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ABSTRACT
While many application service providers have proposed using
thin-client computing to deliver computational services over the
Internet, little work has been done to evaluate the effectiveness of
thin-client computing in a wide-area network. To assess the po-
tential of thin-client computing in the context of future commodity
high-bandwidth Internet access, we have used a novel, non-invasive
slow-motion benchmarking technique to evaluate the performance
of several popular thin-client computing platforms in delivering
computational services cross-country over Internet2. Our results
show that using thin-client computing in a wide-area network en-
vironment can deliver acceptable performance over Internet2, even
when client and server are located thousands of miles apart on op-
posite ends of the country. However, performance varies widely
among thin-client platforms and not all platforms are suitable for
this environment. While many thin-client systems are touted as be-
ing bandwidth efficient, we show that network latency is often the
key factor in limiting wide-area thin-client performance. Further-
more, we show that the same techniques used to improve band-
width efficiency often result in worse overall performance in wide-
area networks. We characterize and analyze the different design
choices in the various thin-client platforms and explain which of
these choices should be selected for supporting wide-area comput-
ing services.

1. INTRODUCTION
Rapid improvements in network bandwidth, cost, and ubiquity
combined with the high total cost of ownership of PC desktop
computers have created a growing market for application service
providers (ASPs). Going beyond just web hosting, ASPs oper-
ate, maintain, and deliver customer data and applications from
professional-managed data centers, sparing their customers the
headache of buying and maintaining their own hardware and soft-
ware. The ASP market is projected to grow an order of magnitude
to $25 billion in worldwide revenue by 2004 [16]. To provide the
infrastructure to deliver easier-to-maintain computational services
anywhere on the Internet, a growing number of ASPs are embrac-
ing a thin-client computing model [5, 12, 26].

A thin-client computing system consists of a server and a client
that communicate over a network using a remote display protocol.
The protocol allows graphical displays to be virtualized and served
across a network to a client device, while application logic is exe-
cuted on the server. Using the remote display protocol, the client
transmits user input to the server, and the server returns screen up-
dates of the user interface of the applications from the server to the
client. Many of these remote display protocols can effectively web-
enable applications without application modification. Examples of
popular thin-client platforms include Citrix MetaFrame [6,20], Mi-
crosoft Terminal Services [9,21], AT&T Virtual Network Comput-
ing (VNC) [25] and Tarantella [29,32]. The remote server typically
runs a standard server operating system and is used for executing
all application logic. Because all application processing is done
on the server, the client only needs to be able to display and ma-
nipulate the user interface. The client can either be a specialized
hardware device or simply an application that runs on a low-end
personal computer.

While many ASPs have proposed using thin-client computing to
deliver computational services over the Internet, little work has
been done to evaluate the effectiveness of thin-client computing
in a wide-area network (WAN). Thin-client computing vendors of-
ten tout the bandwidth efficiency of their platforms, but as network
technologies improve and high-bandwidth Internet access becomes
a commodity, bandwidth efficiency alone may not be a good mea-
sure of wide-area thin-client performance. Existing ASPs have pri-
marily focused on supporting simple office-productivity tools. It
is unclear if the remote display approach used in thin-client com-
puting can effectively support the growing class of graphics and
multimedia-oriented applications. Because the importance of thin-
client computing will only continue to increase with the rapidly
growing ASP market, it is crucial to determine the effectiveness
of thin-client computing in WANs on the kinds of web-based and
multimedia applications that users are already using and will in-
creasingly be using in the future.

To assess the limits of using thin clients to provide wide-area ubiq-
uitous computing, we have characterized the design choices of un-
derlying remote display technologies and measured the impact of
these choices on the performance of thin-client computing plat-
forms in delivering computational services cross-country over In-
ternet2. For our study, we considered a diversity of design choices
as exhibited by six of the most popular thin-client platforms in use
today: Citrix MetaFrame, Microsoft Windows 2000 Terminal Ser-
vices, AT&T VNC, Tarantella, Sun Ray [28,31], and X [27]. These
platforms were chosen for their popularity, performance, and di-
verse design approaches. We focus on evaluating these thin-client



Platform Display
Protocol

Display Encoding Screen Updates Compression Max Display
Depth

Transport
Protocol

Citrix MetaFrame ICA Low-level graphics Server-push, lazy RLE 8-bit color ∗ TCP/IP
Microsoft Terminal
Services

RDP Low-level graphics Server-push, lazy RLE 8-bit color TCP/IP

Tarantella AIP Low-level graphics Server-push, eager or lazy
depending on bandwidth, load

Adaptively enabled,
RLE and LZW at low
bandwidths

8-bit color TCP/IP

AT&T VNC VNC 2D draw primitives Client-pull, lazy updates between
client requests discarded

Hextile (2D RLE) 24-bit color TCP/IP

Sun Ray Sun Ray 2D draw primitives Server-push, eager None 24-bit color UDP/IP
X11R6 X High-level graphics Server-push, eager None 24-bit color TCP/IP

∗ Citrix MetaFrame XP now offers the option of 24-bit color depth, but this was not available at the time of our experiments.

Table 1: Thin-client computing platforms

platforms with respect to their performance on web and multime-
dia applications, which are increasingly populating the computing
desktop. We conducted our experiments using Internet2 because
it provides the kind of high-bandwidth network access that we ex-
pect will become increasingly cost-effective and accessible in fu-
ture WAN environments.

We identified and isolated the impact of WAN environments by
quantifying and comparing the performance of thin-client systems
in both WAN and local-area network (LAN) environments. Be-
cause many thin-client systems are proprietary and closed-source,
we employed a slow-motion benchmark [38] technique for obtain-
ing our results, addressing some of the fundamental difficulties in
previous studies of thin-client performance. Our results show that
thin-client computing in a WAN environment can deliver accept-
able performance over Internet2, even when client and server are
located thousands of miles apart on opposite ends of the country.
However, performance varies widely and not all approaches are
suitable for this environment. We show that commonly used per-
formance optimizations that work well for reducing the network
bandwidth requirements of thin-client systems can degrade overall
system performance due to latencies seen in WAN environments.
Our results show that a simple pixel-based remote display approach
can deliver superior performance compared to more complex thin-
client systems that are currently used. We analyze the differences
in the underlying mechanisms of various thin-client platforms and
explain their impact on overall performance.

This paper is organized as follows. Section 2 details the experi-
mental testbed and methodology we used for our study. Section
3 describes our measurements and performance results. Section 4
discusses related work. Finally, we present some concluding re-
marks and directions for future work.

2. EXPERIMENTAL DESIGN
The goal of our research is to compare thin-client systems to as-
sess their basic display performance and their feasibility in WAN
environments. To explore a range of different design approaches,
we considered six popular thin-client platforms: Citrix MetaFrame
1.8 for Windows 2000, Windows 2000 Terminal Services, Taran-
tella Enterprise Express II for Linux, AT&T VNC v3.3.2 for Linux,
Sun Ray I, and X11R6 on Linux. In this paper, we also refer to
these platforms by their remote display protocols, which are Citrix
ICA (Independent Computing Architecture), Microsoft RDP (Re-
mote Desktop Protocol), Tarantella AIP (Adaptive Internet Proto-
col), VNC (Virtual Network Computing), Sun Ray, and X, respec-
tively. As summarized in Table 1, these platforms span a range
of differences in the encoding of display primitives, policies for

updating the client display, algorithms for compressing screen up-
dates, supported display color depth, and transport protocol used.
To evaluate their performance, we designed an experimental Inter-
net2 testbed and various experiments to exercise each of the thin-
client platforms on single-user web-based and multimedia-oriented
workloads. Section 2.1 introduces the non-invasive slow-motion
measurement methodology we used to evaluate thin-client perfor-
mance. Section 2.2 describes the experimental testbed we used.
Section 2.3 discusses the mix of micro-benchmarks and applica-
tion benchmarks used in our experiments.

