Definition of the Porting Lay er for the X v11 Sample Serer

Susan Angbranndt
Raymond Dewry
Philip Karlton
Todd Nevman
Digital Equipment Corporation

minor revisions by

Bob Sbeifler

Massachusetts Institute oédhnology
Revised for Release 4 and Release 5 by

Keith Packard
MIT X Consortium

Revised for Release 6 by

David P Wggins

X Consortium

Porting Layer Definition -1- April 8, 1994

Copyright © 1994 X Consortium

Permission is hereby granted, free of geato ay person obtaining a cepf this software and associated
documentation files (th&Software’), to deal in the Softare without restriction, including without limita-
tion the rights to use, cgpmodify, merge, publish, distribte, sublicense, and/or sell copies of the Soft-
ware, and to permit persons to whom the Saftnis furnished to do so, subject to the felfey conditions:

The abeoe mpyright notice and this permission notice shall be included in all copies or substantial portions
of the Softvare.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANRBILITY, FAT-
NESS FOR A RRTICULAR PURPOSE AND NONINFRINGEMENTIN NO EVENT SHALL THE X
CONSOR'IUM BE LIABLE FOR ANY CLAIM, DAMAGES OR QHER LIABILITY, WHETHER IN
AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FFOM, OUT OF OR IN CONNEC-
TION WITH THE SOFTWARE OR THE USE OR DHER DEALINGS IN THE SOFTWRE.

Porting Layer Definition -2- April 8, 1994

The folloving document eplains the structure of the XiMlow System display seer and the intedices

among the lager pieces.t is intended as a reference for programmers who are implementing an X Display
Sener on their vorkstation hardare. lItis included with the X \Wdow System source tape, along with the
document "Stratges for Porting the X v11 Sample SetV Theorder in which you should read these doc-
uments is:

1) Readhe first section of the "Strages for Porting" document (@wiew of Porting Process).
2) Skimove this document (the Definition document).
3) Skimover the remainder of the Strajies document.

4) Startplanning and wrking, referring to the Stragees and Definition documents.

You may also vant to look at the follwving documents:

. "The X Window System" for an gerview of X.

. "Xlib - C Language X Intetfce” for a viev of what the client programmer sees.

. "X Window System Protocol” for a terse description of the byte stream protocol between the client
and serer.

LK201 and DEC are trademarks of Digital Equipment CorporatMacintosh and Apple are trademarks
of Apple Computerinc. PostScripis a trademark of Adobe Systems, Iiiethernet is a trademark of
Xerox Corporation.X Window System is a trademark of X Consortium, Ir€ray is a trademark of Cray
Research, Inc.

To understand this document and the accompansource code, you should kmthe C languageYou
should be dmiliar with 2D graphics and windang concepts such as clipping, bitmaps, fonts, ¥tw
should hae a gneral knaledge of the X Whdow System. B implement the seer code on your hard-
ware, you need to ko a lot about your hardare, its graphic display diee(s), and (possibly) its netnk-
ing and multitaskingdcilities.

This document depends a lot on the source code, so you sheeld Isting of the code handy

Some source on the distifion tape is directly compilable on your machi@ame of it will require modi-
fication. Otheparts may hee © be completely written from scratch.

The tape also includes source for a sample implementation of a displeywskith runs on aariety of
color and monochrome displays which you will find useful for implementigdygoe of X serer.

1. TheX Window System

The X Window System, or simply "X," is a windeing system that prades high-performance, highvid,
device-independent graphics.

X is awndowing system designed for bitmapped graphic displdyee display can h& a mple,

monochrome display or it canvea olor display with up to 32 bits per gikwith a special graphics pro-

cessor doing theavk. (Inthis document, monochrome means a black and white display with one bit per
pixel. Even though the usual meaning of monochrome is more general, this special case is so common that
we decided to resesvhe word for this purpose.)

X is designed for a netwrking ervironment where users can run applications on machines other than their

own workstations. Sometimet)e connection isw@r an Ethernet netwrk with a protocol such as TCP/IP;
but, ary "reliable" byte stream is allegble. A high-bandwidth byte stream is preferable; RS-232 at 9600

Porting Layer Definition -3- April 8, 1994

baud vould be slev without compression techniques.

X by itself allovs great freedom of desigfor instance, it does not includeyauser interbce standardlts
intent is to "pr@ide mechanism, not poli¢ By making it general, it can be the foundation for a widg-v
ety of interactre oftware.

For a nore detailed werview, see the document "The X Mtlow System." For details on the byte stream
protocol, see "X Widow System protocol."”

2. OVERVIEW OF THE SERVER

The display seer manages winaes and simple graphics requests for the user on behalffefafif client
applications. Thelient applications can be running oryanachine on the newvk. Thesener mainly
does three things:

. Responds to protocol requests froxiséing clients (mostly graphic andxtedraving commands)
. Sends deice input (leystrokes and mouse actions) and othesngs to &isting clients
. Maintains client connections

The serer code is gyanized into four major pieces:

. Device Independent (DIX) layer - code shared among all implementations

. Operating System (OS) layer - code that ifedént for each operating systemt Is shared among
all graphic deices for this operating system

. Device Dependent (DDX) layer - code that is (potentiallyledént for each combination of operat-
ing system and graphic dee

. Extension Interdice - a standarday to add features to the X serv

The "porting layer" consists of the OS and DDX layers; these are actually parallel and neither one is on top
of the other The DIX layer is intended to be portable without change tetasystems and is not detailed

here, although seral routines in DIX that are called by DDX are documentegtensions incorporate

new functionality into the seer; and require additional functionalityes a Smple DDX.

