advanced Server issues multiple I/O requests
concurrently. To do this Advanced Server must know how many drives participate in the
I/O subsystem. Based on that value, Advanced Server estimates how many concurrent
requests must be scheduled to keep all drives active. The higher the value of
effective_io_concurrency, the more requests Advanced Server will try to keep
pending at all times.

The optimal value is usually the number of data drives participating in the I/O system.
For example for RAID-0 or RAID-1, it should be the total number of drives, whereas for
RAID-5 it should be the number of data drives excluding the parity drives.

The expected speed increase for I/O influenced by this parameter is typically a factor
equal to the number of drives; a 5-drive RAID array should see a five-fold increase in
speed. However, not all of the I/O produced by a query is accelerated, so the effect on
overall query execution time is less. Currently only Bitmap Heap Scans are accelerated.

Some caveats apply:

• In the case of OLTP systems with many concurrent active queries, using a single
drive per query may be perfectly acceptable. Each query will make use of only a
single drive, but in aggregate, concurrent OLTP queries will make effective use of
all the drives. Increasing effective_io_concurrency effectively instructs
Advanced Server to monopolize more I/O resources for each individual query;
this is advantageous on systems handling few queries with available I/O resources
but could have a detrimental effect on other concurrent queries.

• effective_io_concurrency is only used for Bitmap Heap Scans. For
normal sequential scans the operating system should handle read-ahead internally
(On Linux, see the blockdev command, in particular --setra and --setfra).
For normal index scans, use the edb_prefetch_indexscans option.

• Advanced Server issues Asynchronous Pre-Fetch using the posix_fadvise()
system routine (with the POSIX_FADV_WILLNEED option). This system call is
not available or functional on every operating system. In particular, it has no
effect on Solaris and does not exist on Windows.

Postgres Plus Advanced Server Performance Features Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

26

• While the expected optimal value for effective_io_concurrency is the
number of data drives, in practice, obtaining the maximum speedup sometimes
requires some experimentation and experience shows that overestimating the
number of drives can result in extra benefits.

• You should disable the Infinite Cache feature (set edb_enable_icache =
"off") if effective_io_concurrency is set to a number other than 0.
Asynchronous Pre-Fetch instructs the operating system to pre-fetch pages that are
likely to be needed in the near future; Infinite Cache may cache those pages on a
remote server farm instead of reading them from a local disk causing Infinite
Cache and Asynchronous Pre-Fetch to interfere with each other, resulting in
unnecessary disk I/O.

3.2 edb_prefetch_indexscans

By default, Advanced Server does not use Asynchronous Pre-Fetch for regular index
scans. Index scans are often used in situations where not all rows will be used. Normally
queries that read a large number of rows will use bitmap index scans.

If you execute a query that uses all the rows and performs a regular index scan,
Asynchronous Pre-Fetch will offer a large performance boost. You will gain speed
because Advanced Server will keep all drives as busy as possible; you will also gain
speed because the operating system will typically sort the I/O requests and carry out those
requests in sequential (rather than random) order.

In order for edb_prefetch_indexscans to have any effect,
effective_io_concurrency must be set to a value greater than 1.

The effect of edb_prefetch_indexscans will depend on the details of the index
being scanned. If you execute a query against highly "de-clustered" indexes (where the
index key is not correlated with the physical order of the heap), with narrow index keys,
and the index scan is retrieving a large number of records, Asynchronous Pre-Fetch will
be particularly effective.

edb_prefetch_indexscans is not recommended for use in some cases:

• It is not recommended for queries that do not read all the rows accessed in index
scans. Queries with "NOT IN (select ...)" clauses will only access the first
matching record; queries using "SELECT min(indexed_col)" or "SELECT
max(indexed_col)" can use an index to find only the first or last matching
record.

• It is not recommended for cursors where the client doesn't plan to scan the entire
result set.

Postgres Plus Advanced Server Performance Features Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

27

4 Dynatune
Postgres Plus Advanced Server supports dynamic tuning of the database server to make
the optimal usage of the system resources available on the host machine on which it is
installed. The two parameters that control this functionality are located in the
postgresql.conf file. These parameters are:

• edb_dynatune
• edb_dynatune_profile

4.1 edb_dynatune

edb_dynatune determines how much of the host system's resources are to be used by
the database server based upon the host machine's total available resources and the
intended usage of the host machine.

When Postgres Plus Advanced Server is initially installed, the edb_dynatune parameter
is set in accordance with the selected usage of the host machine on which it was installed
- i.e., development machine, mixed use machine, or dedicated server. For most purposes,
there is no need for the database administrator to adjust the various configuration
parameters in the postgresql.conf file in order to improve performance.

You can change the value of the edb_dynatune parameter after the initial installation of
Postgres Plus Advanced Server by editing the postgresql.conf file. The postmaster
must be restarted in order for the new configuration to take effect.

The edb_dynatune parameter can be set to any integer value between 0 and 100,
inclusive. A value of 0, turns off the dynamic tuning feature thereby leaving the database
server resource usage totally under the control of the other configuration parameters in
the postgresql.conf file.

A low non-zero, value (e.g., 1 - 33) dedicates the least amount of the host machine's
resources to the database server. This setting would be used for a development machine
where many other applications are being used.

A value in the range of 34 - 66 dedicates a moderate amount of resources to the database
server. This setting might be used for a dedicated application server that may have a fixed
number of other applications running on the same machine as Postgres Plus Advanced
Server.

The highest values (e.g., 67 - 100) dedicate most of the server's resources to the database
server. This setting would be used for a host machine that is totally dedicated to running
Postgres Plus Advanced Server.

Postgres Plus Advanced Server Performance Features Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

28

Once a value of edb_dynatune is selected, database server performance can be further
fine-tuned by adjusting the other configuration parameters in the postgresql.conf
file. Any adjusted setting overrides the corresponding value chosen by edb_dynatune.
You can change the value of a parameter by un-commenting the configuration parameter,
specifying the desired value, and restarting the database server.

4.2 edb_dynatune_profile

The edb_dynatune_profile parameter is used to control tuning aspects based upon
the expected workload profile on the database server. This parameter takes effect upon
startup of the database server.

The possible values for edb_dynatune_profile are:

Value Usage

oltp Recommended when the database server is processing heavy online 
transaction processing workloads.

reporting Recommended for database servers used for heavy data reporting.

mixed Recommended for servers that provide a mix of transaction processing and 
data reporting.

Postgres Plus Advanced Server Performance Features Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

29

5 Dynamic Runtime Instrumentation
Tools Architecture (DRITA)

Note: This information is also included in the Oracle Compatibility Developer’s Guide.

The Dynamic Runtime Instrumentation Tools Architecture (DRITA) allows a DBA to
query catalog views to determine the wait events that affect the performance of individual
sessions or the system as a whole. DRITA records the number of times each event occurs
as well as the time spent waiting; you can use this information to diagnose performance
problems.

DRITA compares snapshots to evaluate the performance of a system. A snapshot is a
saved set of system performance data at a given point in time. Each snapshot is identified
by a unique ID number; you can use snapshot ID numbers with DRITA reporting
functions to return system performance statistics.

DRITA consumes minimal system resources.

5.1 Initialization Parameters

DRITA includes a configuration parameter, timed_statistics, to control the
collection of timing data. This is a dynamic parameter that can be set in the
postgresql.conf file or while a session is in progress. The valid values are TRUE or
FALSE; the default value is FALSE.

5.2 Setting up and Using DRITA
To use DRITA, you must first create a small set of tables and functions. To create the
tables and functions that store and report information, run the following scripts:

snap_tables.sql
snap_functions.sql

After creating the required tables and functions, take a beginning snapshot. The
beginning snapshot will be compared to a later snapshot to gauge system performance.
To take a beginning snapshot:

SELECT * from edbsnap()

Then, run the workload that you would like to evaluate; when the workload has
completed (or at a strategic point during the workload), take an ending snapshot:

SELECT * from edbsnap()

Postgres Plus Advanced Server Performance Features Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

30

5.3 DRITA Functions

5.3.1.1 get_snaps()

The get_snaps() function returns a list of snapshot ID’s; you can use the snapshot ID’s
to run one or more reporting functions. To view a list of snapshot ID’s and the time they
were taken, enter the following command:

SELECT * FROM get_snaps();

 get_snaps

 1 15-JUN-09 17:43:50.072733
 5 15-JUN-09 18:18:15.792194
 6 16-JUN-09 09:55:03.969197
 7 16-JUN-09 11:00:01.083305
 8 16-JUN-09 11:07:59.481583
 9 16-JUN-09 11:34:45.338325
 10 16-JUN-09 11:38:05.415392
 11 16-JUN-09 11:42:31.551796
 12 16-JUN-09 11:49:44.698102
 13 16-JUN-09 11:53:11.371272
 14 16-JUN-09 11:53:32.627307
 15 16-JUN-09 12:49:38.718433
 16 16-JUN-09 14:20:00.781601
 17 16-JUN-09 14:35:17.584266
 18 16-JUN-09 14:42:22.257647
 19 16-JUN-09 14:43:07.621677
(16 rows)