2.1 Measurement Methodology
Because thin-client systems are designed and used very differently
from traditional desktop systems, quantifying and measuring their
performance effectively can be difficult. In traditional desktop sys-
tems, an application typically executes and displays its output on
the same machine. In thin-client systems, an application executes
on a server machine and sends its output over a network to be dis-
played on a client machine. The output display on the client may
be completely decoupled from the application processing on the
server such that an application runs as fast as possible on the server
without regard to whether or not application output has been dis-
played on the client. Furthermore, display updates may be merged
or even discarded in some systems to conserve network bandwidth.
Since the server processes all application logic in thin-client sys-
tems, standard application benchmarks effectively measure only
server performance and do not accurately reflect user perceived per-
formance at the client. The problem is exacerbated by the fact that
many thin-client systems, including those from Citrix, Microsoft,
and Tarantella, are proprietary and closed-source, making it diffi-
cult to instrument them to obtain accurate, repeatable performance
results.

To address these problems, we employed slow-motion benchmark-
ing to evaluate thin client performance. This method employs two
techniques to obtain accurate measurements: monitoring client-
side network activity and using slow-motion versions of application
benchmarks. We give a brief overview of this technique below. For
a more in depth discussion, see [38]. We then extended this tech-
nique to compare relative performance across LAN and Internet2
network environments.

We monitored client-side network activity to obtain a measure of
user-perceived performance based on latency. Since we could not
directly peer into the black-box thin-client systems, our primary
measurement technique was to use a packet monitor to capture re-
sulting network traffic on the client-side. For example, to mea-
sure the latency of an operation from user input to client output,



we could use the packet monitor to determine when the user input
is first sent from client to server and when the screen update fin-
ished sending from server to client. The difference between these
times could be used as a measure of latency. To accurately mea-
sure user-perceived thin-client performance, measurements must
be performed at the client-side; server-side measurements of ap-
plication performance are insufficient. For instance, a video ap-
plication might deliver smooth playback on the server-side only to
deliver poor video quality on the client-side due to network con-
gestion. It must be noted that this measurement technique does
not include the time from when the client receives a screen up-
date from the network to the time the actual image is drawn to the
screen. The measurement also does not include the time from when
client input is made and the input is sent. Using VNC, one of the
few open-source thin-client systems, we have verified that mea-
surements using packet monitoring of slow-motion benchmarks are
within five percent of internal client and server source code instru-
mentation [38]. We therefore assumed the client input and display
processing times were negligible in our experiments.

We employed slow-motion versions of application benchmarks to
provide a measure of user-perceived performance based on the vi-
sual quality of display updates. While monitoring network activ-
ity provides a measure of the latency of display updates, it does
not provide a sufficient measure of the overall quality of the per-
formance. To address this problem, we altered the benchmark
applications used by introducing delays between the separate vi-
sual components of each benchmark, such as web pages or video
frames, so that the display update for each component is fully com-
pleted on the client before the server begins processing the next
display update. We monitored network traffic to make sure the de-
lays were long enough to provide a clearly demarcated period be-
tween display updates where client-server communication drops to
the idle level for that platform. We then process the results on a per-
component basis to obtain the latency and data transferred for each
visual component, and obtain overall results by taking the sum of
these results. Section 2.3 describes in further detail how web and
video application benchmarks were delayed for our experiments.

We compare relative performance across LAN and Internet2 net-
work environments to isolate the impact of WAN environments on
thin client performance, which can be quantified as the difference in
performance between the two environments. Furthermore, this rel-
ative performance measure allows us to factor out effects of client
processing time, which we cannot directly measure because of the
proprietary nature of most of the thin-client systems. We assume
that client processing time does not change in any significant way
as a result of different network environments and we verified this
assumption in the few open-source platforms tested.

Our combined measurement techniques provide three key benefits.
First, the techniques ensure that display events reliably complete
on the client so that packet captures from network monitoring pro-
vide an accurate measure of system performance. Ensuring that all
clients display all visual components in the same sequence provides
a common foundation for making comparisons among thin-client
systems. Second, the techniques do not require any invasive mod-
ification of thin-client systems. As a result, we are able obtain our
results without imposing any additional performance overhead on
the systems measured. More importantly, the techniques make it
possible for us to measure popular but proprietary thin-client sys-
tems, such as those from Citrix and Microsoft. Third, by comparing
performance in LAN and WAN environments, we are able to isolate
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Figure 1: Experimental testbed

and analyze the impact of WAN effects on thin client performance.

2.2 Experimental Testbed
Figure 1 shows our Internet2 testbed. The testbed consisted of two
pairs of thin client/server systems, a packet monitor machine, and
a web server used for testing web applications. The features of
each system are summarized in Table 2. To ensure a level play-
ing field, where possible we used the same hardware for all of our
tests; the only change we made to our configuration was for test-
ing the Sun Ray platform, which runs only on Sun machines. The
machines were logically grouped into West and East sites separated
by a network, with the thin servers located at the West site and the
remaining three machines located at the East site. For the Internet2
experiments, we located the West and East sites on opposite coasts
of the United States at Stanford University and Columbia Univer-
sity, respectively. We selected sites that were geographically far
apart as a measure of the limits of using thin-client computing in
wide-area environments.

The East site consisted of a PC thin client, a Sun Ray thin client, a
packet monitor machine, and a benchmark server. The packet mon-
itor machine was dedicated to running Etherpeek 4 [13], a software
packet monitor that timestamps and records all packet traffic visi-
ble by the machine. Except for the Sun Ray thin client, all other
East site machines were Micron Client Pro PCs, each with a 450
Mhz Pentium II CPU, 128 MB RAM, and 14.6 GB disk. The Sun
Ray client was considerably less powerful than the PC client, with
only a 100 Mhz uSPARC CPU and 8 MB of RAM. The West site
consisted of a PC server and a Sun server. The PC server was a
Hi-Tech USA PC with dual 500 Mhz Pentium III CPUs, 160 MB
RAM, and 22 GB disk. The Sun server was an Ultra-10 Creator 3D
with a 333 Mhz UltraSPARC IIi, 384 MB RAM, and 9 GB hard
disk. All machines had 10/100BaseT NICs. As discussed in Sec-
tion 3.2, the slower Sun client and server hardware did not affect
the lessons derived from our experiments.