The following sections outline the functions of the layeBgction 3 briefly tells what you need to o
about the DIX layer The OS layer isxplained in Section 4Section 5 gies the theory of operation and
procedural intedice for the DDX layerSection 6 describes the functions whictisé for the &tension
writer.

2.1. NotesOn Resources and Lage Structs

X resources are C structs inside the serClient applications create and manipulate these objects accord-
ing to the rules of the X byte stream protocGlient applications refer to resources with resource IDs,
which are 32-bit intgers that are senver the netvark. Within the serer, of course, thg are just C

structs, and we refer to them by pointers.

The DDX layer has seral kinds of resources:

. Window
. Pixmap
. Screen
. Device

Porting Layer Definition -4- April 8, 1994

. Colormap

. Font

. Cursor

. Graphics Contets

The type names of the more important sestructs usually end in "Rec," such asvideRec;" the pointer
types usually end in "Rtrsuch as "DeicePtr"

The structs and important defined constants are declared in .h filesvéhahimes that suggest the name of
the object.For instance, there are dwh files for windavs, windav.h and windavstr.h. windav.h defines
only what needs to be defined in order to use wirsdweithout peeking inside of them; winastrh defines
the structs with all of their components in great detail for those who need it.

Three kinds of fields are in these structs:
. Attribute fields - struct fields that contaialves lile nrormal structs
. Pointers to procedures, or structures of procedures, that operate on the object

. A private field (or two) used by your DDX code teekp prvate data (probably a pointer to another
data structure), or an array ofyate fields, which is sized as the sarinitializes.

DIX calls through the strud’procedure pointers to do its taskBhese procedures are set either directly or
indirectly by DDX proceduresMost of the procedures described in the remainder of this document are
accessed through one of these struets.example, the procedure to create a pixmap is attached to a
ScreenRec and might be called by using stpgession

(* pScreen->CreatePixmap)(pScreen, width, height, depth).

All procedure pointers must be set to some routine unless noted otherwise; a null pointeeviifdru-
nate consequences.

Procedure routines will be indicated in the documentation by thiscton:
void pScreen->MyScreenRoutinegaaqg, ...)
as opposed to a free routine, not in a data structure:

void MyFreeRoutine(a, ag, ...)

The attritute fields are mostly set by DIX; DDX should not modify them unless noted otherwise.

3. DIXLAYER

The DIX layer is the machine anduitee independent part of XThe source should be common to all eper
ating systems and diees. Theport process should not include changes to this part, therefore internal inter
faces to DIX modules are not discussed;ept for public inteidices to the DDX and the OS layers.

In the process of getting your serio work, if you think that DIX must be modified for purposes other
than lug fixes, you may be doing something wrorgeep looking for a more compatible solutiowhen
the net release of the X sesv code is aailable, you should be able to just drop in thevidX code and
compile it. If you change DIX, you will hee o remember what changes you made and wileha change
the nev sources before you can update to the mersion.

The heart of the DIX code is a loop called the dispatch I&gzh time the processor goes around the loop,
it sends dfaccumulated inputwents from the input deces to the clients, and it processes requests from

Porting Layer Definition -5- April 8, 1994

the clients. This loop is the most genized way for the serer to process the asynchronous requests that it
needs to procesdviost of these operations are performed by OS and DDX routines that you must supply

4. OSLAYER

This part of the source consists of & f@utines that you he o rewrite for each operating systerithese
OS functions maintain the client connections and schedulle to be done for clientsThey also provide
an interfce to font files, font name to file name translation, andded memory management.

void Oslnit()
Osilnit initializes your OS code, performing whagetasks need to be donErequently there is not much
to be done.The sample seer implementation is in Xseev/os/osinit.c.

4.1. Schedulingand Request Deliery

The main dispatch loop in DIX creates the illusion of multitasking betwetsetit windavs, while the
sener is itself lut a single processThe dispatch loop breaks up thenk for each client into small
digestible partsSome parts are requests from a client, such agdi@il graphic commandsSome parts
are @ents delvered to the client, such agystrokes from the userThe processing ofvents and requests
for different clients can be interkestl with one another so true multitasking is not needed in therserv

You must supply some of the pieces for proper scheduling between clients.

int WaitForSomething(pClientReady)
int *pClientReady;

WaitForSomething is the scheduler procedure you must write that will suspend yarrmeocess until
something needs to be donEhis call should makthe serer suspend until one or more of the faling
occurs:

. There is an inputvent from the user or hardwe (see SetinputCheck())

. There are requestsaiting from knavn clients, in which case you should return a count of clients
stored in pClientReady

. A new client tries to connect, in which case you should create the clienttemdcontinue waiting

Before WaitForSomething() computes the masks to pass to select, it needs to see if thgheéng tmdo
on the vork queue; if so, it must call a DIX routine called Procemd®@ueue.
extern WorkQueuePtr wrkQueue;

if (workQueue)
ProcessWrkQueue ();

If WaitForSomething() decides it is about to do something that might block (in the sampie before it
calls select()) it must call a DIX routine called BlockHandler().

void BlockHandler(pTmeout, pReadmask)
pointer pTmeout;
pointer pReadmask;
The types of the guments are for agreement between the OS and DDX implementdtignise pTime-
out is a pointer to the information determiningriong the block is allwed to last,and the pReadmask is
a pointer to the information describing the descriptors that will bited on.

In the sample seey, pTimeout is a struct tinval **, andpReadmask is the address of the select() mask
for reading.