5.3.1.2 sys_rpt()

The sys_rpt() function returns system wait information. The signature is:

sys_rpt(beginning_id, ending_id, top_n)

Parameters

beginning_id

beginning_id is an integer value that represents the beginning session
identifier.

ending_id

ending_id is an integer value that represents the ending session identifier.

top_n

top_n represents the number of rows to return

This example demonstrates a call to the sys_rpt()function:

Postgres Plus Advanced Server Performance Features Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

31

SELECT * FROM sys_rpt(18, 19, 10);

 sys_rpt

 WAIT NAME COUNT WAIT TIME % WAIT

 db file read 31 0.187628 80.75
 query plan 20 0.027784 11.96
 infinitecache read 63 0.004523 1.95
 wal flush 6 0.004067 1.75
 wal write 1 0.004063 1.75
 wal file sync 1 0.003664 1.58
 infinitecache write 5 0.000548 0.24
 db file write 5 0.000082 0.04
 wal write lock acquire 0 0.000000 0.00
 bgwriter communication lock acquire 0 0.000000 0.00
(12 rows)

5.3.1.3 sess_rpt()

The sess_rpt() function returns session wait information. The signature is:

sess_rpt(beginning_id, ending_id, top_n)

Parameters

beginning_id

beginning_id is an integer value that represents the beginning session
identifier.

ending_id

ending_id is an integer value that represents the ending session identifier.

top_n

top_n represents the number of rows to return

The following example demonstrates a call to the sess_rpt()function:

SELECT * FROM sess_rpt(18, 19, 10);

 sess_rpt

ID USER WAIT NAME COUNT TIME(ms) %WAIT SES %WAIT ALL
 --

 17373 enterprise db file read 30 0.175713 85.24 85.24
 17373 enterprise query plan 18 0.014930 7.24 7.24
 17373 enterprise wal flush 6 0.004067 1.97 1.97
 17373 enterprise wal write 1 0.004063 1.97 1.97
 17373 enterprise wal file sync 1 0.003664 1.78 1.78

Postgres Plus Advanced Server Performance Features Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

32

 17373 enterprise infinitecache read 38 0.003076 1.49 1.49
 17373 enterprise infinitecache write 5 0.000548 0.27 0.27
 17373 enterprise db file write 5 0.000082 0.04 0.04
 17373 enterprise wal write lock acquire 0 0.000000 0.00 0.00
 17373 enterprise bgwriter comm lock ac 0 0.000000 0.00 0.00
(12 rows)

5.3.1.4 sessid_rpt()

The sessid_rpt() function returns session ID information for a specified backend.
The signature is:

sessid_rpt(beginning_id, ending_id, backend_id)

Parameters

beginning_id

beginning_id is an integer value that represents the beginning session
identifier.

ending_id

ending_id is an integer value that represents the ending session identifier.

backend_id

backend_id is an integer value that represents the backend identifier.

The following code sample demonstrates a call to sessid_rpt():

SELECT * FROM sessid_rpt(18, 19, 17373);

 sessid_rpt

 ID USER WAIT NAME COUNT TIME(ms) %WAIT SES %WAIT ALL
 --
 17373 enterprise db file read 30 0.175713 85.24 85.24
 17373 enterprise query plan 18 0.014930 7.24 7.24
 17373 enterprise wal flush 6 0.004067 1.97 1.97
 17373 enterprise wal write 1 0.004063 1.97 1.97
 17373 enterprise wal file sync 1 0.003664 1.78 1.78
 17373 enterprise infinitecache read 38 0.003076 1.49 1.49
 17373 enterprise infinitecache write 5 0.000548 0.27 0.27
 17373 enterprise db file write 5 0.000082 0.04 0.04
 17373 enterprise wal write lock acquire 0 0.000000 0.00 0.00
 17373 enterprise bgwriter comm lock ac 0 0.000000 0.00 0.00
(12 rows)

Postgres Plus Advanced Server Performance Features Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

33

5.3.1.5 sesshist_rpt()

The sesshist_rpt() function returns session wait information for a specified
backend. The signature is:

sesshist_rpt(beginning_id, ending_id, backend_id)

Parameters

beginning_id

beginning_id is an integer value that represents the beginning session
identifier.

ending_id

ending_id is an integer value that represents the ending session identifier.

backend_id

backend_id is an integer value that represents the backend identifier.

The following example demonstrates a call to the sesshist_rpt()function:

SELECT * FROM sesshist_rpt (18, 17373);

 sesshist_rpt
 --
 ID USER SEQ WAIT NAME
 ELAPSED(ms) File Name # of Blk Sum of Blks
 --
 17373 enterprise 1 infinitecache read
 84 1249 pg_attribute 44 1
 17373 enterprise 2 query plan
 12 0 N/A 0 0
 17373 enterprise 3 infinitecache read
 110 1255 pg_proc 64 1
 17373 enterprise 4 db file read
 3326 16421 session_waits_pk 2 1
 17373 enterprise 5 db file read
 4201 16421 session_waits_pk 3 1
 17373 enterprise 6 db file read
 5386 16421 session_waits_pk 0 1
 17373 enterprise 7 db file read
 13414 16416 edb$session_waits 3 1
 17373 enterprise 8 db file read
 4609 1260 pg_authid 0 1
 17373 enterprise 9 query plan
 12842 0 N/A 0 0
 17373 enterprise 10 infinitecache read
 50 2619 pg_statistic 10 1
 17373 enterprise 11 infinitecache read

Postgres Plus Advanced Server Performance Features Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

34

 51 2696 pg_statistic_relid_a 1 1
 17373 enterprise 12 infinitecache read
 51 1249 pg_attribute 8 1
 17373 enterprise 13 infinitecache read
 65 2654 pg_amop_opr_opc_inde 1 1
 17373 enterprise 14 infinitecache read
 77 2654 pg_amop_opr_opc_inde 3 1
 17373 enterprise 15 infinitecache read
 81 2696 pg_statistic_relid_a 4 1
 17373 enterprise 16 db file read
 11915 2696 pg_statistic_relid_a 3 1
 17373 enterprise 17 infinitecache read
 32 2696 pg_statistic_relid_a 3 1
 17373 enterprise 18 query plan
 12 0 N/A 0 0
 17373 enterprise 19 infinitecache read
 50 1249 pg_attribute 12 1
 17373 enterprise 20 infinitecache read
 52 2659 pg_attribute_relid_a 2 1
 17373 enterprise 21 infinitecache read
 52 1255 pg_proc 2 1
 17373 enterprise 22 infinitecache read
 58 2617 pg_operator 3 1
 17373 enterprise 23 infinitecache read
 52 2690 pg_proc_oid_index 5 1
 17373 enterprise 24 infinitecache read
 58 1255 pg_proc 28 1
 17373 enterprise 25 infinitecache read
 50 2618 pg_rewrite 4 1
(27 rows)

5.3.1.6 truncsnap()

Use the truncsnap() function to purge all records from the snapshot tables:

SELECT * FROM truncsnap();

 truncsnap

 Snapshots truncated.
(1 row)

A call to the get_snaps() function after calling the truncsnap() function shows that
all records have been purged from the snapshot tables:

SELECT * FROM get_snaps
 get_snaps

(0 rows)

5.3.1.7 purgesnap()

The purgesnap() function purges a range of snapshots within the snap tables. Pass the
snapshot ID’s for the start of the range and the end of the range to purge:

SELECT * FROM purgesnap(6, 9);

Postgres Plus Advanced Server Performance Features Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

35

 purgesnap

 Snapshots in range 6 to 9 deleted.
(1 row)

A call to the get_snaps() function after calling the purgesnap() function shows that
columns 6 through 9 have been purged from the snapshot tables:

 SELECT * FROM get_snaps
 get_snaps

 1 15-JUN-09 17:43:50.072733
 5 15-JUN-09 18:18:15.792194
 10 16-JUN-09 11:38:05.415392
 11 16-JUN-09 11:42:31.551796
 12 16-JUN-09 11:49:44.698102
 13 16-JUN-09 11:53:11.371272
 14 16-JUN-09 11:53:32.627307
 15 16-JUN-09 12:49:38.718433
 16 16-JUN-09 14:20:00.781601
 17 16-JUN-09 14:35:17.584266
 18 16-JUN-09 14:42:22.257647
 19 16-JUN-09 14:43:07.621677
(12 rows)

Postgres Plus Advanced Server Performance Features Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

36

5.4 Simulating Statspack AWR Reports

The snapshot tables and functions described in this section return information comparable
to the information contained in an Oracle Statspack/AWR (Automatic Workload
Repository) report. When taking a snapshot, performance data from system catalog
tables is saved into history tables. The reporting functions listed below report on the
differences between two given snapshots.