For the Internet2 experiments, the East and West sites were con-
nected by the Abilene Internet 2 backbone, an OC-48 operating at
2.5 Gbps, typically very lightly loaded with line utilization usually
below 10% on any given link of the backbone [1]. A total of 14
hops separate the machines at the East site from those at the West
site. The East site is three hops away from a network provider
that connects to the Abilene Internet2 backbone via an OC-12 (622
Mbps), with all links being OC-3 (155 Mbps) or greater. The West
site is three hops away from a GigaPOP that connects to the Abi-
lene Internet2 backbone via an OC-12, with all links being OC-3
(155 Mbps) or greater. The machines at each site are connected to
a 100Base-T hub which is uplinked to the respective core networks
via 100Base-T full-duplex switches. Since the minimum available
bandwidth along any edge of the network was 100 Mbps, the the-
oretical maximum bandwidth of our connection was 100 Mbps.



Role / Model Hardware OS / Window System Software
PC Thin Client 450 MHz Intel PII MS Win 2000 Professional Citrix ICA Win32 Client
Micron Client Pro 128 MB RAM Caldera OpenLinux 2.4, MS RDP5 Client
(East site) 14.6 GB Disk XFree86 3.3.6, VNC Win32 3.3.3r7 Client

10/100BaseT NIC KDE 1.1.2 Tarantella Win32 Client
Netscape Communicator 4.72

Sun Thin Client 100 MHz Sun uSPARC IIep Sun Ray OS N/A
Sun Ray I 8 MB RAM
(East site) 10/100BaseT NIC
Packet Monitor 450 MHz Intel PII MS Win 2000 Professional WildPackets’ Etherpeek 4
Micron Client Pro 128 MB RAM
(East site) 14.6 GB Disk

10/100BaseT NIC
Benchmark Server 450 MHz Intel PII MS Win NT 4.0 Server SP6a Ziff-Davis i-Bench 1.5
Micron Client Pro 128 MB RAM MS Internet Information Server
(East site) 14.6 GB Disk

10/100BaseT NIC
PC Thin Server 2 500 MHz Intel PIII MS Win 2000 Advanced Server Citrix MetaFrame 1.8
Hi-Tech USA 160 MB RAM Caldera OpenLinux 2.4, MS Win 2000 Terminal Services
(West site) 22 GB Disk XFree86 3.3.6, AT&T VNC 3.3.3r7 for Win32

10/100BaseT NIC KDE 1.1.2 Tarantella Express
AT&T VNC 3.3.3r2 for Linux
Netscape Communicator 4.72

Sun Thin Server 333 MHz UltraSPARC IIi Sun Solaris 7 Generic 106541-08 Sun Ray Server 1.2 10.d Beta
Sun Ultra-10 Creator 3D 384 MB RAM OpenWindows 3.6.1, CDE 1.3.5 Netscape Communicator 4.72
(West site) 9 GB Disk

2 10/100BaseT NICs
Network Simulator 450 MHz Intel PII MS Win NT 4.0 Server SP6a Shunra Software The Cloud 1.1
Micron Client Pro 128 MB RAM
(simulator testbed) 14.6 GB Disk

2 10/100BaseT NICs

Table 2: Testbed machine configurations

Based on our own measurements and a month of sampled data ob-
tained by the National Laboratory for Applied Network Research
(NLANR), ping results have shown the mean round trip time (RTT)
latency to be approximately 66.35 ms with a standard deviation of
4.52 ms and a minimum RTT of 64 ms [2, 3]. The measured per-
centage packet loss over this Internet2 connection was less than
0.05%.

Because all of the thin-client systems tested, except for Sun Ray,
used TCP as the underlying network transport protocol, we were
careful to consider the impact of TCP window sizing on perfor-
mance. TCP windows should be adjusted to at least the bandwidth
delay product size to maximize bandwidth utilization [19]. Oth-
erwise, the effective bandwidth available can be severely limited
because the largest amount of data that can be in transit without
acknowledgement is the TCP window size being used. When at the
default window size of 16 KB under Windows [11] and at our av-
erage RTT latency of 66 ms, there is a maximum theoretical band-
width availability of only 1.9 Mbps. With an RTT latency of 66 ms,
the optimal TCP window size is 825 KB in order to take full advan-
tage of the 100 Mbps Internet2 network bandwidth capacity avail-
able. Because of this, we decided to test with the operating system
defaults as well as a high network latency optimized large TCP
window setting. To make things simple and ensure that the window
size was large enough even if the network latency increased, a large
TCP window size of 1 MB was used. After making this optimiza-
tion, iperf [33] was used to determine that the actual bandwidth
available to us over Internet2 was approximately 45 Mbps. For all
of the experiments on TCP-based thin-client systems, we also en-
sured that the TCP sliding window reached the TCP window size
before running the application benchmarks.

To verify our results in a more controlled network environment and

to provide a basis for comparison, we also constructed a local iso-
lated testbed for comparison purposes, also shown in Figure 1. The
local testbed structure was similar to the Internet2 testbed, except
that a network simulator was used instead of Internet2 for the net-
work connection between the East and West site. The network
simulator used was a Micron Client Pro PC with two 100BaseT
NICs running The Cloud [7], a network simulator that has the abil-
ity to adjust the bandwidth, latency, and packet loss rate between
the East and West sites. We used the local testbed in two ways.
First, we used the local testbed network as a 100 Mbps low latency
LAN testbed environment to allow us to compare thin client per-
formance over Internet2 versus a LAN environment. Second, we
adjusted the local testbed network characteristics to match the mea-
sured characteristics of the Internet2 testbed so that we could verify
our Internet2 testbed measurements in a more controlled network
environment. All platforms were evaluated in both Internet2 and
the simulated Internet2 testbed except for Sun Ray, which was only
evaluated in the simulated Internet2 testbed due to the difficulty of
configuring its dynamic authentication over Internet2. There was
no significant difference in our measurements in this simulated In-
ternet2 testbed compared to our measurements during periods of
light network load over Internet2. We therefore assume that Sun
Ray would also have no significant performance difference between
the two testing environments. We also determined that the amount
of packet loss observed over Internet2 was low enough to be con-
sidered negligible in our experiments by comparing measurements
with both 0% loss and 1% loss on our simulated Internet2 testbed.
In all tests performed, there was no significant difference between
the two cases.

To minimize application environment differences, we used com-
mon thin-client configuration options and common applications
across all platforms whenever possible. Where it was not possi-



ble to configure all the platforms in the same way, we generally
used default settings for the platforms in question. In particular,
unless otherwise stated, the video resolution of the client was set
to 1024x768 resolution with 8-bit color, compression and mem-
ory caching were left on for those platforms that used it, and disk
caching was turned off by default in those platforms that supported
it. A study on the impact of caching on thin-client systems in WAN
environments is ongoing but is beyond the scope of this paper. For
each thin-client system, we used the server operating system which
delivered the best performance for the given system; Terminal Ser-
vices only runs on Windows, Citrix ran best on Windows, Taran-
tella, VNC, and X ran best on UNIX/Linux, and Sun Ray only runs
on Solaris.

2.3 Application Benchmarks
To measure the performance of the thin-client platforms, we used
three application benchmarks: a latency benchmark for measur-
ing response time, a web benchmark for measuring web browsing
performance, and a video benchmark for measuring video play-
back performance. The latency benchmark was used as a micro-
benchmark to measure simple operations while the web and video
benchmarks were used to provide a more realistic measure of real
application performance. We describe each of these benchmarks in
further detail below. In particular, the web and video benchmarks
were used with the slow-motion benchmarking technique described
in Section 2.1 to measure thin client performance effectively.