The DIX BlockHandler() iterates through the Screefios,each one calling its BlockHandleA Block-
Handler is declared thus:

Porting Layer Definition -6- April 8, 1994

void xxxBlockHandler(nscreen, pbdata, pgtReadmask)
int nscreen;
pointer pbdata;
struct timeval * * pptv;
pointer pReadmask;
The aguments are the ingef the Screenthe blockData field of the Screeand the aguments to the
DIX BlockHandler().

Immediately after \&@itForSomething returns from the blockyen if it didn’t actually block, it must call
the DIX routine VékeupHandler().

void WakeupHandler(result, pPReadmask)
int result;
pointer pReadmask;

Once agin, thetypes are not specified by DIXhe result is the success indicator for the thing that (may
have) blocked, and the pReadmask is a mask of the descriptors that cavee brcthe sample seer,
result is the result from select@nd pReadmask is the address of the select() mask for reading.

The DIX WakeupHandler() calls each ScreeiiakeupHandler A WakeupHandler is declared thus:

void xxxWakeupHandler(nscreen, pbdata, pReadmask)
int nscreen;
pointer pbdata;
unsigned long result;
pointer pReadmask;
The aguments are the ingef the Screenthe blockData field of the Screeand the aguments to the
DIX WakeupHandler().

In addition to the pescreen BlockHandlers, gmodule may rgister block and akeup handlers (only
together) using:

Bool ReajisterBlockAndWkeupHandlers (blockHandlewakeupHandlerblockData)
BlockHandlerProcPtr blockHandler;
WakeupHandlerProcPtr akeupHandler;
pointer blockData;
A FALSE return code indicates that thgistration &iled for lack of memoryTo remove a egstered
Block handler at other than serveset time (when there all remeed automatically), use:

RemareBlockAndWakeupHandlers (blockHandlewvakeupHandlerblockData)
BlockHandlerProcPtr blockHandler;
WakeupHandlerProcPtr akeupHandler;
pointer blockData;
All three aguments must match thalues passed to BisterBlockAndVékeupHandlers.

These rgistered block handlers are called after thegoeeen handlers:

void (*BlockHandler) (blockData, pptypReadmask)

pointer blockData;
OSTimePtr pptv;
pointer pReadmask;

Any wakeup handlers mstered with RgisterBlockAndVkeupHandlers will be called before the Screen
handlers:

void (*WakeupHandler) (blockData, epReadmask)
pointer blockData;
int err;
pointer pReadmask;

Porting Layer Definition -7- April 8, 1994

The WaitForSomething on the sample senalso has auilt in screen szer that darlens the screen if no
input happens for a period of tim&he sample seer implementation is in Xseev/os/\\aitFor.c.

Note that VditForSomething() may be called when you alreadyetsmveal outstanding things ¥ents,
requests, or neclients) queued upFor instance, your seev may hae just done a lgre graphics request,
and it may hee been a long time since &lfForSomething() \as last calledIf mary clients hae lots of
requests queued up, DIX will only service some of them fovenglient before going on to the xieclient
(see isltTmeToYield, belav). ThereforeWaitForSomething() will hae © report that these same clients
still have requests queued up thexhéme around.

An implementation should return information on as ynautstanding things as it camfor instance, if your
implementation alays checks for client data first and does not repgorimout e/ents until there is no
client data left, your mouse andyboard might get loakd out by an application that constantly barrages
the serer with graphics draing requests.

A list of indexes (client->ind&) for clients with data ready to be read or processed should be returned in
pClientReadyand the count of indess returned as the resultle of the call.These are not clients that
have full requests readyut ary clients who hae any data ready to be read or processéte DIX dis-
patcher will process requests from each client in turn by calling ReadRequestFromClient(), belo

WaitForSomething() must createwelients as thg are requested (by whater mechanism at the transport
level). A new client is created by calling the DIX routine:

ClientPtr NextAvailableClient(ospr)
pointer OSpH;
This routine returns NULL if a meclient cannot be allocated (e.g. maximum number of clients reached).
The ospn argument will be stored into the OS yaie field (pClient->o0sPvate), to store OS préte infor
mation about the clientn the sample seey, the osPwate field contains the number of the setcfor this
client. See also "Ne Client Connections."NextAvailableClient() will call InsertBkeRequest(), so you
must be prepared for this.

If there are outstanding inputents, you should makaure that the tw SetinputCheck() locations are
unequal. Thd®IX dispatcher will call your implementation of Processinpuaite() until the Set-
InputCheck() locations are equal.

The sample seer contains an implementation oBifForSomething(). Théllowing two routines indi-
cate to VitForSomething() what déces should be aited for fd is an OS dependent type; in the sample
sener it is an open file descriptor

int AddEnabledDeice(fd)
int fd;

int RemaeEnabledDeice(fd)
int fd;
These tw routines are usually called by DDX from the initialize cases of the Input Procedures that are
stored in the DdceRec (the routine passed to AddinputiBe()). Thesample semr implementation of
AddEnabledDeice and RemeeEnabledDeice are in Xserer/os/connection.c.

4.2. NewClient Connections

The process whereby amelient-sener connection starts up ieny dependent upon what your byte
stream mechanismThis section describes byte stream initiation usiajrgles from the TCP/IP imple-
mentation on the sample serv

The first thing that happens is a client initiates a connection with thex.skelaw a dient knavs to do this
depends upon your netwk facilities and the Xlib implementationn a typical scenario, a user named

Fred on his X wrkstation is logged onto a Cray supercomputer running a command shell in an ¥windo
Fred can type shell commands andéhtie Cray respond as though the X semvere a dumb terminal.