Catalog Table  New DRITA Table  Reporting Function 
pg_stat_database edb$stat_database stat_db_rpt()
pg_stat_all_tables edb$stat_all_tables stat_tables_rpt()
pg_stat_io_tables edb$statio_all_tables statio_tables_rpt()
Pgstat_all_indexes edb$stat_all_indexes stat_indexes_rpt()
pg_statio_all_indexes edb$statio_all_indexes statio_indexes_rpt()

The reporting functions can be executed individually or you can execute all five functions
by calling the edbreport() function.

5.4.1.1 edbreport()

The edbreport() function includes data from the other reporting functions, plus
additional system information. The signature is:

edb_report(beginning_id, ending_id)

Parameters

beginning_id

beginning_id is an integer value that represents the beginning session
identifier.

ending_id

ending_id is an integer value that represents the ending session identifier.

The following code sample demonstrates a call to the edbreport() function:

SELECT * FROM edbreport(18, 19);

 edbreport

EnterpriseDB Report for database edb 16-JUN-09
Version: EnterpriseDB 8.3.0.106 on i686-pc-linux-gnu, compiled by GCC gcc
(GCC) 4.1.0

 Begin snapshot: 18 at 16-JUN-09 14:42:22.257647
 End snapshot: 19 at 16-JUN-09 14:43:07.621677

Postgres Plus Advanced Server Performance Features Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

37

 Size of database edb is 2124 MB
 Tablespace: pg_default Size: 2136 MB Owner: enterprisedb
 Tablespace: pg_global Size: 283 kB Owner: enterprisedb

 Schema: public Size: 2114 MB Owner: enterprisedb

 Top 10 Relations by pages

 TABLE RELPAGES

 accounts 222231
 history 513
 pg_proc 92
 edb$statio_all_indexes 86
 edb$stat_all_indexes 86
 pg_depend 56
 tellers 53
 edb$stat_all_tables 51
 edb$statio_all_tables 49
 pg_attribute 43

 Top 10 Indexes by pages

 INDEX RELPAGES

 accounts_pkey 46127
 pg_proc_proname_args_nsp_index 81
 pg_depend_reference_index 48
 pg_depend_depender_index 46
 edb$stat_idx_pk 40
 edb$statio_idx_pk 40
 pg_attribute_relid_attnam_index 33
 pg_operator_oprname_l_r_n_index 20
 edb$statio_tab_pk 19
 edb$stat_tab_pk 19

 Top 10 Relations by DML

 SCHEMA RELATION UPDATES DELETES INSERTS

 public accounts 7399697 0 7000000
 public tellers 199699 0 700
 public branches 199699 0 70
 public history 0 150000 199699
 sys edb$stat_all_indexes 0 336 2128
 sys edb$statio_all_indexes 0 336 2128
 sys edb$stat_all_tables 0 264 1672
 sys edb$statio_all_tables 0 264 1672
 sys edb$session_wait_history 0 75 525
 sys edb$session_waits 0 9 125

 DATA from pg_stat_database

 DATABASE NUMBACKENDS XACT COMMIT XACT ROLLBACK BLKS READ BLKS HIT HIT RATIO

 edb 0 5 0 59 2538 97.73

Postgres Plus Advanced Server Performance Features Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

38

 DATA from pg_buffercache

 RELATION BUFFERS

 accounts 21884
 pg_proc 34
 pg_proc_proname_args_nsp_index 27
 edb$statio_all_indexes 24
 edb$stat_all_indexes 24
 pg_attribute 23
 pg_operator 19
 edb$statio_all_tables 17
 edb$stat_all_tables 17
 edb$stat_idx_pk 14

 DATA from pg_stat_all_tables ordered by seq scan

 SCHEMA RELATION SEQ REL READ IDX
 SCAN TUP SCAN TUP READ INS UPD DEL
 --
 pg_catalog pg_class 8 2952 78 65 0 0 0
 pg_catalog pg_index 4 448 23 28 0 0 0
 pg_catalog pg_namespace 4 76 1 1 0 0 0
 pg_catalog pg_database 3 6 0 0 0 0 0
 pg_catalog pg_authid 2 1 0 0 0 0 0
 sys edb$snap 1 15 0 0 1 0 0
 public accounts 0 0 0 0 0 0 0
 public branches 0 0 0 0 0 0 0
 sys wait_history 0 0 0 0 25 0 0
 sys session_waits 0 0 0 0 0 10 0

 DATA from pg_stat_all_tables ordered by rel tup read

 SCHEMA RELATION SEQ SCAN REL TUP READ
 IDX SCAN IDX TUP READ INS UPD DEL

--
pg_catalog pg_class 8 2952
 78 65 0 0 0
 pg_catalog pg_index 4 448
 23 28 0 0 0
 pg_catalog pg_namespace 4 76
 1 1 0 0 0
 sys edb$snap 1 15
 0 0 1 0 0
 pg_catalog pg_database 3 6
 0 0 0 0 0
 pg_catalog pg_authid 2 1
 0 0 0 0 0
 public accounts 0 0
 0 0 0 0 0
 public branches 0 0
 0 0 0 0 0
 sys edb$session_wait_history 0 0
 0 0 25 0 0
 sys edb$session_waits 0 0

Postgres Plus Advanced Server Performance Features Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

39

 0 0 10 0 0

 DATA from pg_statio_all_tables

 SCHEMA RELATION
 HEAP HEAP IDX IDX TOAST TOAST TIDX TIDX
 READ HIT READ HIT READ HIT READ HIT
 --
 pg_catalog pg_class
 0 137 3 104 0 0 0 0
 pg_catalog pg_attribute
 1 121 1 264 0 0 0 0
 sys edb$stat_all_indexes
 5 111 5 225 0 0 0 0
 sys edb$statio_all_indexes
 5 111 5 225 0 0 0 0
 sys edb$stat_all_tables
 4 87 4 175 0 0 0 0
 sys edb$statio_all_tables
 4 87 4 175 0 0 0 0
 pg_catalog pg_opclass
 0 38 1 5 0 0 0 0
 pg_catalog pg_proc
 0 37 0 92 0 0 0 0
 pg_catalog pg_index
 1 30 1 22 0 0 0 0
 sys edb$session_wait_history
 1 24 0 48 0 0 0 0

 DATA from pg_stat_all_indexes

 SCHEMA RELATION INDEX
 IDX SCAN IDX TUP READ IDX TUP FETCH
 --
 pg_catalog pg_cast pg_cast_source_target_index
 140 21 21
 pg_catalog pg_attribute pg_attribute_relid_attnum_index
 134 303 303
 pg_catalog pg_class pg_class_oid_index
 48 48 48
 pg_catalog pg_proc pg_proc_oid_index
 44 44 44
 pg_catalog pg_class pg_class_relname_nsp_index
 30 17 17
 pg_catalog pg_statistic pg_statistic_relid_att_index
 21 10 10
 pg_catalog pg_rewrite pg_rewrite_rel_rulename_index
 15 15 15
 pg_catalog pg_index pg_index_indrelid_index
 13 18 18
 sys edb$system_waits system_waits_pk
 12 38 6
 pg_catalog pg_index pg_index_indexrelid_index
 10 10 10

 DATA from pg_statio_all_indexes

 SCHEMA RELATION INDEX
 IDX BLKS READ IDX BLKS HIT
 --

Postgres Plus Advanced Server Performance Features Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

40

 pg_catalog pg_attribute pg_attribute_relid_attnum_index
 1 264
 sys edb$stat_all_indexes edb$stat_idx_pk
 5 225
 sys edb$statio_all_indexes edb$statio_idx_pk
 5 225
 sys edb$stat_all_tables edb$stat_tab_pk
 4 175
 sys edb$statio_all_tables edb$statio_tab_pk
 4 175
 pg_catalog pg_cast pg_cast_source_target_index
 0 139
 pg_catalog pg_proc pg_proc_oid_index
 0 82
 pg_catalog pg_class pg_class_relname_nsp_index
 3 56
 pg_catalog pg_class pg_class_oid_index
 0 48
 sys edb$session_wait_history session_waits_hist_pk
 0 48

 System Wait Information

 WAIT NAME COUNT WAIT TIME % WAIT

 db file read 31 0.187628 80.75
 query plan 20 0.027784 11.96
 infinitecache read 63 0.004523 1.95
 wal flush 6 0.004067 1.75
 wal write 1 0.004063 1.75
 wal file sync 1 0.003664 1.58
 infinitecache write 5 0.000548 0.24
 db file write 5 0.000082 0.04
 wal write lock acquire 0 0.000000 0.00
 bgwriter communication lock acquire 0 0.000000 0.00

 Database Parameters from postgresql.conf

 PARAMETER SETTING CONTEXT MINVAL MAXVAL
 --
 add_missing_from off user
 allow_system_table_mods off postmaster
 archive_command sighup
 archive_timeout 0 sighup 0 2147483647
 array_nulls on user
 authentication_timeout 10 sighup 1 600
 autovacuum on sighup
 autovacuum_analyze_scale_factor 0.1 sighup 0 100
 autovacuum_analyze_threshold 250 sighup 0 2147483647
 autovacuum_freeze_max_age 200000000 postmaster 10000000 2000000000
 autovacuum_naptime 60 sighup 1 2147483647
 autovacuum_vacuum_cost_delay -1 sighup -1 1000
 autovacuum_vacuum_cost_limit -1 sighup -1 10000
 autovacuum_vacuum_scale_factor 0.2 sighup 0 100
 autovacuum_vacuum_threshold 1000 sighup 0 2147483647

 ...