2.3.1 Latency Benchmark
The latency benchmark used was a small Java applet that permitted
us to run five separate tests:

• Letter: a character typing operation that took a single
keystroke as input and responded by displaying a 12-point
capital letter ’A’ in sans serif font.

• Scroll: a text scrolling operation that involved scrolling down
a page containing 450 words in 58 lines in 12-point sans serif
font, with 14 of the lines displayed in a 320x240 pixel area
at any one time.

• Fill: a screen filling operation in which the system would
respond to a mouse click by filling a 320x240 pixel area with
the color red.

• Red Bitmap: a bitmap download operation in which the sys-
tem would respond to a mouse click by displaying a 1.78 KB
JPEG red bitmap at 320x240 pixels in size.

• Image: an image download operation in which the system
would respond to a mouse click by displaying a 15.5 KB
JPEG image at 320x240 pixels in size.

For our experiments, we measured the latency of each test from
the time of user input until the time that the client receives the last
screen update from the server. This time is measured using packet
trace data collected by the packet monitor. The time is calculated
as the difference between the timestamp of the first client-to-server
packet and the timestamp of the last server-to-client packet for the
respective test.

2.3.2 Web Benchmark
The web benchmark we used was based on the Web Text Page Load
test from the Ziff-Davis i-Bench benchmark suite [14]. The orig-
inal i-Bench web benchmark is a JavaScript-controlled load of a

sequence of 54 web pages from the web benchmark server. Nor-
mally, as each page downloads, a small script contained in each
page starts off the subsequent download. The pages contain both
text and bitmap graphics, with some pages containing more text
while others contain more graphics. The JavaScript cycles through
the page loads twice, resulting in a total of 108 web pages being
downloaded during this test. When the benchmark is run from a
thin client, the thin server would execute the JavaScript that se-
quentially requests the test pages from the i-Bench server and relay
the display information to the thin client. For the web benchmark
used in our tests, we modified the original i-Bench benchmark for
slow-motion benchmarking by introducing delays of several sec-
onds between pages using the JavaScript, sufficient in each case to
ensure that the thin client received and displayed each page com-
pletely and there was no temporal overlap in transferring the data
belonging to two consecutive pages. We used the packet moni-
tor to record the packet traffic for each page, and then used the
timestamps of the first and last packet associated with each page
to determine the download time for each page. We used Netscape
Navigator 4.72 to execute the web benchmark, as it is available on
all the platforms in question. The browser’s memory cache and disk
cache were enabled but cleared before each test run. In all cases,
the Netscape browser window was 1024x768 in size, so the region
being updated was the same on each system.

2.3.3 Video Benchmark
The video benchmark used processes and displays an MPEG1
video file containing a mix of news and entertainment program-
ming. The video is a 34.75 second clip that consists of 834 352x240
pixel frames with an ideal frame rate of 24 frames/sec. The to-
tal size of the video file is 5.11 MB. The thin server executed the
video playback program to decode the MPEG1 video then relayed
the resulting display to the thin client. In systems which have a
lazy screen update mechanism, acting as frame buffer scrapers,
frames that are drawn to the virtual framebuffer on the server be-
tween screen update requests are simply not relayed to the client.
In systems which have an eager update mechanism where the dis-
play updates are encoded and sent at the time the server window
system command occurs, the video application measures the time
differential between the time the frame update was issued and com-
pleted. If the time differential is too great, the application then
drops the intermediate frames to compensate. Because of this be-
havior, we measured video performance using slow-motion bench-
marking by monitoring resulting packet traffic at two playback
rates, 1 frames/second (fps) and 24 fps. Although no user would
want to play video at 1 fps, we took the measurement at that frame
rate to ensure all data packet from the thin server to the client were
recorded in order to establish the reference data size transferred
from the thin server to the client that corresponds to a ”perfect”
playback. To measure the normal 24 fps playback performance
and video quality, we monitored the packet traffic delivered to the
thin client at the normal playback rate and compared the total data
transferred to the reference data size. This ratio multiplied by 24
fps would yield the real effective frame rate of the playback [38].
For the video benchmark, we used two different players capa-
ble of playing MPEG1 files. We used Microsoft Windows Media
Player version 6.4.09.1109 for the Windows-based thin clients and
MpegTV version 1.1 for the Unix-based thin clients. Both players
were used with non-video components minimized so that the ap-
pearance of the video application was similar across all platforms.

3. EXPERIMENTAL RESULTS
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We ran the three benchmarks on each of the six thin-client plat-
forms and measured their resulting performance in both the Inter-
net2 testbed and the local LAN testbed environments. The results
reported here for the local testbed were with the network simu-
lator configured to represent a 100BaseT LAN network environ-
ment. Results are shown both in terms of the amount of data trans-
ferred and the respective latencies to indicate both the bandwidth
efficiency of the thin-client systems as well overall user-perceived
performance. For thin-client systems based on TCP/IP, we report
results over Internet2 for both the default TCP window sizes and the
large 1 MB window sizes used. Section 3.1 presents an overview
of the measurements obtained and provides some metrics of perfor-
mance for each application benchmark. These measurements pro-
vide the first quantitative performance comparisons of thin-client
systems in WAN environments. Section 3.2 discusses the impli-
cations for how thin-client systems should be designed for WAN
environments.

3.1 Measurements
Figures 2 to 7 show the results of running the latency benchmark
on each of the six thin-client systems. The figures refer to the thin-
client systems based on their remote display protocols. Figure 2
shows the amount of data transferred for each operation on each
thin-client system over Internet2. The data transferred for the LAN
and Internet2 with large TCP window sizes was similar for almost
all platforms and is not shown due to space constraints. Tarantella
AIP was an exception and is discussed further in Section 3.2.4. Fig-
ures 3 to 7 show the latency of the letter, scroll, fill, red bitmap, and
image operations on each system, respectively. Generally, for sim-
ple tasks such as typing, cursor motion, or mouse selection, system
response should be less than the 50-150 ms threshold of human per-
ception to keep users from noticing any delay [30]. Figures 3 to 7
show that several of the systems performed better than the 150 ms
threshold for many of the operations. Sun Ray stands out as having
less than 100 ms latency for both LAN and Internet2 environments
for almost all operations. Only the image operation took a little
longer than 150 ms, and the 150 ms threshold used for simple tasks
arguably does not apply for such a complex operation.

Figures 8 and 9 show the results of running the web benchmark
on each of the six thin-client systems. Figure 8 shows the average
amount of data transferred per web page over a LAN, Internet2, and
Internet2 with 1 MB TCP window sizes. The amount of data trans-
ferred for each platform was approximately the same in each of the
network conditions tested. Tarantella AIP transferred slightly less
data over Internet2 compared to the LAN. However, the difference
was less than ten percent and is attributable to the adaptive com-
pression capabilities of the platform, as discussed in Section 3.2.4.
Figure 9 shows the average latency per web page. Usability stud-
ies have shown that web pages should take less than one second
to download for the user to experience an uninterrupted browsing
process [23]. Our results show that while VNC achieved the best
Internet2 web performance, most of the platforms performed well
over Internet2, with each web page taking less than a second on av-
erage to download and display. Only X showed poor performance
over Internet2, taking over six seconds on average to display each
web page.