Fred types in a command to run an X client application thatlimked with Xlib. Xlib looks at the shell
ervironment \ariable DISPLA, which has the alue "fredsbittube:0.0.The host name of Fresl’

Porting Layer Definition -8- April 8, 1994

workstation is "fredsbittube," and the Os are for multiple screens and multiple et pereesses(Pre-
cisely what happens on your system depends uperkremd Xlib are implemented.)

The client application calls a TCP routine on the Cray to open a TCP connection for X to communicate
with the netverk node "fredsbittube.The TCP softwre on the Cray does this by looking up the TCP
address of "fredsbittube” and sending an open request to TCP port 6000 on fredsbittube.

All X servers on TCP listen for meclients on port 6000 by dafilt; this is knan as a "well-kna/n port" in
IP terminology

The serer receves this request from its port 6000 and checks where it came from to see if it is on the
sener’s list of "trustworthy” hosts to talk to.Then, it opens another port for communications with the
client. Thisis the byte stream that all X communications will gero

Actually, it is a bit more complicated than thaEach X serer process running on the host machine is

called a "display Eachdisplay can he nore than one screen that it managearporatelydra:3.2" rep-
resents screen 2 on display 3 on the multi-screenearieh@de corporatsfira. Theopen request auld
be sent on well-knen port number 6003.

Once the byte stream is set up, what goes on does not degpgmduch upon whether or not it is TCP
The client sends an xConnClientPrefix struct (see Xproto.h) that hasr#i@wvnumbers for thesvsion of
Xlib it is running, some byte-ordering information, andteharacter strings used for authorizatidhthe
sener does not lik the authorization strings or thergion numbers do not match within the rules, or if
arything else is wrong, it sendsailfire response with a reason string.

If the information neer comes, or comes much toosly, the connection should be beakof. You must
implement the connection timeouthe sample seer implements this bydeping a timestamp for each
still-connecting client and, each time just before it attempts to acoggiomaections, it closes gron-
nection that are too oldT'he connection timeout can be set from the command line.

You must implement whater authorization schemes youant to support.The sample seer on the distri-
bution tape supports a simple authorization schefte only interéce seen by DIX is:

char *
ClientAuthorized(client, proto_n, auth_proto, string_n, auth_string)
ClientPtr client;
unsigned int proto_n;
char *auth_proto;
unsigned int string_n;
char *auth_string;

DIX will only call this once per client, once it has read the full initial connection data from the dfitme.
connection should be accepted ClientAuthorized() should return NULL, and otherwise should return an
error message string.

Accepting ne connections happens internally tait¥orSomething(). \&itForSomething() must call the
DIX routine NetAvailableClient() to create a client objed®rocessing of the initial connection data will
be handled by DIX.Your OS layer must be able to map from a client to wieai@formation your OS
code needs to communicate on theegibyte stream to the clienDIX uses this ClientPtr to refer to the
client from nav on. Thesample semr uses the osRete field in the ClientPtr to store the file descriptor
for the sockt, the input and outputifers, and authorization information.

To initialize the methods you choose to wlldients to connect to your se&w main() calls the routine

void CreateVelIKnownSoclets()

This routine is called only once, and not called when thees&sveset.To recreate ansockets during
sener resets, the folleing routine is called from the main loop:

void ResetVElIKnownSoclets()
Sample implementations of both of these routines are found inétsesiconnection.c.

Porting Layer Definition -9- April 8, 1994

For more details, see the section called "Connection Setup" in the X protocol specification.

4.3. ReadingData from Clients

Requests from the client are read in as a byte stream by the QSTlgemay be in the form of seral
blocks of bytes deliered in sequence; requests may be énolip eer block boundaries or there may be
mary requests per blockEach request carries with it length informatidhis the responsibility of the fol-
lowing routine to break it up into request blocks.

int ReadRequestFromClient(who)
ClientPtr who;

You must write the routine ReadRequestFromClient() to get one request from the byte stream belonging to
client "who." You must svap the third and fourth bytes (the second 16-bitdyaccording to the byte-

swap rules of the protocol to determine the length of the reqiiést.length is measured in 32-bibvds,

not in bytes.Therefore, the theoretical maximum request is 25@#owever, the maximum length aleed

is dependent upon the sers input tuffer. This size is sent to the client upon connectidhe maximum

size is the constant MAX_RBEEST_SIZE in Xsergr/include/os.h) The rest of the request you return is
assumed NDto be mrrectly svapped for internal use, because that is the responsibility of DIX.

The 'who’ agument is the ClientPtr returned fromaiforSomething. Theeturn \alue indicating status
should be set to the (pos#) byte count if the read is successful, 0 if the read iocled, or a ngdive
error code if an error happened.

You must then store a pointer to the bytes of the request in the client regfiiestibld; who->request-
Buffer. This can simply be a pointer into yowrfter; DIX may modify it in place bt will not otherwise
cause damageOf course, the request must be contiguous; you mudtesitiground in your bffers if not.

The sample seer implementation is in Xsegv/os/io.c.

DIX can insert data into the client stream, and can cause a "replay"” of the current request.

Bool InsertlakeRequest(client, data, count)
ClientPtr client;
char *data;
int count;

int ResetCurrentRequest(client)
ClientPtr client;

InsertFakeRequest() must insert the specified number of bytes of data into the head of theffapidrb
the client. This may be a complete request, or it might be a partial regeestéxample, Ne&tAvailable-
Cient() will insert a partial request in order to read the initial connection data sent by theTdliemoutine
returns RLSE if memory could not be allocate®esetCurrentRequest() should "back up" the inptfeb
so that the currentlyxecuting request will be reecuted. DIXmay hae dtered some alues (e.g. the
overall request length), so you must recheck to see if you st habmplete requestResetCurrentRe-
guest() should alays cause a yield (isltheToYield).