(384 rows)

Postgres Plus Advanced Server Performance Features Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

41

5.4.1.2 stat_db_rpt()

The signature is:

stat_db_rpt(beginning_id, ending_id)

Parameters

beginning_id

beginning_id is an integer value that represents the beginning session
identifier.

ending_id

ending_id is an integer value that represents the ending session identifier.

The following example demonstrates the stat_db_rpt() function:

SELECT * FROM stat_db_rpt(18, 19);

 stat_db_rpt

 DATA from pg_stat_database

 DATABASE NUMBACKENDS XACT COMMIT XACT ROLLBACK BLKS READ BLKS HIT HIT RATIO
 --
 edb 0 5 0 59 2538 97.73
(5 rows)

5.4.1.3 stat_tables_rpt()

The signature is:

function_name(beginning_id, ending_id, top_n, scope)

Parameters

beginning_id

beginning_id is an integer value that represents the beginning session
identifier.

ending_id

ending_id is an integer value that represents the ending session identifier.

top_n

Postgres Plus Advanced Server Performance Features Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

42

top_n represents the number of rows to return

scope

scope determines the scope of the statistics returned (ALL, USER or SYS).

The following code sample demonstrates the stat_tables_rpt() function:

SELECT * FROM stat_tables_rpt(18, 19, 10, 'ALL');

stat_tables_rpt

DATA from pg_stat_all_tables ordered by seq scan

SCHEMA RELATION
 SEQ SCAN REL TUP READ IDX SCAN IDX TUP READ INS UPD DEL

pg_catalog pg_class
 8 2952 78 65 0 0 0
pg_catalog pg_index
 4 448 23 28 0 0 0
pg_catalog pg_namespace
 4 76 1 1 0 0 0
pg_catalog pg_database
 3 6 0 0 0 0 0
pg_catalog pg_authid
 2 1 0 0 0 0 0
sys edb$snap
 1 15 0 0 1 0 0
public accounts
 0 0 0 0 0 0 0
public branches
 0 0 0 0 0 0 0
sys edb$session_wait_history
 0 0 0 0 25 0 0
sys edb$session_waits
 0 0 0 0 10 0 0

DATA from pg_stat_all_tables ordered by rel tup read

SCHEMA RELATION
 SEQ SCAN REL TUP READ IDX SCAN IDX TUP READ INS UPD DEL

pg_catalog pg_class
 8 2952 78 65 0 0 0
pg_catalog pg_index
 4 448 23 28 0 0 0
pg_catalog pg_namespace
 4 76 1 1 0 0 0
sys edb$snap
 1 15 0 0 1 0 0
pg_catalog pg_database
 3 6 0 0 0 0 0
pg_catalog pg_authid
 2 1 0 0 0 0 0
public accounts
 0 0 0 0 0 0 0
public branches
 0 0 0 0 0 0 0
sys edb$session_wait_history

Postgres Plus Advanced Server Performance Features Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

43

 0 0 0 0 25 0 0
sys edb$session_waits
 0 0 0 0 10 0 0
(29 rows)

5.4.1.4 statio_tables_rpt()

The signature is:

statio_tables_rpt(beginning_id, ending_id, top_n, scope)

Parameters

beginning_id

beginning_id is an integer value that represents the beginning session
identifier.

ending_id

ending_id is an integer value that represents the ending session identifier.

top_n

top_n represents the number of rows to return

scope

scope determines the scope of the statistics returned (ALL, USER or SYS).

The following example demonstrates the statio_tables_rpt() function:

SELECT * FROM statio_tables_rpt(18, 19, 10, 'ALL');

 statio_tables_rpt

 DATA from pg_statio_all_tables

SCHEMA RELATION
 HEAP HEAP IDX IDX TOAST TOAST TIDX TIDX
 READ HIT READ HIT READ HIT READ HIT
 --
 pg_catalog pg_class
 0 137 3 104 0 0 0 0
 pg_catalog pg_attribute
 1 121 1 264 0 0 0 0
 sys edb$stat_all_indexes
 5 111 5 225 0 0 0 0
 sys edb$statio_all_indexes
 5 111 5 225 0 0 0 0
 sys edb$stat_all_tables
 4 87 4 175 0 0 0 0

Postgres Plus Advanced Server Performance Features Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

44

 sys edb$statio_all_tables
 4 87 4 175 0 0 0 0
 pg_catalog pg_opclass
 0 38 1 5 0 0 0 0
 pg_catalog pg_proc
 0 37 0 92 0 0 0 0
 pg_catalog pg_index
 1 30 1 22 0 0 0 0
 sys edb$session_wait_history
 1 24 0 48 0 0 0 0
(15 rows)

5.4.1.5 stat_indexes_rpt()

The signature is:

stat_indexes_rpt(beginning_id, ending_id, top_n, scope)

Parameters

beginning_id

beginning_id is an integer value that represents the beginning session
identifier.

ending_id

ending_id is an integer value that represents the ending session identifier.

top_n

top_n represents the number of rows to return

scope

scope determines the scope of the statistics returned (ALL, USER or SYS).

The following code sample demonstrates the stat_indexes_rpt() function:

SELECT * FROM stat_indexes_rpt(18, 19, 10, 'ALL');

 stat_indexes_rpt
 --
 DATA from pg_stat_all_indexes

 SCHEMA RELATION INDEX
 IDX SCAN IDX TUP READ IDX TUP FETCH
 --
 pg_catalog pg_cast pg_cast_source_target_index
 140 21 21
 pg_catalog pg_attribute pg_attribute_relid_attnum_index
 134 303 303

Postgres Plus Advanced Server Performance Features Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

45

 pg_catalog pg_class pg_class_oid_index
 48 48 48
 pg_catalog pg_proc pg_proc_oid_index
 44 44 44
 pg_catalog pg_class pg_class_relname_nsp_index
 30 17 17
 pg_catalog pg_statistic pg_statistic_relid_att_index
 21 10 10
 pg_catalog pg_rewrite pg_rewrite_rel_rulename_index
 15 15 15
 pg_catalog pg_index pg_index_indrelid_index
 13 18 18
 sys edb$system_waits system_waits_pk
 12 38 6
 pg_catalog pg_index pg_index_indexrelid_index
 10 10 10
(14 rows)

5.4.1.6 statio_indexes_rpt()

The signature is:

statio_indexes_rpt(beginning_id, ending_id, top_n, scope)

Parameters

beginning_id

beginning_id is an integer value that represents the beginning session
identifier.

ending_id

ending_id is an integer value that represents the ending session identifier.

top_n

top_n represents the number of rows to return

scope

scope determines the scope of the statistics returned (ALL, USER or SYS).

The following example demonstrates the statio_indexes_rpt() function:

SELECT * FROM statio_indexes_rpt(18, 19, 10, 'ALL');

 statio_indexes_rpt
 --

Postgres Plus Advanced Server Performance Features Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

46

 DATA from pg_statio_all_indexes

 SCHEMA RELATION INDEX
 IDX BLKS READ IDX BLKS HIT
 --
 pg_catalog pg_attribute pg_attribute_relid_attnum_index
 1 264
 sys edb$stat_all_indexes edb$stat_idx_pk
 5 225
 sys edb$statio_all_indexes edb$statio_idx_pk
 5 225
 sys edb$stat_all_tables edb$stat_tab_pk
 4 175
 sys edb$statio_all_tables edb$statio_tab_pk
 4 175
 pg_catalog pg_cast pg_cast_source_target_index
 0 139
 pg_catalog pg_proc pg_proc_oid_index
 0 82
 pg_catalog pg_class pg_class_relname_nsp_index
 3 56
 pg_catalog pg_class pg_class_oid_index
 0 48
 sys edb$session_wait_history session_waits_hist_pk
 0 48
(14 rows)

5.5 Performance Tuning Recommendations

To use DRITA reports for performance tuning, review the top five events in a given
report, looking for any event that takes a disproportionately large percentage of resources.
In a streamlined system, user I/O will probably make up the largest number of waits.
Waits should be evaluated in the context of CPU usage and total time; an event may not
be significant if it takes 2 minutes out of a total measurement interval of 2 hours, if the
rest of the time is consumed by CPU time. The component of response time (CPU
"work" time or other "wait" time) that consumes the highest percentage of overall time
should be evaluated.