Figures 10 to 12 show the results of running the video benchmark
on each of the six thin-client systems over a LAN, Internet2, and In-
ternet2 with 1 MB TCP window sizes. Figure 10 shows the amount
of data transferred during normal video playback at 24 fps. Un-
like the latency and web benchmark results, there are substantial
differences in the amount of data each platform transferred among
the different network conditions tested. Figure 10 also shows the
amount of data transferred during video playback when the play-
back rate was set to 1 fps. At 1 fps, all of the video frames were
rendered completely on the client and the data transferred for each
platform was similar over LAN, Internet2, and Internet2 with 1 MB
TCP windows. Figure 11 shows the video playback time on each
system. Except for X, there was relatively little variation in play-
back time across different network environments. Figures 10 and
11 taken together indicate that when the thin-client systems cannot
deliver the video at the desired playback rate, most of them simply
discard data rather than slowing down the video. Figure 12 shows
the quality of video delivered on each thin-client system, calculated
as described in Section 2.3.3 by comparing the measured results at
24 fps versus the slowed down playback at 1 fps. Unlike the web



0

50

100

150

200

250

300

350

400

X ICA RDP AIP VNC SunRay

Platform

� ;
< ;
A�
�D

Local Internet2 E'F,G H)I.J�K1LNM O P�Q,R'S

Figure 8: Web Data Transfer

6.
42

6.
55

0

0.2

0.4

0.6

0.8

1

1.2

X ICA RDP AIP VNC SunRay

Platform

� �
� �
��
	
 �
�

Local Internet2 
���� ������������� � �! �"

Figure 9: Web Latency

benchmark in which most of the thin-client systems delivered rea-
sonable performance, Figure 12 shows that most of the thin-client
systems performed poorly on the video benchmark over both LAN
and Internet2 environments. Only Sun Ray’s performance was rea-
sonable over Internet2, delivering roughly 70% video quality. The
video quality achieved on all of the other platforms was below 35%
and generally not usable.

For most of the TCP-based thin-client platforms, there was not a
significant performance difference when running the benchmarks
over Internet2 with default TCP window sizes versus the 1 MB
TCP window sizes. Figures 9 and 12 show that Tarantella AIP and
VNC performed better with the larger TCP window sizes on the
web and video benchmarks, respectively. The more pronounced
performance difference occurred with the video benchmark. The
use of larger TCP window sizes made a bigger difference there
due to the higher data bandwidth requirements of video. In some
cases, using larger window sizes resulted in slightly higher over-
head. When using increased window sizes, RFC1323 options must
be used which increases the sequence number field from 2 bytes
to 4 bytes per packet and adds an additional window scaling field.
These additional fields may add some overhead to the processing of
each packet, the effect of which is exaggerated when the payload of
the packet is small. These additional fields also resulted in slightly
more data being transferred when using large window sizes, but the
difference was only a few percent in all cases.

3.2 Interpretation of Results
The measurements presented in Section 3.1 show that using thin-
client computing in a WAN environment can deliver acceptable
performance over Internet2, even when client and server are lo-
cated thousands of miles apart on opposite ends of the country. In
particular, Sun Ray delivered excellent performance on all of the
application benchmarks measured. However, performance varies
widely among thin-client platforms and not all platforms are suit-
able for this environment. Due to space constraints, it is not pos-
sible to describe all results and their implications in detail in this
paper. However, we discuss five principles that should serve as
guidelines in designing thin-client systems for supporting wide-
area computing services: optimize latency over bandwidth, par-
tition client/server functionality to minimize synchronization, use
simpler display primitives for speed, compress display updates, and
push display updates.

Our results are based on measurements that do not account for the
impact of loss and congestion found in commodity WAN environ-
ments. We have done preliminary testing in the simulated Internet2
testbed with a 10% random packet loss, which results in low link
utilization [17]. These tests suggest that the principles discussed
here are likely to continue to hold true under loss and congestion,
but further study is required and is the beyond the scope of this

paper.

3.2.1 Optimize Latency vs Bandwidth
Although thin-client computing vendors often tout the bandwidth
efficiency of their platforms, our measurements show that the band-
width efficiency of a thin-client system is not a good predictor of
performance over Internet2. Figures 2, 8, and 10 show that Citrix
ICA and Microsoft RDP usually transferred less data overall for
each benchmark compared to the other systems while Sun Ray typ-
ically transferred the most amount of data overall for each bench-
mark. However, in terms of user-perceived performance, our mea-
surements show that overall Sun Ray significantly outperformed
both ICA and RDP over Internet2 for both the latency and video
benchmarks and was comparable for the web benchmark. For the
latency benchmark, Figures 3 to 7 show that ICA and RDP have
response times that balloon to over 400 ms over Internet2 while
Sun Ray response times remain near 150 ms or less. For the video
benchmark, Figure 12 shows that Sun Ray delivered video quality
that was more than four times better than either ICA or RDP. For
the web benchmark, the web browsing latency for Sun Ray was
comparable to ICA and better than RDP despite sending almost an
order of magnitude more data. Furthermore, while ICA and RDP
sent the least amount of data per page, 30 KB and 41 KB respec-
tively, VNC had the lowest latency over Internet2 with an average
page latency of 410 ms, 50 percent faster than ICA and twice as
fast as RDP.

Our measurements show that bandwidth availability in LAN or
Internet2 environments was not the main performance limitation
for both the latency and web benchmarks, assuming appropriately
sized TCP windows. For the latency benchmark, the most band-
width consumed for any of the operations was 11 Mbps for the
image operation on Sun Ray. For the web benchmark, no platform
consumed more than 5 Mbps on average. Only in the video bench-
mark did one of the platforms, Sun Ray, approach the limits of
bandwidth available, consuming roughly 33 Mbps. However, de-
spite using the most bandwidth for the video benchmark, Sun Ray
delivered by far the best video performance over Internet2.

Instead of network bandwidth being the primary bottleneck, our
measurements comparing thin client performance over Internet2
versus the LAN show that network latency had a significant impact
on thin client performance. For the latency benchmark, Figures 3
to 7 show that the latency of operations over Internet2 for almost
all of the thin-client systems were roughly 65 ms or more longer
than the results for the same operation over the LAN testbed. AIP
was an exception to this which we discuss further in Section 3.2.4.
The reason for the added latency is because each operation requires
the client to send input to the server and the server to reply with the
display update, which entails at least one round trip across the net-
work. Since the RTT for Internet2 is roughly 65 ms longer than
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the LAN, it should be expected that the operations would take 65
ms longer over Internet2 versus the LAN. What was not expected
is that only Sun Ray and VNC took no more than one RTT longer
for each operation over Internet2 versus the LAN. All of the other
systems incurred more than one RTT of additional latency over In-
ternet2 versus the LAN for some of the operations. This implies
that X, ICA, RDP, and AIP in some cases required multiple round
trip times to complete a simple operation, making them less tolerant
of the increased network latencies found in WAN environments.