4.4. Sendingevents, Errors And Replies D Clients

int WriteToClient(who, n, bf)
ClientPtr who;
int n;
char *f;
WriteToClient should write n bytes starting afflbo the ClientPtr "who"It returns the number of bytes

Porting Layer Definition -10 - April 8, 1994

written, kut for simplicity, the number returned must be either the saahgevas the number requested, or
-1, signaling an errorThe sample seer implementation is in Xseev/os/io.c.

void SendError@Client(client, majorCode, minorCode, resld, errorCode)

ClientPtr client;

unsigned int majorCode;

unsigned int minorCode;

XID resld;

int errorCode;
SendErrordClient can be used to send errors back to clients, although in most cases your request function
should simply return the error codeyhmey set client->error&lue to the appropriate erraalue to return to
the client, and DIX will call this function with the correct opcodes for you.

void FlushAllOutput()
void FlushlfCriticalOutputPending()

void SetCriticalOutputPending()
These three routines may be implemented to supptigrbd or delayed writes to clientsjttat the ery
least, the stubs mustist. FlushAllOutput(Junconditionally flushes all output to clients; FlushlfCrit-
icalOutputPending() flushes output only if SetCriticalOutputPending() has be called since the last time out-
put was flushed.The sample seer implementation is in Xseev/os/io.c and actually ignores requests to
flush output on a peslient basis if it knas that there are requests in that clemput queue.

4.5. Font Support

In the sample seey, fonts are encoded in disk files or fetched from the foneseFor disk fonts, there is
one file per font, with a file name &Kfixed.pcf". Font serer fonts are readver the netvork using the X
Font Sener Protocol. The disk directories containing disk fonts and the names of the foetsame listed
together in the current "font path.”

In principle, you can put all your fonts irCR1 or in RAM in your serer. You can put them all in one
library file on disk. You could generate them on the fly from seakescriptions. Byplacing the appropri-
ate code in thednt Library you will automatically gport fonts in that format both through the X ssrv
and the Bnt serer.

With the incorporation of font-seev based fonts and the Speedo donation from Bitstream, the font inter
faces hae been meed into a separate librgrgow called the Bnt Library (../fonts/lib). These routines are
shared between the X senand the &nt serer, so instead of this document specifying what you must
implement, simply refer to the font library intack specification for the detail8ll of the interiace code to
the Font library is contained in dix/dixfonts.c

4.6. Memory Management

Memory management is based on functions in the C runtime libxajoc(), Xrealloc(), and Xfree()

work just like malloc(), realloc(), and free()xeept that you can pass a null pointer to Xrealloc() te lita
allocate ane or pass a null pointer to Xfree() and nothing will happ&he \ersions in the sample serv
also do some checking that is useful forugging. Consula C muntime library reference manual for more
details.

The macros ALLOCAE_LOCAL and DEALLOCAE_LOCAL are proided in Xserer/include/os.h.
These are useful if your compiler supports alloca() (or some method of allocating memory from the stack);
and are defined appropriately on systems which support it.

Treat memory allocation carefully in your implementatidhemory leaks can beevy hard to find and are
frustrating to a userAn X server could be running for days or weeks without being reset, jesaligular

Porting Layer Definition -11 - April 8, 1994

terminal. Ifyou leak a fes dozen k per daythat will add up and will cause problems for users thatlea
their workstations on.

4.7. ClientScheduling

The X serer has the ability to schedule clients mucle Bk operating system auld, suspending and
restarting them without gerd for the state of their inputilfers. Thisfunctionality allavs the X serer to
suspend one client and continue processing requests from other clients aitiilg for a long-term net-
work actiity (like loading a font) before continuing with the first client.

Bool isltTimeToYield,;

isltTimeToYield is a global &riable you can set if youamt to tell DIX to end the clierst™time slice" and
start paying attention to thexielient. After the current request is finished, DIX will et the next
client.

In the sample seey, ReadRequestFromClient() sets istiEToYield after 10 requests paztk in a rov are
read from the same client.

This scheduling algorithm canvea &rious efect upon performance whendwdients are draing into
their windavs simultaneouslylf it allows one client to run until its request queue is empty by ignoring
isltTimeToYield, the clients queue may indct n&er empty and other clients will be bloe#d out. On the
other hand, if it switchs between féifent clients too quick]yperformance may stdr due to too much
switching between contés. For example, if a graphics processor needs to be set up withindyanodes
before draving, and tvo different clients are dwang with different modes into tavdifferent windavs, you
may switch your graphics processor modes so often that performance is impacted.

See the Stratges document for heuristics on setting istti&ToYield.

The following functions preide the ability to suspend request processing on a particular client, resuming it
at some later time:

int IgnoreClient (who)
ClientPtr who;

int AttendClient (who)
ClientPtr who;
Ignore client is responsible for pretending that tivergdient doesrt exist. WaitForSomething should not
return this client as ready for reading and should not return if only this client is retiegdClient undoes
whatever IgnoreClient did, setting it up for inputaig.

Three functions support "process control” for X clients:

Bool ClientSleep (client, function, closure)
ClientPtr client;
Bool (*function)();
pointer closure;

This suspends the current client (the calling routine is responsible for makirayitsagk to Dispatch()).
No more X requests will be processed for this client until Cli@k8dp is called.

