Widening the Remote Visualization Bottleneck

Simon Stegmaier

Joachim Diepstraten

Manfred Weiler Thomas Ertl

Visualization and Interactive Systems Group, University of Stuttgart
Universitatsstralie 38, D-70569 Stuttgart*

Abstract

With the advent of generic remote visualization solu-
tions, accessing distant graphics resources from the desk-
top is no longer restricted to specially tailored applica-
tions. However, current solutions still suffer from poor in-
teractivity due to limited network bandwidth and high la-
tency. In this paper we present several improvements to
our remote visualization system in order to overcome these
drawbacks. Different image compression schemes are eval-
uated with regard to applicability for scientific visualiza-
tion, showing that image compression alone cannot guar-
antee interactive frame rates. Therefore, we furthermore
present different techniques for alleviating the bandwidth
limit, including quality reduction during user interaction or
animations. Latency aspects are addressed by employing
multi-threading for asynchronous compression and utiliz-
ing features of modern programmable graphics adapters for
performing the image compression entirely on the graphics
card. The presented ideas are integrated in our remote vi-
sualization system without violating universality.

1. Introduction

Many scientific simulations calculated these days pro-
duce datasets of sizes that cannot be handled with PCs or
workstations typically available at the desks of the analyz-
ing researchers. However, speaking in Richard Hamming’s
words, the purpose of computing is insight, not numbers;
thus, if analyzing the data becomes increasingly difficult,
the value of the simulation decreases.

A highly effective way to analyze datasets is scientific
visualization. However, scientific visualization not only re-
quires a fast CPU and huge amounts of memory (both main
memory and secondary storage) but also high rendering
performance provided by modern graphics adapters. Ob-
viously, these resources are not always available and it is
impossible—especially for publicly-funded research insti-
tutions like universities—to replace the computing equip-
ment each time the dataset sizes double. And even if this
was possible a central solution might still be favorable.

First, if the datasets remain on the host where they were
generated, there is no need for transferring the data each

*{ stegmaier|diepstraten|weiler|ertl } @informatik.uni-stuttgart.de

time the simulation parameters have changed. This may
be a great advantage, given that many wide-area network
connections are still very slow compared to LANs. Sec-
ond, replicating the datasets on the hosts of every researcher
working with the data multiplies the overall memory and
disk requirements and unnecessarily raises the costs for
desktop computers. Third, raw simulation data is often con-
fidential and a transfer via insecure network connections
may be unacceptable.

To overcome these drawbacks of decentralized data stor-
age, the concept of remote visualization was introduced.
The basic idea is simple: The datasets are visualized on the
high-performance computer-the server-and only the ren-
dered images are transmitted to the researcher. This min-
imizes the resources required at the client. However, albeit
compression techniques can be employed to reduce the size
of the images to be transmitted, the data rates necessary for
interactive frame rates usually restrict the applicability of
remote visualization solutions to high-speed networks, usu-
ally LANSs.

In this paper, several methods for achieving interactive
frame rates even in low-bandwidth environments are dis-
cussed and evaluated using our own generic remote visu-
alization solution as a testing platform. The paper is orga-
nized as follows: Related work is discussed in Section 2.
Our remote visualization solution is described in Section 3,
including a revised architecture required for incorporating
the optimizations. Software-based optimization methods
are discussed in Section 4, followed by the presentation of
a hardware-based image compression in Section 5. Recom-
mendations and a conclusion are given in Section 6.

2. Related Work

Engel et al. [3] developed a framework for providing re-
mote control to Openlnventor and Cosmo3D applications.
The system transmits compressed images from the server
to a Java-based client and returns events generated at client
side via CORBA requests. The system requires substantial
modifications of the visualization application and shows a
very low overall performance.

Ma and Camp [8] developed a solution for remote visu-
alization of time-varying data over wide area networks. It
involves a dedicated display daemon and a custom transport
method which enables them to employ arbitrary compres-



sion techniques. Again, the presented system is not generic
but targeted at a parallel volume rendering application.

Bethel [1] presented Visapult, a system that combines
minimized data transfers and workstation-accelerated ren-
dering. Like the solutions developed by Engel, Ma, and
Camp, Visapult requires modifications of the application in
order to make it “network aware”. As another drawback,
the system relies to some extent on the existence of hard-
ware graphics acceleration on the local display.

A truly generic solution was first described in detail by
Stegmaier et al. [15]. The system takes advantage of the
transport mechanisms part of the X Window System [10]
leading to an extremely compact implementation and (in
combination with VNC [12]) support for a very large va-
riety of platforms for the client. Due to the abandonment of
a proprietary data channel, no custom compression of im-
ages is supported.

Wide-spread use of generic solutions came with the ad-
vent of SGI’s commercial OpenGL Vizserver [14]. OpenGL
Vizserver allows a wide range of clients to access the ren-
dering capabilities of remote graphics servers. However,
due to certain design decisions, the servers are restricted to
SGI workstations. Amongst other compression algorithms,
Vizserver includes an implementation of Color Cell Com-
pression [2].

3. Status Quo

The remote visualization system presented in this work is
based on the system described in [15]. The core idea can be
easily recognized by considering the way an OpenGL-based
application generates images when the display is redirected
to a remote host! (left side of Fig. 1). All OpenGL com-
mands are encoded using the GLX protocol and transmitted
to the remote host as part of the well-known X11 proto-
col stream. The stream is then decoded by the receiving X
server and the OpenGL commands are executed exploiting
the resources available at the destination host. This is ex-
actly what is not desired for hardware-accelerated remote
visualization since we cannot benefit from the graphics re-
sources of the host running the application. Thus, the trans-
mission of OpenGL commands must be suppressed (to ob-
tain the scenario on the right side of Fig. 1) and only the
rendered images should be transferred to the host where the
user interaction occurs. In the remainder of this paper, we
will use the terms render server and interaction server to
refer to the two hosts involved in the visualization process.