For the web benchmark, our measurements also show the impact
of network latency on thin-client performance. Figure 9 shows
that the average per web page download latency over Internet2 was
roughly 65 ms or more longer than the same latency over a LAN
for a given platform. In our Internet2 testbed shown in Figure 1, the
thin-client server was located across the Internet2 network from the
web server. Since the thin-client server is local to the web server
in the LAN, we can expect an extra Internet2 RTT delay in down-
loading a web page over Internet2 versus the LAN because of extra
delay between getting the container HTML page to the thin-client
server and the subsequent retrieval of the images. In addition, the
Netscape status widgets also induce an additional Internet2 RTT
over Internet2. Since the web browser caches the web pages, the
second run through the 54 web pages does not cause the browser to
re-request the web pages from the web server. As a result, there is at
best a two RTT additional delay for the first 54 pages only, or an av-
erage of one RTT additional delay per page. Only Sun Ray, VNC,
and ICA incurred this minimum increased delay for the Internet2
versus LAN web benchmark results. While these three platforms
performed the best over Internet2, the amount of data transferred
for these systems varied from the smallest to the largest amount of
data transfer for all of the platforms, showing no correlation with
bandwidth consumption.

Our results demonstrate the importance of designing wide-area
thin-client systems with a focus on tolerating network latency as
opposed to just minimizing network bandwidth. As network tech-
nologies improve and high-bandwidth Internet access becomes a
commodity, the fundamental physical limits of propagation delay
lead us to believe that the ability of thin-client systems to tolerate
latency will be an increasingly dominant factor in determining their
performance.

3.2.2 Partition Client/Server to Minimize Synchro-
nization

The design of a thin-client system requires that the functionality
of the system be partitioned in some manner between the client
and the server. An important partitioning issue is to what extent is
the client’s graphical user interface functionality supported on the
client versus the server. For instance, Sun Ray and VNC do not
support any windowing functions on the client but instead maintain

all thin-client window system state at the server. On the other hand,
X maintains significant window system state at the client to allow
the client to locally manage window positioning, colormap infor-
mation, font libraries, etc. X stands apart from the other thin-client
systems in the degree in which it uses local client window system
state, which also makes the client-side of an X system more heavy-
weight than those of other thin-client systems. Compared with Sun
Ray and VNC, the partitioning of functionality between client and
server in X potentially allows X to perform more operations locally
at the client, but may require more coordination between the client
and server for display updates sent from the server.

While the X approach performs quite well over a LAN, overall it
performs far worse over Internet2 than all of the other thin-client
systems. For the latency benchmark, Figures 3 to 7 show that X
incurred two to three Internet2 RTT of additional latency over In-
ternet2 versus a LAN for all operations except the letter operation.
This is in stark contrast with the other platforms which for many of
the operations only suffered the minimum of one RTT of additional
latency over Internet2 versus a LAN. Given the Internet2 RTT of
66 ms, X has over 130 ms of additional latency for operations over
Internet2, resulting in slower response time that is very noticeable
to the user. For the web benchmark, Figure 9 shows that X pro-
vides the best performance over a LAN, but the absolute worst per-
formance over Internet2. X on average took well over 6 seconds
per web page over Internet2. For the video benchmark, Figure 12
shows again that X provides the best video quality over a LAN but
only 11% video quality over Internet2, the worst video quality of
all the platforms assuming large TCP windows. Our results suggest
that this partitioning of client/server display functionality in X re-
quires a higher degree of synchronous coordination between client
and server than systems which do not employ as much local client
window system functionality. The better performance results with
thin-client systems such as Sun Ray surprisingly suggest that mini-
mizing the amount of local client window system functionality can
result in better overall performance in WAN environments.

The video benchmark perhaps most clearly shows the problems that
result from synchronization of the client and server with the X pro-
tocol. In comparing the amount of data X transferred over Internet2
versus the LAN as shown in Figure 10, we can see that the primary
problem is that most of the video data does not get sent to the client.
The X display command does not complete until the client actually
receives the video frame from the server and returns an acknowl-
edgement, incurring a cross-country round trip delay for each video
frame displayed. Because the application realizes that it cannot dis-
play the next video frame on time, it skips ahead in the video stream
until it finds a video frame that can be displayed on time. The inter-
mediate video frames are dropped and not displayed, resulting in
degraded video quality, effectively showing only one out of every
10 frames. A secondary factor for X’s poor video quality is that it
takes much longer to playback the video stream. The 17 seconds of



extra delay is due to the level of synchronized coordination between
X client and server in allocating the color map used throughout the
playback of the video. We verified that this was not just an artifact
of MpegTV by testing the popular Berkeley Multimedia Research
Center’s mpeg play, which also exhibited the same extra delay.

Because X is an application-level protocol, its performance de-
pends heavily on what X primitives an application is programmed
to use. X does have the have the ability to support client/server dis-
play functions that are more decoupled between client and server.
However, our experiments with widely-used commercial X appli-
cations such as Netscape show that it is not uncommon to find a
high proportion of synchronous display functions used. In partic-
ular, whenever there is a return value that reports the status of a
request, the operation must be completed synchronously and the
application waits for the return value. Unfortunately in Netscape,
all of the routines that draw the toolbar and the page load status bar
create a significant number of GetWindowAttributes and GetGe-
ometry requests, which are both synchronous functions. If widely-
used commercial X applications can so easily have performance
problems in WAN environments, it seems clear that the X system
itself is at least partially to blame even if X primitives may exist
that allow more decoupled client-server interactions.

We can quantify to some extent the degree of synchronization in a
system’s display protocol by the amount of extra delay experienced
running each system over Internet2 versus a LAN. For the latency
benchmark, Sun Ray and VNC incur the minimum delay as dis-
cussed in Section 3.2.1. ICA provides the next best performance,
incurring the minimum delay except for the image operation. RDP
does a little worse, requiring two extra RTT of delay on both the
red bitmap and image operations. X does the worst. From inspect-
ing the packet captures in the latency benchmark, it appears that
ICA and RDP perform some sort of synchronized operation after
approximately every 8 KB of data being sent. When this occurs,
the protocols each wait a full RTT before continuing with the re-
maining data transfer. This synchronized execution also limits the
utility of using larger TCP window sizes, as is evident by the lack of
improvement in performance when using larger TCP window sizes
versus default TCP window sizes. For the web benchmark, Sun
Ray, VNC and ICA incur the minimum extra delay over Internet2
as discussed in Section 3.2.1. They are followed in best-to-worst
relative performance order by RDP, AIP, and X. Unfortunately, due
to the proprietary nature of ICA, RDP, and AIP, it was not possible
to examine in detail the mechanisms behind the synchronization of
the protocols.

Overall, the degree of synchronization in the display protocol has a
much more significant impact over Internet2 than bandwidth ef-
ficiency. Our results demonstrate that to optimize performance
for the larger latencies in WAN environments, the functionality
in a thin-client system should be carefully partitioned between the
client and server to minimize synchronization between client and
server. If the client and server need to send messages back and
forth several times to perform an operation, the much higher round
trip latencies over Internet2 will result in significant increases in
latency for the given operation.