Bool ClientSignal (client)
ClientPtr client;

This function causes a call to the (*function) parameter passed to ClientSleep to be queuedda the w
gueue. Thigloes not automatically "akeup” the client, bt the function called is free to do so by calling:

ClientWakeup (client)
ClientPtr client;

Porting Layer Definition -12 - April 8, 1994

This re-enables X request processing for the specified client.

4.8. OtherOS Functions
void
ErrorF(char *f, ...)

void
FaalError(char *f, ...)

void
Error(str)
char *str;

You should write these three routines to yide for diagnostic output from the dix and ddx layers, although
implementing them to produce no output will ndeaf the correctness of your servErrorF() and
FatalError() tale a pintf() type of format specification in the firsgament and an implementation-depen-
dent number of guments follwing that. Normally, the formats passed to ErrorF() aratdfError() should

be terminated with a mdine. Error()provides an os inteaice for printing out the string passed as gu-ar
ment folloved by a meaningfullanation of the last system errddormally the string does not contain a
newline, and it is only called by the ddx laydn the sample implementation, Error() uses the perror()
function.

After printing the messageguments, RtalError() must be implemented such that theesasil call
AbortDDX() to give the ddx layer a chance to reset the hargwand then terminate the samit must not
return.

The sample seer implementation for these routines is in Xsefws/util.c.

4.9. Idiom Support

The DBE specification introduces the notion of idioms, which are groups of X requests which can be
executed more diciently when takn as a whole compared to being performed/iddally and sequen-
tially. This following sener internal support to alles DBE implementations, as well as other parts of the
sener, to do idiom processing.

xRegPtr PeekNeRequest(xRegPtr req, ClientPtr client, Bool readmore)

If req is NULL, the return alue will be a pointer to the start of the complete request thaivitlee one
currently being wecuted for the clientlf req is not NULL, the function assumes that req is a pointer to a
request in the clierg’request bffer, and the return alue will be a pointer to the the start of the complete
request that follas req. If the complete request is notadable, the function returns NULL; pointers to
partial requests will ner be returned. If(and only if) readmore is TBE, PeekNrtRequest should try to
read an additional request from the client if one is not alreaihable in the client request bffer. If
PeekNeatRequest reads more data into the requafsehit should not mee a change thexasting data.

void SkipRequests(xReqPtr req, ClientPtr client, int numskipped)

The requests for the client up to and including the one specified by req will be skippeskipped must

be the number of requests being skippldrmal request processing will resume with the request that fol-
lows req. The caller must not we nodified the contents of the requesffer in ary way (e.g., by doing

byte svapping in place).

Additionally, two macros in 0s.h operate on the xReq pointer returned by Priélddpiest:

int ReqLen(xReqPtr req, ClientPtr client)
The \alue of RegLen is the request length in bytes of thengiReq.

otherReqVpePtr CastxReq(xReq *req, otherRgp&Ptr)

Porting Layer Definition -13- April 8, 1994

The \alue of CastxReq is the cgmsion of the gren request pointer to an otherReg€Ptr (which should
be a pointer to a protocol structure typ&nly those fields which come after the length field of otherReg-
Type may be accessed via the returned pointer

Thus the first tw fields of a request, regpe and data, can be accessed directly using the xReq * returned
by PeekNgtRequest. Theext field, the length, can be accessed with Regligealds bgond that can be
accessed with CastxRedhis comple&ity was necessary because of the reencoding of core protocol that
can happen due to the BigRequestgm@sion.

5. DDXLAYER

This section describes the inré between DIX and DDXWhile there may be an OS-dependenyeri
interface between DDX and theydical deice, that interdice is left to the DDX implementor and is not
specified here.

The DDX layer does most of itsonk through procedures that are pointed to bfedght structs As previ-
ously described, the belar of these resources is dgly determined by these procedure pointéfsst of
these routines are for graphic display on the screen or support functions tiéreoést are for user input
from input deices.

5.1. INPUT

In this document "“input"” refers to input from the ysach as mouse gyboard, and bar code readeis.
input devices are of seeral types: leyboard, pointing ddce, and mayothers. Thecore serer has support
for extension deices as described by the X Input Extension document; thedoésrused by thaxtension
are described eledere. Thecore deices are actually implemented a®tenllections of deices, the
mouse is a ButtonDce, a \aluatorDeice and a PtrFeedbackidee while the kyboard is a i€yDevice, a
FocusDevice and a KbdFeedbackiliee. Eachpart implements a portion of the functionality of theide.
This abstraction is hidden from weor core deices by DIX.

You, the DDX programmeere responsible for some of the routines in this sect@imers are DIX rou-
tines that you should call to do the things you need to do in these DDX rouR@eattention to which is
which.

5.1.1. InputDevice Data Structures

DIX keeps a global directory of viees in a central data structure called Inputlrffor each deice there is
a cevice structure called a DeeRec. DIXcan locate anDeviceRec through Inputinfoln addition, it
has a special pointer to identify the main pointingickeand a special pointer to identify the main
keyboard.

The DeviceRec (Xserer/include/input.h) is a dé&e-independent structure that contains the state of an
input device. ADevicePtr is simply a pointer to a BieeRec.