When evaluating events, watch for:

Event type  Description 
Checkpoint waits Checkpoint waits may indicate that checkpoint parameters need to 

be adjusted, (checkpoint_segments and checkpoint_timeout).
WAL‐related waits WAL‐related waits may indicate wal_buffers are under‐sized.
SQL Parse waits If the number of waits is high, try to use prepared statements.
db file random reads If high, check that appropriate indexes and statistics exist.
db file random writes If high, may need to decrease bgwriter_delay.
btree random lock acquires May indicate indexes are being rebuilt.  Schedule index builds during 

less active time.

Performance reviews should also include careful scrutiny of the hardware, the operating
system, the network and the application SQL statements.

Postgres Plus Advanced Server Performance Features Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

47

Postgres Plus Advanced Server Performance Features Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

48

5.6 Event Descriptions

Event Name Description

add in shmem lock acquire Obsolete/unused
bgwriter communication
lock acquire

The bgwriter (background writer) process has waited for the short-
term lock that synchronizes messages between the bgwriter and a
backend process.

btree vacuum lock acquire The server has waited for the short-term lock that synchronizes access
to the next available vacuum cycle ID.

buffer free list lock
acquire

The server has waited for the short-term lock that synchronizes access
to the list of free buffers (in shared memory).

checkpoint lock acquire: A server process has waited for the short-term lock that prevents
simultaneous checkpoints.

checkpoint start lock
acquire

The server has waited for the short-term lock that synchronizes access
to the bgwriter checkpoint schedule.

clog control lock acquire The server has waited for the short-term lock that synchronizes access
to the commit log.

control file lock acquire The server has waited for the short-term lock that synchronizes write
access to the control file (this should usually be a low number).

db file extend A server process has waited for the operating system while adding a
new page to the end of a file.

db file read A server process has waited for the completion of a read (from disk).
db file write A server process has waited for the completion of a write (to disk).
db file sync A server process has waited for the operating system to flush all

changes to disk.
first buf mapping lock
acquire

The server has waited for a short-term lock that synchronizes access
to the shared-buffer mapping table.

freespace lock acquire The server has waited for the short-term lock that synchronizes access
to the freespace map.

Infinite Cache read The server has waited for an Infinite Cache read request.
Infinite Cache write The server has waited for an Infinite Cache write request.
lwlock acquire The server has waited for a short-term lock that has not been

described elsewhere in this section.
multi xact gen lock
acquire

The server has waited for the short-term lock that synchronizes access
to the next available multi-transaction ID (when a SELECT...FOR
SHARE statement executes).

multi xact member lock
acquire

The server has waited for the short-term lock that synchronizes access
to the multi-transaction member file (when a SELECT...FOR SHARE
statement executes).

multi xact offset lock
acquire

The server has waited for the short-term lock that synchronizes access
to the multi-transaction offset file (when a SELECT...FOR SHARE
statement executes).

oid gen lock acquire The server has waited for the short-term lock that synchronizes access
to the next available OID (object ID).

query plan The server has computed the execution plan for a SQL statement.
rel cache init lock
acquire

The server has waited for the short-term lock that prevents
simultaneous relation-cache loads/unloads.

shmem index lock acquire The server has waited for the short-term lock that synchronizes access
to the shared-memory map.

sinval lock acquire The server has waited for the short-term lock that synchronizes access

Postgres Plus Advanced Server Performance Features Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

49

to the cache invalidation state.
sql parse The server has parsed a SQL statement.
subtrans control lock
acquire

The server has waited for the short-term lock that synchronizes access
to the subtransaction log.

tablespace create lock
acquire

The server has waited for the short-term lock that prevents
simultaneous CREATE TABLESPACE or DROP TABLESPACE
commands.

two phase state lock
acquire

The server has waited for the short-term lock that synchronizes access
to the list of prepared transactions.

wal insert lock acquire The server has waited for the short-term lock that synchronizes write
access to the write-ahead log. A high number may indicate that WAL
buffers are sized too small.

wal write lock acquire The server has waited for the short-term lock that synchronizes write-
ahead log flushes.

wal file sync The server has waited for the write-ahead log to sync to disk (related
to the wal_sync_method parameter which, by default, is 'fsync' -
better performance can be gained by changing this parameter to
open_sync).

wal flush The server has waited for the write-ahead log to flush to disk.
wal write The server has waited for a write to the write-ahead log buffer (expect

this value to be high).
xid gen lock acquire The server has waited for the short-term lock that synchronizes access

to the next available transaction ID.

Postgres Plus Advanced Server Performance Features Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

50

5.7 Catalog Views

The DRITA catalog views provide access to performance information relating to system
waits.

5.7.1 edb$system_waits

The edb$system_waits view summarizes the number of waits and the total wait time
per session for each wait named. It also displays the average and max wait times.
edb$system_waits summarizes the following information:

 Column | Type | Modifiers | Definition
------------+---------------+-----------+------------------
 edb_id | numeric | |identifier
 dbname | text | |database name
 wait_name | text | |name of the event
 wait_count | numeric | |number of times the event occurs
 avg_wait | numeric(50,6) | |average wait time in microseconds
 max_wait | numeric | |maximum wait time in microseconds
 total_wait | numeric | |total wait time in microseconds
 wait_name | text | |name of the event

The following example shows the result of a SELECT statement on the
edb$system_waits view:

select * from sys.edb$system_waits;

 edb_id | dbname |wait_name | wait_count |avg_wait | max_wait | totalwait
--------+--------+-----------+------------+---------+----------+----------
 1 | edb |db fileread| 301 |0.011516 | 0.629986 | 2.742500
 1 | edb |wal flush | 26 |0.010364 | 0.085380 | 0.269452
 1 | edb |wal write | 26 |0.010355 | 0.085371 | 0.269232
 1 | edb |query plan | 277 |0.001367 | 0.049425 | 0.192442
 2 | edb |wal flush | 28 |0.040443 | 0.095150 | 0.431984
 2 | edb |wal write | 28 |0.040434 | 0.095093 | 0.431698
 2 | edb |query plan | 299 |0.001479 | 0.049425 | 0.262596

5.7.2 edb$session_waits

The edb$session_waits view summarizes the number of waits and the total wait time
per session for each wait named and identified by backend ID. It also displays the
average and max wait times. edb$session_waits summarizes the following
information:

 Column | Type | Modifiers |Definition
 -----------------+---------------+-----------+----------------
 backend_id | bigint | |session identifier
 wait_count | bigint | |number of times the event
 occurs
 avg_wait_time | numeric | |average wait time in
 microseconds

Postgres Plus Advanced Server Performance Features Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

51

 max_wait_time | numeric(50,6) | |maximum wait time in
 microseconds
 total_wait_time | numeric(50,6) | |total wait time in
 microseconds
 wait_name | text | |name of the event

The following code sample shows the result of a SELECT statement on the
edb$session_waits view:

SELECT * FROM sys.edb$session_waits;

 edb_id | dbname | backend_id | wait_name | wait_count | avg_wait_time |
max_wait_time| total_wait_time | usename | current_query
--------+--------+------------+---------------+------------+---------------+-
-------------+-----------------+--------------+---------------------------
 1 | edb | 22935 | db file read | 175 | 0.008399 |
 0.629986 | 1.469887 | enterprisedb | <IDLE>
 1 | edb | 22988 | db file read | 116 | 0.009556 |
 0.040627 | 1.108438 | enterprisedb | select * from edbsnap();
 1 | edb | 22988 | wal flush | 26 | 0.010364 |
 0.085380 | 0.269452 | enterprisedb | select * from edbsnap();
(3 rows)

5.7.3 edb$session_wait_history

The edb$session_wait_history view contains the last 25 wait events for each
backend ID active during the session. The edb$session_wait_history view
includes the following information:

 Column | Type | Modifiers | Definition
 ------------+--------+-----------+--------------------------
 edb_id | numeric| |identifier
 dbname | text | |database name
 backend_id | bigint | |session identifier
 seq | bigint | |number between 1 and 25
 wait_name | text | |name of the event
 elapsed | bigint | |elapsed time in microseconds
 p1 | bigint | |variable #1- meaning dependent on
 event
 p2 | bigint | |variable #2- meaning dependent on
 event
 p3 | bigint | |variable #3- meaning dependent on
 event

The following code sample shows the result of a SELECT statement on the
edb$session_wait_history view:

SELECT * FROM sys.edb$session_wait_history;

 edb_id | dbname | backend_id | seq | wait_name | elapsed | p1 | p2 | p3
--------+--------+------------+-----+---------------+---------+----+----+----
 1 | edb | 22935 | 1 | query plan | 54 | 0 | 0 | 0
 1 | edb | 22935 | 2 | db file read | 1116 |2689| 8 | 1
 1 | edb | 22935 | 3 | db file read | 983 |1255| 32 | 1
 1 | edb | 22935 | 4 | db file read | 13717 |2691| 19 | 1
 1 | edb | 22935 | 5 | query plan | 75 | 0| 0 | 0

Postgres Plus Advanced Server Performance Features Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

52

 1 | edb | 22935 | 6 | db file read | 11053 |1255| 7 | 1
 1 | edb | 22935 | 7 | db file read | 404 |2689| 4 | 1
 (7 rows)

Postgres Plus Advanced Server Performance Features Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

53

6 Optimizer Hints
Note: This information is also included in the Oracle Compatibility Developer’s Guide.

When a DELETE, SELECT, or UPDATE command is issued, the Postgres Plus Advanced
Server database server goes through a process to produce the result set of the command
which is the final set of rows returned by the database server. How this result set is
produced is the job of the query planner, also known as the query optimizer. Depending
upon the specific command, there may be one or more alternatives, called query plans;
the planner may consider as possible ways to create the result set. The selection of the
plan to be used to actually execute the command is dependent upon various factors
including:

• Costs assigned to various operations to retrieve the data (see the Planner Cost
Constants in the postgresql.conf file).