3.2.3 Use Simpler Display Encoding Primitives
Different thin-client systems use different display primitives for en-
coding display updates that are sent from the server to the client.
Four types of display encoding primitives are high-level graphics,
low-level graphics, 2D draw primitives, and raw pixels. Higher-

level display encodings are generally considered to be more band-
width efficient, but require more complexity on the client and may
be less platform-independent. For instance, graphics primitives
such as fonts require the thin-client system to separate fonts from
images while using pixel primitives enable the system to view all
updates as just regions of pixels without any semantic knowledge
of the display content. X takes a high-level graphics encoding ap-
proach and supports a rich set of graphics primitives in its protocol.
ICA, RDP, and AIP are based on lower-level graphics primitives
that include support for fonts, icons, drawing commands as well as
images. Sun Ray and VNC employ 2D draw primitives such as fills
for filling a screen region with a single color or a two-color bitmap
for common text-based windows. VNC can instead be configured
to use raw pixels only, but none of the systems we considered used
raw pixels by default.

Our results show that higher-level display encodings are not nec-
essarily more bandwidth efficient than lower-level primitives. For
the latency benchmark, Figure 2 shows that the low-level graph-
ics encodings such as ICA, RDP, and AIP generally required less
data transfer than the pixel-based approaches such as VNC and Sun
Ray, but the high-level X encoding format required the highest data
transfer on two of the five latency operations. For the web bench-
mark, Figure 8 shows that while the higher-level encoding formats
used by ICA and RDP require less data transfer than the lower-level
pixel-based encoding formats used by VNC and Sun Ray, VNC
sends less data than either X or AIP, which also use higher-level
encoding formats. Furthermore, while Sun Ray transfers signifi-
cantly more data than the other platforms, this is largely because its
remote display protocol encodes pixel values in 24-bit color [28]. If
we normalize the amount of data transferred by the number of bits
used for pixel color in the protocol, the amount of data sent using
the 24-bit color Sun Ray encoding would be three times less than
that shown in Figure 8, since all the other platforms used 8-bit color
for the experiments. The normalized Sun Ray data transfer would
be about 110 KB per web page, less than both X and AIP but still
more than ICA. However, ICA achieves some of its bandwidth effi-
ciency by using compression. When we turned off compression in
ICA to reveal the performance of its basic display encoding on the
web benchmark, the data transfer requirement for ICA ballooned
to about 100 KB per web page, only 10 percent less than Sun Ray.

A key reason why the higher-level display encoding primitives are
often no better if not worse than the lower-level display encoding
primitives is that many of these encodings were optimized for text-
based displays. Much of the complexity of the higher-level en-
coding formats used by X, ICA, RDP, and AIP relates to keeping
track of text-based primitives. But relative to images, graphics, and
video, text generally does not require much bandwidth to begin
with. Even for the web benchmark which consisted of mostly text-
based web pages, text-oriented display accounts for much less than
half of the data in the original HTML pages. Figure 10 shows that
for the video benchmark which involves no text-oriented display,
the higher-level encoding formats are not more bandwidth efficient
than the lower-level formats. If we again normalize for the num-
ber of bits used for pixel color in the protocol, we see that X, AIP,
and Sun Ray all require roughly the same amount of data trans-
fer. Similarly, ICA, RDP, and VNC all require roughly the same
amount of data transfer. ICA, RDP, and VNC require less data
transfer than the other platforms simply because they use compres-
sion, as discussed in Section 3.2.4. As applications become more
multimedia-oriented and bandwidth increases, the efficiency with
which an encoding supports graphics and images is more important



and additional complexity for text may in fact reduce performance.

More importantly, our measurements indicate that simpler lower-
level display primitives as used by Sun Ray and VNC resulted in
better overall user-perceived performance than higher-level display
encoding primitives. Our results suggest that the higher-level prim-
itives used in ICA, RDP, AIP, and X have higher latencies over
Internet2 that may be due to their added complexity. For both the
web and video benchmarks, Sun Ray and VNC outperformed all
of the other higher-level encoding platforms. Figure 9 shows that
Sun Ray and VNC had the lowest average web page latencies, with
VNC being 50 percent better than any of the higher-level encoding
platforms. Figure 12 shows that Sun Ray had the best video quality
followed by VNC, with Sun Ray being more than two times bet-
ter than any of the higher-level encoding platforms. While VNC’s
performance benefits substantially from compression as discussed
in Section 3.2.4, Sun Ray’s good performance is simply due to a
good balance between computing and communication costs in its
display encoding format. Note that the good performance results
for Sun Ray were achieved despite using slower client and server
hardware as compared to the other thin-client systems. When net-
work bandwidth is sufficient and network latency is the primary
issue, the simpler pixel-based encoding approaches provide better
overall performance.

3.2.4 Compress Display Updates
As summarized in Table 1, many of the thin-client systems em-
ploy low-level compression techniques such as run-length encod-
ing (RLE) and Lempel-Ziv Welch (LZW) compression to reduce
the data size of display updates. For our experiments, compres-
sion was by default enabled on all of the thin-client systems that
supported it. ICA, AIP, and VNC all provide a simple user op-
tion to enable or disable compression. To evaluate the impact of
compression, we also ran the same benchmarks on these three thin-
client systems with compression explicitly disabled and measured
the resulting performance. As expected, all three platforms trans-
ferred less data on all of the benchmarks with compression enabled,
though compression was least effective with the video benchmark.
Furthermore, all three platforms performed better overall on the
benchmarks with compression enabled as opposed to without it.

We identified three reasons why enabling compression improved
performance. First, some of the thin-client systems, particularly
VNC, were bandwidth limited when compression was disabled
when default TCP window sizes were used. Enabling compres-
sion reduced the amount of data transferred and removed this band-
width limitation. Second, two of the thin-client systems, ICA and
RDP, require some synchronization between client and server af-
ter approximately every 8 KB of display update data that is sent,
as discussed in Section 3.2.2. Enabling compression reduced the
amount of data transferred and therefore reduced the frequency
at which this synchronization occurred, thereby improving perfor-
mance for WAN environments. Third, some of the thin-client sys-
tems may employ different client rendering functions depending
upon whether compression is enabled. We discovered that when
hextile compression is enabled, the VNC client rendering function
renders blocks of pixels at one time. When compression is not used,
the rendering function renders pixels individually, one at a time.
Our measurements on the web and video benchmark showed that
the rendering function applied when compression was used was 6 to
24 times faster per pixel displayed. As discussed further in Section
3.2.5, because the VNC server waits until the client has completely
rendered the last display update before sending the next display up-

date, the shorter client rendering times with compression enabled
result in better performance.

Our results also show that low-level compression applied to a sim-
ple pixel-based display encoding as used in VNC can perform sur-
prisingly well. In particular, the web benchmark results show that
effective compression can compensate for a less efficient display
encoding and dramatically reduce the amount of data that needs
to be transferred without incurring significant additional overhead.
This is most apparent from the data transfer and latency measure-
ments for VNC. Figure 8 shows that VNC requires about 50% less
data transfer than the higher-level X and AIP approaches, neither
of which employed much if any compression over the network con-
ditions considered for the web benchmark. Furthermore, Figure 9
shows that VNC had the lowest latency over Internet2 of any of
the thin-client platforms for the web benchmark. The simple de-
sign of combining a low-level compression method with a simple
pixel-based encoding provided very good performance on the web
benchmark.