An xEvent describes arvent the serer reports to a clientDefined in Xproto.h, it is a huge struct of union
of structs that hze fields for all kinds of eents. All of the \ariants @erlap, so that the struct is actually
very small in memory

5.1.2. Poocessing Eents
The main DDX input integce is the follaing routine:

void ProcessinputEants()
You must write this routine to de#r input events from the userDIX calls it when input is pending (see
next section), and possiblywen when it is not. You should write it to geteents from each dece and
deliver the events to DIX. To deliver the events to DIX, DDX should call the folling routine:

Porting Layer Definition -14 - April 8, 1994

void DevicePtr>processinputProc(pEwnt, deice, count)

XEventPtr gents;

DevicelntPtr deice;

int count;
This is the "input proc" for the diee, a DIX procedureDIX will fill in this procedure pointer to one of its
own routines by the time Processinpudats() is called the first timeCall this input proc routine as man
times as needed to dedi as mary events as should be dedired. DIXwill buffer them up and send them
out as neededCount is set to the number ofeat records which makup one atomic deice e/ent and is
always 1 for the core deces (see the X Input Extension for descriptions efads which may use count >
1).

For example, your Processinputénts() routine might check the mouse and #yb&ard. Ifthe keyboard
had sgeral keystrokes queued up, it could just call theykoards processinputProc as matimes as

needed to flush its internal queue.

evant is an xEent struct you pass to the input prahen the input proc returns, it is finished with the
evant rec, and you can fill in mevalues and call the input procaag with it.

You should deliver the events in the same order that yheere generated.

For keyboard and pointing déces the xEent \ariant should bedyButtonPointer Fill in the following
fields in the xEent record:

type isone of the follving: KeyPress, €yRelease, ButtonPress,
ButtonRelease, or MotionNotify
detail forKeyPress or l€yRelease fields, this should be the
key number (not the ASCII code); otherwise unused
time isthe time that thevent happened (32-bits, in milliseconds, arbitrary origin)
rootX isthe x coordinate of cursor
rootY isthe y coordinate of cursor

The rest of the fields are filled in by DIX.

The time stamp is maintained by your code in the DDX |ay®f it is your responsibility to stamp all
events correctly

The x and y coordinates of the pointinyide and the time must be filled in for alleat types including
keyboard &ents.

The pointing deice must report alldtton press and releaseents. Inaddition, it should report a Motion-
Notify event every time it gets called if the pointing dee has mweed sSnce the last notify Intermediate
pointing deice moves ae stored in a special GetMotiongts luffer, because most client programs are
not interested in them.

There are quite a collection of sample implementations of this routine, one for each supparted de

5.1.3. elling DIX When Input is Pending

In the serer’s dspatch loop, DIX checks to see if there iy davice input pending whener WaitFor-
Something() returnslf the check says that input is pending, DIX calls the DDX routine ProcesslIn-
putEwvents().

This check for pending input must bery quick; a procedure call is toowloThe code that does the check
is a hardwired IF statement in DIX code that simply comparesafnes/pointed to by twpointers. Ifthe
values are dferent, then it assumes that input is pending and ProcesslemisBvis called by DIX.

You must pass pointers to DIX to tell it whatlues to compareThe following procedure is used to set
these pointers:

Porting Layer Definition -15- April 8, 1994

void SetlnputCheck(pl, p2)
long *p1, *p2;
You should call it sometime during initialization to indicate to DIX the correct locations to chfeek.

should pay special attention to the size of what Hetually point to, because the locations are assumed to
be longs.

These tw pointers are initialized by DIX to point to arbitrarglues that are ddrent. Inother words, if
you forget to call this routine during initialization, thexst thing that will happen is that Processin-
putEwents will be called when there are n@m®s to process.

pl and p2 might point at the head and tail of some shared memory dueatber use wuld be to hae
one point at a constant 0, with the other pointing at some mask containing 1s for eachvinpuhdehas
something pending.

The DDX layer of the sample senvcalls SetinputCheck() once when the egsvyrivate internal queue is
initialized. Itpasses pointers to the queslsdad and tail.See Xsergr/mi/mieg.c.

int TimeSinceLastinputEant()
DDX must time stamp all hardawe input gents. ButDIX sometimes needs to kwahe time and the OS
layer needs to kmothe time since the last hardve input gent in order for the screensa to work.
TimeSinceLastlinputBant() returns the this time in milliseconds.

5.1.4. Contwlling Input Devices

You must write four routines to daavious deice-specific things with theegboard and pointing déce.
They can hae any name you wish because you pass the procedure pointers to DIX routines.

int pinternalDeice->\aluator>GetMotionProc(pdéce, coords, start, stop, pScreen)

DevicelntPtr pdeice;

xTimecoord * coords;

unsigned long start;

unsigned long stop;

ScreenPtr pScreen;
You write this DDX routine to fill in coords with all the motiomeats that hae imes (32-bit count of mil-
liseconds) between time start and time stidshould return the number of motioveats returned.If there
iS no motion eents support, this routine should do nothing and return ZEe. maximum number of
coords to return is set in InitPointendeeStruct(), bela.

When the user drags the pointingide, the cursor position theoretically sweeps through an infinite num-
ber of points.Normally, a dient that is concerned with points other than the starting and ending points will
receve a pintermove e/ent only as often as the serngenerates them. (Me esents do not queue up;

each n& one replaces the last in the queud.3erer, if desired, can implement a scheme teeshese
intermediate wents in a motion bffer. A client application, lik a @int program, may then request that
these gents be deliered to it through the GetMotionProc routine.

void pinternalDeice->bell->BellProc(percent, pDiee, ctrl, unknavn)
int percent;
DevicelntPtr pDeice;
pointer ctrl;
int class;
You need to write this routine to ring the bell on tletboard. louds a number from 0 to 100, with 100
being the loudestClass is either BellFeedbackClass or KbdFeedbackClass (from Xl.h).