• Settings of various planner method parameters (see the Planner Method
Configuration section in the postgresql.conf file).

• Column statistics that have been gathered on the table data by the ANALYZE
command (see the Postgres Plus documentation set for information on the
ANALYZE command and column statistics).

Generally speaking, of the various feasible plans, the query planner chooses the one of
least estimated cost for actual execution.

However, it is possible in any given DELETE, SELECT, or UPDATE command to directly
influence selection of all or part of the final plan by using optimizer hints. Optimizer hints
are directives embedded in comment-like syntax immediately following the DELETE,
SELECT, or UPDATE key words that tell the planner to utilize or not utilize a certain
approach for producing the result set.

Synopsis

{ DELETE | SELECT | UPDATE } /*+ { hint [comment] } [...] */
 statement_body

{ DELETE | SELECT | UPDATE } --+ { hint [comment] } [...]
 statement_body

Optimizer hints may be given in two different formats as shown above. Note that in both
formats, a plus sign (+) must immediately follow the /* or -- opening comment symbols
with no intervening space in order for the following tokens to be interpreted as hints.

In the first format, the hint and optional comment may span multiple lines. In the second
format, all hints and comments must be on a single line. The remainder of the statement
must start on a new line.

Postgres Plus Advanced Server Performance Features Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

54

Description

The following points regarding the usage of optimizer hints should be noted:

• The database server will always try to use the specified hints if at all possible.
• If a planner method parameter is set so as to disable a certain plan type, then this

plan will not be used even if it is specified in a hint, unless there are no other
possible options for the planner. Examples of planner method parameters are
enable_indexscan, enable_seqscan, enable_hashjoin,
enable_mergejoin, and enable_nestloop. These are all Boolean
parameters.

• Remember that the hint is embedded within a comment. As a consequence, if the
hint is misspelled or if any parameter to a hint such as view, table, or column
name is misspelled, or non-existent in the SQL command, there will be no
indication that any sort of error has occurred. No syntax error will be given and
the entire hint is simply ignored.

• If an alias is used for a table or view name in the SQL command, then the alias
name, not the original object name, must be used in the hint. For example, in the
command, SELECT /*+ FULL(acct) */ * FROM accounts acct ...,
acct, the alias for accounts, must be specified in the FULL hint, not the table
name, accounts.

• Use the EXPLAIN command to ensure that the hint is correctly formed and the
planner is using the hint. See the Postgres Plus documentation set for information
on the EXPLAIN command.

• In general, optimizer hints should not be used in production applications.
Typically, the table data changes throughout the life of the application. By
ensuring that the more dynamic columns are ANALYZEd frequently, the column
statistics will be updated to reflect value changes and the planner will use such
information to produce the least cost plan for any given command execution. Use
of optimizer hints defeats the purpose of this process and will result in the same
plan regardless of how the table data changes.

Parameters

hint

An optimizer hint directive.

comment

A string with additional information. Note that there are restrictions as to what
characters may be included in the comment. Generally, comment may only
consist of alphabetic, numeric, the underscore, dollar sign, number sign and space
characters. These must also conform to the syntax of an identifier. Any
subsequent hint will be ignored if the comment is not in this form.

Postgres Plus Advanced Server Performance Features Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

55

statement_body

The remainder of the DELETE, SELECT, or UPDATE command.

The following sections describe the various optimizer hint directives in more detail.

6.1 Default Optimization Modes

There are a number of optimization modes that can be chosen as the default setting for a
Postgres Plus Advanced Server database cluster. This setting can also be changed on a
per session basis by using the ALTER SESSION command as well as in individual
DELETE, SELECT, and UPDATE commands within an optimizer hint. The configuration
parameter that controls these default modes is named OPTIMIZER_MODE. The following
table shows the possible values.

Table 3-1 Default Optimization Modes

Hint Description
ALL_ROWS Optimizes for retrieval of all rows of the result set.

CHOOSE Does no default optimization based on assumed number of rows to be retrieved
from the result set. This is the default.

FIRST_ROWS Optimizes for retrieval of only the first row of the result set.
FIRST_ROWS_10 Optimizes for retrieval of the first 10 rows of the results set.
FIRST_ROWS_100 Optimizes for retrieval of the first 100 rows of the result set.
FIRST_ROWS_1000 Optimizes for retrieval of the first 1000 rows of the result set.

FIRST_ROWS(n)
Optimizes for retrieval of the first n rows of the result set. This form may not be
used as the object of the ALTER SESSION SET OPTIMIZER_MODE command.
It may only be used in the form of a hint in a SQL command.

These optimization modes are based upon the assumption that the client submitting the
SQL command is interested in viewing only the first “n” rows of the result set and will
then abandon the remainder of the result set. Resources allocated to the query are
adjusted as such.

Examples

Alter the current session to optimize for retrieval of the first 10 rows of the result set.

ALTER SESSION SET OPTIMIZER_MODE = FIRST_ROWS_10;

The current value of the OPTIMIZER_MODE parameter can be shown by using the SHOW
command. Note that this command is a utility dependent command. In PSQL, the SHOW
command is used as follows:

SHOW OPTIMIZER_MODE;

optimizer_mode

 first_rows_10

Postgres Plus Advanced Server Performance Features Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

56

(1 row)

The Oracle compatible SHOW command has the following syntax:

SHOW PARAMETER OPTIMIZER_MODE;

NAME
--
VALUE
--
optimizer_mode
first_rows_10

The following example shows an optimization mode used in a SELECT command as a
hint:

SELECT /*+ FIRST_ROWS(7) */ * FROM emp;

empno | ename | job | mgr | hiredate | sal | comm | deptno
-------+--------+-----------+------+--------------------+---------+---------+--------
 7369 | SMITH | CLERK | 7902 | 17-DEC-80 00:00:00 | 800.00 | | 20
 7499 | ALLEN | SALESMAN | 7698 | 20-FEB-81 00:00:00 | 1600.00 | 300.00 | 30
 7521 | WARD | SALESMAN | 7698 | 22-FEB-81 00:00:00 | 1250.00 | 500.00 | 30
 7566 | JONES | MANAGER | 7839 | 02-APR-81 00:00:00 | 2975.00 | | 20
 7654 | MARTIN | SALESMAN | 7698 | 28-SEP-81 00:00:00 | 1250.00 | 1400.00 | 30
 7698 | BLAKE | MANAGER | 7839 | 01-MAY-81 00:00:00 | 2850.00 | | 30
 7782 | CLARK | MANAGER | 7839 | 09-JUN-81 00:00:00 | 2450.00 | | 10
 7788 | SCOTT | ANALYST | 7566 | 19-APR-87 00:00:00 | 3000.00 | | 20
 7839 | KING | PRESIDENT | | 17-NOV-81 00:00:00 | 5000.00 | | 10
 7844 | TURNER | SALESMAN | 7698 | 08-SEP-81 00:00:00 | 1500.00 | 0.00 | 30
 7876 | ADAMS | CLERK | 7788 | 23-MAY-87 00:00:00 | 1100.00 | | 20
 7900 | JAMES | CLERK | 7698 | 03-DEC-81 00:00:00 | 950.00 | | 30
 7902 | FORD | ANALYST | 7566 | 03-DEC-81 00:00:00 | 3000.00 | | 20
 7934 | MILLER | CLERK | 7782 | 23-JAN-82 00:00:00 | 1300.00 | | 10
(14 rows)

6.2 Access Method Hints

The following hints influence how the optimizer accesses relations to create the result set.

Table 3-2 Access Method Hints

Hint Description
FULL(table) Perform a full sequential scan on table.
INDEX(table [index] [...]) Use index on table to access the relation.
NO_INDEX(table [index] [...]) Do not use index on table to access the relation.

In addition, the ALL_ROWS, FIRST_ROWS, and FIRST_ROWS(n) hints of Table 3-1 can
be used.

Examples

The sample application does not have sufficient data to illustrate the effects of optimizer
hints so the remainder of the examples in this section will use a banking database created
by the pgbench application located in the Postgres Plus Advanced Server
dbserver\bin subdirectory.