Because thin-client systems may operate in different network envi-
ronments, adaptive compression mechanisms have been proposed
to optimize the performance of these systems. AIP uses such an
adaptive compression mechanism to turn on increasingly efficient
compression algorithms as the available network bandwidth de-
creases. However, this adaption mechanism in some cases results
in worse performance than expected. For instance, Figure 4 shows
that AIP surprisingly has lower latency on the scroll operation over
Internet2 than a LAN. The amount of data transferred over the LAN
for this operation is many times larger than that which is trans-
ferred over Internet2, transferring approximately 92KB and 2KB
respectively. The reason for this is because AIP adaptively disabled
compression over the LAN but enabled compression over Inter-
net2. When we manually enabled compression over the LAN, the
scroll operation performance over the LAN was better than Inter-
net2. Overall, our experimental results show that simple low-level
compression can be used effectively to improve the performance of
thin-client systems.

3.2.5 Push Display Updates Eagerly
The policy used to determine when display updates are sent from
the server to the client is an important issue that does not receive
the attention it deserves; when the display update is sent can be
as important as what is sent. Two important display update policy
issues are eager versus lazy display updates, and server-push versus
client-pull models.

The first display update policy issue is whether display updates are
sent eagerly with the server window system graphics commands
or lazily as a framebuffer scraper. In the eager case, the display
update is encoded and sent at the time the server window system
command occurs. X and Sun Ray both do eager updates. In the lazy
case, the window system command is queued in an intermediate
representation, such as keeping track of regions of pixels that have
been modified. Old modifications that are overwritten by newer
modifications are discarded. Screen updates are then sent at regular
intervals depending on available bandwidth, with only the latest
modifications encoded and sent to the client. VNC, ICA, and RDP
all perform lazy updates [20].

While lazy update mechanisms can be used to merge multiple dis-
play updates at the server for bandwidth efficiency, our measure-
ments indicate that these mechanisms are often incompatible with



the needs of multimedia applications such as video. For the video
benchmark, Figure 12 shows that even over a LAN, all of the plat-
forms that used lazy display updates delivered much worse quality
video than those that used eager display updates. The problem that
occurs in platform such as ICA and RDP is that the rate of their lazy
update mechanisms was too slow to keep up with the 24 fps deliv-
ery rate required by the video benchmark. This is despite the fact
that neither the client nor server was heavily loaded when running
the video benchmark using ICA or RDP.

The second display update policy issue is whether a server-push or
client-pull model drives the display update policy. In the server-
push model, the server determines when to send a screen update
to the client. In the client-pull model, the client sends a request to
the server when it wants a screen update. A benefit of the client-
pull model is that it provides a simple mechanism for adapting to
the client processing speed and network speed available. Of the
systems we considered, only VNC uses the client-pull model while
all the other platforms use the server-push model.

Our measurements suggest that a server-push display update model
is better at tolerating WAN latencies than a client-pull model. The
problems with the client-pull model are illustrated by the perfor-
mance of VNC on the video benchmark over Internet2. Over In-
ternet2, the server must wait until the last display update is sent
to the client and the client responds back requesting the next dis-
play update, which imposes a 66 ms RTT penalty. Even if the client
were infinitely fast, the client-pull model would not allow the video
to be delivered at 24 fps. VNC’s client-pull model is the primary
reason why its video benchmark performance is twice as bad over
Internet2 versus a LAN, as shown in Figure 12. In contrast, Sun
Ray avoids these problems by using an eager server-push display
update model to send display updates immediately as video frames
are rendered on the server for the video benchmark, resulting in the
best video performance over Internet2. As multimedia applications
become increasingly common and network bandwidth becomes in-
creasingly available, we expect that the benefits of higher fidelity
performance with a eager server-push display update policy will in-
creasingly outweigh the benefits of bandwidth savings from lazy or
client-pull display update models.

4. RELATED WORK
In addition to the six popular thin-client systems discussed in this
paper, many systems for remote display have been developed.
These include extensions to the systems considered such as low-
bandwidth X (LBX) [4] and Kaplinsk’s recent VNC tight encoding
[15], as well as remote PC solutions such as Laplink [18] and PC
Anywhere [24]. Because of space constraints and previous work
[22, 36] showing that LBX, Laplink, and PC Anywhere perform
worse than Microsoft Terminal Services for single-user workloads,
we did not examine these systems and extensions as part of this
study. While thin-client systems have primarily been employed in
LAN workgroup environments, a growing number of ASPs are em-
ploying thin-client technology to attempt to host desktop comput-
ing sessions that are remotely delivered over WAN environments.
Examples include services from FutureLink [5], Runaware [26],
and Expertcity [12].

Several studies have examined the performance of a single thin-
client system, in some cases in comparison to the X protocol. Dan-
skin conducted an early study of the X protocol [10] by gathering
traces of X requests. Wong and Seltzer have studied the perfor-
mance of Windows NT Terminal Server, focusing on office produc-

tivity tools and web browsing performance [35,36]. Tolly Research
has conducted similar studies for Citrix MetaFrame [34]. Schmidt,
Lam, and Northcutt examined the performance of the Sun Ray plat-
form in comparison to the X protocol [28] and reported results for
Sun Ray focusing on office productivity application performance at
various network bandwidths. None of these studies consider per-
formance issues in WAN environments, nor do they compare across
the range of thin-client platforms discussed here.

Few studies have been done that compare the performance of sev-
eral thin-client systems. Yang, Nieh, et al. [22, 37, 39] examined
the performance of several thin-client systems at various network
bandwidths. This work does not consider the impact of network
latency in WAN environments on thin-client systems. Our work
addresses latency measurement issues not addressed in previous
work–examining the broad space of underlying design choices that
impact system performance. Previous work has also focused on the
bandwidth efficiency of these systems. Our results show that ef-
ficient display encodings and compression algorithms are just one
component of thin-client system performance.

While technology has changed, the vision of customers simply be-
ing able to rent their computing services from a public computer
utility harkens back to the days of Multics [8]. Unlike Multics,
ASPs are faced with supporting applications that are not just simple
text programs but increasingly graphics and multimedia-oriented.
However, further research needs to be done to enable computer
utilities to effectively support multimedia applications in wide-area
environments.

5. CONCLUSIONS AND FUTURE WORK
We have performed the first quantitative measurements to exam-
ine the impact of WAN latency on thin-client computing perfor-
mance. We addressed the difficult problem of measuring pro-
prietary, closed-source thin-client systems by using slow-motion
benchmarking, which combines network monitoring with slow-
motion versions of application benchmarks to provide accurate
measurements of thin client performance. While our results
demonstrate the feasibility of using thin-client computing for de-
livering computing services in a WAN environment, they also re-
veal that many of the design tradeoffs used in existing thin-client
systems are inappropriate for such network environments. Our
results demonstrate the importance of focusing on optimizing for
network latency as opposed to bandwidth issues in designing thin
clients. In this context, we show that minimizing the need for syn-
chronized local client window system state, simpler, pixel-based
display primitives, synchronized server-push display updates, and
low-level forms of compression are surprisingly effective design
choices. We examined these issues across a broad range of plat-
forms and provide the first comparative analysis of the performance
of these systems. These quantitative measurements provide a basis
for future research in developing more effective thin-client systems
to deliver wide-area computing services.
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