Porting Layer Definition -16 - April 8, 1994

void pinternalDeice->somedece->CtrIProc(deice, ctrl)
DevicePtr deice;
SomethingCtrl *ctrl;

You write two versions of this procedure, one for thethoard and one for the pointinguilee. DIX calls it
to inform DDX when a client has requested changes in the current settings for the partiocdar fee a
keyboard, this might be the repeat threshold and fatea pointing device, this might be a scalingdtor
(coarse or fine) for position reportin@ee input.h for the ctrl structures.

5.1.5. Inputlnitialization

Input initialization is a bit complicatedt all starts with Initinput(), a routine that you write to call AddIn-
putDevice() twice (once for pointing e@&e and once fordyboard.) Yu also vant to call Rgis-
terKeyboardDeice() and RgisterPointerDeice() on them.

When you Add the déces, a routine you supply for eactvide gets called to initialize themYour indi-
vidual initialize routines must call IniggboardDeiceStruct() or InitPointerDeceStruct(), depending
upon which it is.In other words, you indicate twice that theyboard is the &board and the pointer is the
pointer

void Initinput(agc, agv)
int agc;
char **amgyv;
Initinput is a DDX routine you must write to initialize the input subsystem in DDXaust call Addinput-
Device() for each déce that might generateents. Inaddition, you must gister the main &board and
pointing devices by calling RgisterPointerDeice() and RgisterkeyboardDeice().

DevicePtr AddinputDeice(deviceProc, autoStart)
DeviceProc deiceProc;
Bool autoStart;

AddInputDevice is a DIX routine you call to create avibe object. deviceProc is a DDX routine that is
called by DIX to do arious operationsAutoStart should be TBE for devices that need to be turned on at
initialization time with a special call, as opposed titimg for some client application to turn them on.
This routine returns NULL if sfitient memory cannot be allocated to install theicke

Note also thatx@ept for the maindéyboard and pointing déce, an &tension is needed to pride for a
client interbice to a déce.

void RegisterPointerDeice(device)
DevicePtr deice;

ReagisterPointerDeice is a DIX routine that your DDX code calls that mskhat deice the main pointing
device. Thisroutine is called once upon initialization and cannot be callashag

void RegisterkeyboardDeice(device)
DevicePtr deice;

RagisterkeyboardDeice males the gien device the main &yboard. Thigoutine is called once upon ini-
tialization and cannot be calledzag.

The following DIX procedures return the specifiedvidePtr They may or may not be useful to DDX
implementors.

DevicePtr LookupkeyboardDeice()

Porting Layer Definition -17 - April 8, 1994

LookupKeyboardDeice returns pointer for current maieyboard deice.

DevicePtr LookupPointerDace()
LookupPointerDeice returns pointer for current main pointing/ide.

A DeviceProc (the kind passed to Addinputfize()) in the follaving form:

Bool pInternalDgice->DericeProc(deice, action);
DevicelntPtr deice;
int action;

You must write a DeiceProc for each dce. device points to the dece record.action tells what action
to tale; it will be one ofthese defined constanfdefined in input.h):

. DEVICE_INIT - At DEVICE_INIT time, the deice should initialize itself by calling InitPointerDe-
viceStruct(), InitkeyboardDeiceStruct(), or a similar routine (see b&)aand "opening" the dece if
necessarylf you return a non-zero (i.e., = Succesalue from the DEVICE_INIT call, that giee
will be considered unailable. If either the maindyboard or main pointing dée cannot be initial-
ized, the DIX code will refuse to continue booting up.

. DEVICE_ON - If the DeiceProc is called with DEVICE_ON, then it is alled to start putting
evants into the client stream by calling through the ProcessinputProc invice.de

. DEVICE_OFF - If the DeiceProc is called with DEVICE_OF-Fo further eents from that deice
should be gien to the DIX layer The de&ice will appear to be dead to the user

. DEVICE_CLOSE - At DEVICE_CLOSE (terminate or reset) time, theéadeshould be totally
closed dwn.

void InitPointerDeviceStruct(deice, map, mapLength,

GetMotionEents, ControlProc, numMotionEmts)

DevicePtr deice;

CARDS8 *map;

int mapLength;

ValuatorMotionProcPtr ControlProc;

PtrCtrIProcPtr GetMotionEnts;

int numMotionEents;
InitPointerDeviceStruct is a DIX routine you call at DEVICE_INIT time to declare some operating
routines and data structures for a pointingce2 mapand mapLength are as described in the X
Windaw System protocol specificatiorControlProc and GetMotionEwts are DDX routines, see
above.

numMotionEents is for the motiontlifer-size for the GetMotionEents requestA typical length
for a motion liffer would be 100 eents. Asener that does not implement this capability should set
numMotionEents to zero.

void InitkeyboardDeiceStruct(deice, pkeySyms, pModifiers, Bell, ControlProc)
DevicePtr deice;

KeySymsPtr pleySyms;

CARDS8 *pModifiers;

BellProcPtr Bell;

KbdCtrIProcPtr ControlProc;

You call this DIX routine when adyboard deice is initialized and its déce procedure is called
with DEVICE_INIT. The formats of thedysyms and modifier maps are defined in
Xsener/include/input.h. Thedescribe the layout ofdys on the keyboards, and the glyphs associ-
ated with them.(See the net section for information on setting up the modifier map and éggyikn

Porting Layer Definition -18 - April 8, 1994

map.) ControlProand Bell are DDX routines, see aeo

5.1.6. Keyboard Mapping and Keycodes

When you send agiyboard @ent, you send a report that avg key has either been pressed or has been
released. Thenmust be a &code for eachdy that identifies the éy; the lkeycode-to-ley mapping can be
ary mapping you desire, because you specify the mappin