Postgres Plus Advanced Server Performance Features Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

57

The following steps create a database named, bank, populated by the tables, accounts,
branches, tellers, and history. The –s 5 option specifies a scaling factor of five
which results in the creation of five branches, each with 100,000 accounts, resulting in a
total of 500,000 rows in the accounts table and five rows in the branches table. Ten
tellers are assigned to each branch resulting in a total of 50 rows in the tellers table.

Note, if using Linux use the export command instead of the SET PATH command as
shown below.

export PATH=/opt/EnterpriseDB/8.3/dbserver/bin:$PATH

The following example was run in Windows.

SET PATH=C:\EnterpriseDB\8.3\dbserver\bin;%PATH%

createdb -U enterprisedb bank
CREATE DATABASE

pgbench -i -s 5 -U enterprisedb -d bank

creating tables...
10000 tuples done.
20000 tuples done.
30000 tuples done.
 .
 .
 .
470000 tuples done.
480000 tuples done.
490000 tuples done.
500000 tuples done.
set primary key...
vacuum...done.

Ten transactions per client are then processed for eight clients for a total of 80
transactions. This will populate the history table with 80 rows.

pgbench –U enterprisedb –d bank –c 8 –t 10
 .
 .
 .
transaction type: TPC-B (sort of)
scaling factor: 5
number of clients: 8
number of transactions per client: 10
number of transactions actually processed: 80/80
tps = 6.023189 (including connections establishing)
tps = 7.140944 (excluding connections establishing)

The table definitions are shown below:

\d accounts

 Table "public.accounts"
 Column | Type | Modifiers
----------+---------------+-----------

Postgres Plus Advanced Server Performance Features Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

58

 aid | integer | not null
 bid | integer |
 abalance | integer |
 filler | character(84) |
Indexes:
 "accounts_pkey" PRIMARY KEY, btree (aid)

\d branches

 Table "public.branches"
 Column | Type | Modifiers
----------+---------------+-----------
 bid | integer | not null
 bbalance | integer |
 filler | character(88) |
Indexes:
 "branches_pkey" PRIMARY KEY, btree (bid)

\d tellers

 Table "public.tellers"
 Column | Type | Modifiers
----------+---------------+-----------
 tid | integer | not null
 bid | integer |
 tbalance | integer |
 filler | character(84) |
Indexes:
 "tellers_pkey" PRIMARY KEY, btree (tid)

\d history

 Table "public.history"
 Column | Type | Modifiers
--------+-----------------------------+-----------
 tid | integer |
 bid | integer |
 aid | integer |
 delta | integer |
 mtime | timestamp without time zone |
 filler | character(22) |

The EXPLAIN command shows the plan selected by the query planner. In the following
example, aid is the primary key column, so an indexed search is used on index,
accounts_pkey.

EXPLAIN SELECT * FROM accounts WHERE aid = 100;

 QUERY PLAN

--
 Index Scan using accounts_pkey on accounts (cost=0.00..8.32 rows=1
width=97)
 Index Cond: (aid = 100)
(2 rows)

The FULL hint is used to force a full sequential scan instead of using the index as shown
below:

EXPLAIN SELECT /*+ FULL(accounts) */ * FROM accounts WHERE aid = 100;

Postgres Plus Advanced Server Performance Features Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

59

 QUERY PLAN

 Seq Scan on accounts (cost=0.00..14461.10 rows=1 width=97)
 Filter: (aid = 100)
(2 rows)

The NO_INDEX hint also forces a sequential scan as shown below:

EXPLAIN SELECT /*+ NO_INDEX(accounts accounts_pkey) */ * FROM accounts WHERE
aid = 100;

 QUERY PLAN

 Seq Scan on accounts (cost=0.00..14461.10 rows=1 width=97)
 Filter: (aid = 100)
(2 rows)

In addition to using the EXPLAIN command as shown in the prior examples, more
detailed information regarding whether or not a hint was used by the planner can be
obtained by setting the client_min_messages and trace_hints configuration
parameters as follows:

SET client_min_messages TO info;
SET trace_hints TO true;

The SELECT command with the NO_INDEX hint is repeated below to illustrate the
additional information produced when the aforementioned configuration parameters are
set.

EXPLAIN SELECT /*+ NO_INDEX(accounts accounts_pkey) */ * FROM accounts WHERE
aid = 100;

INFO: [HINTS] Index Scan of [accounts].[accounts_pkey] rejected because of
NO_INDEX hint.

INFO: [HINTS] Bitmap Heap Scan of [accounts].[accounts_pkey] rejected
because of NO_INDEX hint.
 QUERY PLAN

 Seq Scan on accounts (cost=0.00..14461.10 rows=1 width=97)
 Filter: (aid = 100)
(2 rows)

Note that if a hint is ignored, the INFO: [HINTS] line will not appear. This may be an
indication that there was a syntax error or some other misspelling in the hint as shown in
the following example where the index name is misspelled.

EXPLAIN SELECT /*+ NO_INDEX(accounts accounts_xxx) */ * FROM accounts WHERE
aid = 100;

 QUERY PLAN

--
 Index Scan using accounts_pkey on accounts (cost=0.00..8.32 rows=1
 width=97)

Postgres Plus Advanced Server Performance Features Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

60

 Index Cond: (aid = 100)
(2 rows)

6.3 Joining Relations Hints

There are three possible plans that may be used to perform a join between two tables:

• Nested Loop Join – The right table is scanned once for every row in the left table.
• Merge Sort Join – Each table is sorted on the join attributes before the join starts.

The two tables are then scanned in parallel and the matching rows are combined
to form the join rows.

• Hash Join – The right table is scanned and its join attributes are loaded into a hash
table using its join attributes as hash keys. The left table is then scanned and its
join attributes are used as hash keys to locate the matching rows from the right
table.

The following table lists the optimizer hints that can be used to influence the planner to
use one type of join plan over another.

Table 3-3 Join Hints

Hint Description

USE_HASH(table [...]) Use a hash join with a hash table created from the join
attributes of table.

NO_USE_HASH(table [...]) Do not use a hash join created from the join attributes of
table.

USE_MERGE(table [...]) Use a merge sort join for table.
NO_USE_MERGE(table [...]) Do not use a merge sort join for table.
USE_NL(table [...]) Use a nested loop join for table.
NO_USE_NL(table [...]) Do not use a nested loop join for table.

Examples

In the following example, a join is performed on the branches and accounts tables.
The query plan shows that a hash join is used by creating a hash table from the join
attribute of the branches table.

EXPLAIN SELECT b.bid, a.aid, abalance FROM branches b, accounts a WHERE b.bid
= a.bid;

 QUERY PLAN
--
 Hash Join (cost=1.11..20092.70 rows=500488 width=12)
 Hash Cond: (a.bid = b.bid)
 -> Seq Scan on accounts a (cost=0.00..13209.88 rows=500488 width=12)
 -> Hash (cost=1.05..1.05 rows=5 width=4)
 -> Seq Scan on branches b (cost=0.00..1.05 rows=5 width=4)
(5 rows)

Postgres Plus Advanced Server Performance Features Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

61

By using the USE_HASH(a) hint, the planner is forced to create the hash table from the
accounts join attribute instead of from the branches table. Note the use of the alias, a,
for the accounts table in the USE_HASH hint.

EXPLAIN SELECT /*+ USE_HASH(a) */ b.bid, a.aid, abalance FROM branches b,
accounts a WHERE b.bid = a.bid;

 QUERY PLAN

 Hash Join (cost=21909.98..30011.52 rows=500488 width=12)
 Hash Cond: (b.bid = a.bid)
 -> Seq Scan on branches b (cost=0.00..1.05 rows=5 width=4)
 -> Hash (cost=13209.88..13209.88 rows=500488 width=12)
 -> Seq Scan on accounts a (cost=0.00..13209.88 rows=500488
width=12)
(5 rows)

Next, the NO_USE_HASH(a b) hint forces the planner to use an approach other than
hash tables. The result is a nested loop.

EXPLAIN SELECT /*+ NO_USE_HASH(a b) */ b.bid, a.aid, abalance FROM branches
b, accounts a WHERE b.bid = a.bid;

 QUERY PLAN
--
 Nested Loop (cost=1.05..69515.84 rows=500488 width=12)
 Join Filter: (b.bid = a.bid)
 -> Seq Scan on accounts a (cost=0.00..13209.88 rows=500488 width=12)
 -> Materialize (cost=1.05..1.11 rows=5 width=4)
 -> Seq Scan on branches b (cost=0.00..1.05 rows=5 width=4)
(5 rows)

Finally, the USE_MERGE hint forces the planner to use a merge join.

EXPLAIN SELECT /*+ USE_MERGE(a) */ b.bid, a.aid, abalance FROM branches b,
accounts a WHERE b.bid = a.bid;

 QUERY PLAN

 Merge Join (cost=69143.62..76650.97 rows=500488 width=12)
 Merge Cond: (b.bid = a.bid)
 -> Sort (cost=1.11..1.12 rows=5 width=4)
 Sort Key: b.bid
 -> Seq Scan on branches b (cost=0.00..1.05 rows=5 width=4)
 -> Sort (cost=69142.52..70393.74 rows=500488 width=12)
 Sort Key: a.bid
 -> Seq Scan on accounts a (cost=0.00..13209.88 rows=500488
width=12)
(8 rows)

In this three-table join example, the planner first performs a hash join on the branches
and history tables, then finally performs a nested loop join of the result with the
accounts_pkey index of the accounts table.

Postgres Plus Advanced Server Performance Features Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

62

EXPLAIN SELECT h.mtime, h.delta, b.bid, a.aid FROM history h, branches b,
accounts a WHERE h.bid = b.bid AND h.aid = a.aid;

 QUERY PLAN

 Nested Loop (cost=1.11..207.95 rows=26 width=20)
 -> Hash Join (cost=1.11..25.40 rows=26 width=20)
 Hash Cond: (h.bid = b.bid)
 -> Seq Scan on history h (cost=0.00..20.20 rows=1020 width=20)
 -> Hash (cost=1.05..1.05 rows=5 width=4)
 -> Seq Scan on branches b (cost=0.00..1.05 rows=5 width=4)
 -> Index Scan using accounts_pkey on accounts a (cost=0.00..7.01 rows=1
 width=4)
 Index Cond: (h.aid = a.aid)
(8 rows)

This plan is altered by using hints to force a combination of a merge sort join and a hash
join.

EXPLAIN SELECT /*+ USE_MERGE(h b) USE_HASH(a) */ h.mtime, h.delta, b.bid,
a.aid FROM history h, branches b, accounts a WHERE h.bid = b.bid AND h.aid =
a.aid;

 QUERY PLAN

 Merge Join (cost=23480.11..23485.60 rows=26 width=20)
 Merge Cond: (h.bid = b.bid)
 -> Sort (cost=23479.00..23481.55 rows=1020 width=20)
 Sort Key: h.bid
 -> Hash Join (cost=21421.98..23428.03 rows=1020 width=20)
 Hash Cond: (h.aid = a.aid)
 -> Seq Scan on history h (cost=0.00..20.20 rows=1020
 width=20)
 -> Hash (cost=13209.88..13209.88 rows=500488 width=4)
 -> Seq Scan on accounts a (cost=0.00..13209.88
 rows=500488 width=4)
 -> Sort (cost=1.11..1.12 rows=5 width=4)
 Sort Key: b.bid
 -> Seq Scan on branches b (cost=0.00..1.05 rows=5 width=4)
(12 rows)

6.4 Global Hints

Thus far, hints have been applied directly to tables that are referenced in the SQL
command. It is also possible to apply hints to tables that appear in a view when the view
is referenced in the SQL command. The hint does not appear in the view, itself, but rather
in the SQL command that references the view.

When specifying a hint that is to apply to a table within a view, the view and table names
are given in dot notation within the hint argument list.

Synopsis

hint(view.table)

Postgres Plus Advanced Server Performance Features Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

63

Parameters

hint

Any of the hints in Table 3-2 or Table 3-3.

view

The name of the view containing table.

table

The table on which the hint is to be applied.

Examples

A view named, tx, is created from the three-table join of history, branches, and
accounts shown in the final example of Section 6.3.

CREATE VIEW tx AS SELECT h.mtime, h.delta, b.bid, a.aid FROM history h,
branches b, accounts a WHERE h.bid = b.bid AND h.aid = a.aid;

The query plan produced by selecting from this view is show below:

EXPLAIN SELECT * FROM tx;

 QUERY PLAN

 Nested Loop (cost=1.11..207.95 rows=26 width=20)
 -> Hash Join (cost=1.11..25.40 rows=26 width=20)
 Hash Cond: (h.bid = b.bid)
 -> Seq Scan on history h (cost=0.00..20.20 rows=1020 width=20)
 -> Hash (cost=1.05..1.05 rows=5 width=4)
 -> Seq Scan on branches b (cost=0.00..1.05 rows=5 width=4)
 -> Index Scan using accounts_pkey on accounts a (cost=0.00..7.01 rows=1
 width=4)
 Index Cond: (h.aid = a.aid)
(8 rows)

The same hints that were applied to this join at the end of Section 6.3 can be applied to
the view as follows:

EXPLAIN SELECT /*+ USE_MERGE(tx.h tx.b) USE_HASH(tx.a) */ * FROM tx;

 QUERY PLAN

-
 Merge Join (cost=23480.11..23485.60 rows=26 width=20)
 Merge Cond: (h.bid = b.bid)
 -> Sort (cost=23479.00..23481.55 rows=1020 width=20)
 Sort Key: h.bid

Postgres Plus Advanced Server Performance Features Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

64

 -> Hash Join (cost=21421.98..23428.03 rows=1020 width=20)
 Hash Cond: (h.aid = a.aid)
 -> Seq Scan on history h (cost=0.00..20.20 rows=1020
 width=20)
 -> Hash (cost=13209.88..13209.88 rows=500488 width=4)
 -> Seq Scan on accounts a (cost=0.00..13209.88
 rows=500488 width=4)
 -> Sort (cost=1.11..1.12 rows=5 width=4)
 Sort Key: b.bid
 -> Seq Scan on branches b (cost=0.00..1.05 rows=5 width=4)
(12 rows)

In addition to applying hints to tables within stored views, hints can be applied to tables
within subqueries as illustrated by the following example. In this query on the sample
application emp table, employees and their managers are listed by joining the emp table
with a subquery of the emp table identified by the alias, b.

SELECT a.empno, a.ename, b.empno "mgr empno", b.ename "mgr ename" FROM emp a,
(SELECT * FROM emp) b WHERE a.mgr = b.empno;

empno | ename | mgr empno | mgr ename
-------+--------+-----------+-----------
 7902 | FORD | 7566 | JONES
 7788 | SCOTT | 7566 | JONES
 7521 | WARD | 7698 | BLAKE
 7844 | TURNER | 7698 | BLAKE
 7654 | MARTIN | 7698 | BLAKE
 7900 | JAMES | 7698 | BLAKE
 7499 | ALLEN | 7698 | BLAKE
 7934 | MILLER | 7782 | CLARK
 7876 | ADAMS | 7788 | SCOTT
 7782 | CLARK | 7839 | KING
 7698 | BLAKE | 7839 | KING
 7566 | JONES | 7839 | KING
 7369 | SMITH | 7902 | FORD
(13 rows)

The plan chosen by the query planner is shown below:

EXPLAIN SELECT a.empno, a.ename, b.empno "mgr empno", b.ename "mgr ename"
FROM emp a, (SELECT * FROM emp) b WHERE a.mgr = b.empno;

 QUERY PLAN

 Merge Join (cost=2.81..3.08 rows=13 width=26)
 Merge Cond: (a.mgr = emp.empno)
 -> Sort (cost=1.41..1.44 rows=14 width=20)
 Sort Key: a.mgr
 -> Seq Scan on emp a (cost=0.00..1.14 rows=14 width=20)
 -> Sort (cost=1.41..1.44 rows=14 width=13)
 Sort Key: emp.empno
 -> Seq Scan on emp (cost=0.00..1.14 rows=14 width=13)
(8 rows)

A hint can be applied to the emp table within the subquery to perform an index scan on
index, emp_pk, instead of a table scan. Note the difference in the query plans.

Postgres Plus Advanced Server Performance Features Guide

Copyright © 2009 EnterpriseDB Corporation. All rights reserved.

65

EXPLAIN SELECT /*+ INDEX(b.emp emp_pk) */ a.empno, a.ename, b.empno "mgr
empno", b.ename "mgr ename" FROM emp a, (SELECT * FROM emp) b WHERE a.mgr =
b.empno;

 QUERY PLAN

 Merge Join (cost=1.41..13.21 rows=13 width=26)
 Merge Cond: (a.mgr = emp.empno)
 -> Sort (cost=1.41..1.44 rows=14 width=20)
 Sort Key: a.mgr
 -> Seq Scan on emp a (cost=0.00..1.14 rows=14 width=20)
 -> Index Scan using emp_pk on emp (cost=0.00..12.46 rows=14 width=13)
(6 rows)

6.5 Conflicting Hints

This final section on hints deals with cases where two or more conflicting hints are given
in a SQL command. In such cases, the hints that contradict each other are ignored. The
following table lists hints that are contradictory to each other.

Table 3-4 Conflicting Hints

Hint Conflicting Hint
ALL_ROWS FIRST_ROWS - all formats
FULL(table) INDEX(table [index])

INDEX(table) FULL(table)
NO_INDEX(table)

INDEX(table index) FULL(table)
NO_INDEX(table index)

USE_HASH(table) NO_USE_HASH(table)
USE_MERGE(table) NO_USE_MERGE(table)
USE_NL(table) NO_USE_NL(table)