Surprisingly, the required modifications of the GLX ar-
chitecture can be obtained through a single shared object
linked to the visualization application at program start-up.

3.1 Dynamic Linking

Almost all applications developed these days make use
of functionality provided as libraries. Usually, library func-

Iwe will only address remote visualization systems based on the X
Window system in this paper.

Remote Application Local Application

OpenGL/GLX
Device
Dependent
OpenGL Renderer

—‘ OpenGL/GLX

Xlib

Xlib

Local
Connection

Device
Dependent
OpenGL Renderer

X Renderer

X Server

Figure 1. GLX architecture as of Kilgard [6].

tionality is provided in two formats: as static libraries and
as shared libraries. It is up to the programmer to select a
suitable format.

For shared libraries only a link to the actual functionality
is included in the application’s executable. Thus, dynami-
cally linked applications allow the replacement of library
functionality without relinking. Therefore, shared objects
are the only suitable choice for library functionality that
is not portable between different target platforms, e.g. the
GPU-dependent OpenGL libraries.

Most systems that support load-time linking also support
a second mechanism sometimes referred to as preloading.
Preloading allows to manipulate the stack that is used to
resolve function references in dynamically linked applica-
tions, usually by setting an environment variable to an ob-
ject file that redefines the functions to be overridden. There-
fore, preloading presents an easy method for non-invasively
customizing library behavior. However, completely redefin-
ing library functions is not trivial—in particular if the func-
tions perform complex tasks.

To cope with this problem, many systems also support
run-time linking. With run-time linking, symbol resolution
is performed after the program has started instead of dur-
ing the loading phase. The original functionality can then
be recovered by opening the original shared object (usually
with dl open) and determining the address of the relevant
function from its name (with dl sym).

3.2 Library Architecture

Using the described dynamic linking functionality, a
generic remote visualization solution can be obtained by
preloading library functions from two groups.

e Set-up functions like XOpenDi spl ay,
gl XChooseVi sual , and gl XMakeCur r ent

o Trigger functions like gl XSwapBuf f er s,
gl Fl ush, and gl Fi ni sh



The set-up functions make sure that the stream of
OpenGL commands is directed to the render server, the trig-
ger functions determine the point of time that the rendering
has finished and an image update must be sent to the inter-
action server. If an image needs to be sent, the image is read
from the framebuffer with gl ReadPi xel s and transmit-
ted via XPut | nage with the display set to the interaction
server. The technical details can be found in [15].

3.3 Evaluation of the Original Library

The described library architecture is simple, can be im-
plemented using a single software component, and reduces
the coding efforts to a minimum since the handling of the
user interface is done completely by the X Window system.
In addition, since the library is able to work with any kind
of X server, combinations with LBX [4] and VNC [12] are
possible.

However, the approach also has disadvantages. The main
drawback is that the transmission of the image data cannot
be controlled without modifying the X server, i.e., no user-
specified compression schemes can be applied to the image
data besides those already incorporated in VNC or LBX;
thus, the solution may be suboptimal both in environments
of very low network bandwidth (the compression ratio may
to too low to allow for interactive work) and very high net-
work bandwidth (where the compression times may be the
limiting factor).

3.4 Revised Architecture

A remote visualization architecture suitable for all kinds
of network environments must be able to use arbitrary com-
pression algorithms. This is most easily accomplished by
setting up a dedicated data channel (e.g. a TCP connection)
for the image transfer and by providing a client application
capable of decompressing the received data (Fig. 2). Com-
pared to the original architecture, the required modifications
are only minor—nbasically, the only difference is that now
XPut | mage is called by the client application instead of
the remote visualization library. However, the original ar-
chitecture’s one-component approach and ease of use are
major benefits from a user’s point of view; thus, care should
be taken not to sacrifice these benefits for improved perfor-
mance. Considering an invocation of an OpenGL applica-
tion with the original implementation:

$ export DI SPLAY=sal sa: 0.0
$ LD PRELOAD=$PWDY | i brv. so. 0 opengl _app

it becomes apparent that all the information required for ad-
dressing the image data can be determined from the value
of the DI SPLAY environment variable. Therefore, no ar-
guments need to be specified by the user when starting the
application on the render server.

Once the image data has been received by the client pro-
gram, the data must be decompressed and drawn into the
appropriate window. Since this is already accomplished in

Application

Utility Functions

Library '— COTH?;ZSesed Client

GLX ‘ Xlib

OpenGL

X Encode

T

|
|
I
|
|
|
I
1
|
|
I
|
X Decode :
|
|
|
|
|
|
|
|
I
|

XEvent

abew| 1dwodsg
abewT Ingx

X En-/Decode

X Server

by

‘ Interaction Device ‘

X Server

'

‘ Render Device ‘

Figure 2. Revised two-component architec-
ture of generic remote visualization system
with custom image compression.

the original implementation, the window identifier is known
and can be sent to the client as header information. As a
result, the client, too, can be started without passing any ar-
guments. Thus, the two-component revised architecture is
as user friendly as the original implementation but provides
a basis flexible enough for evaluating the optimizations pro-
posed in this paper.

4. Widening the Bottleneck

From the results given in [15] it is noticeable that al-
ready at screen sizes beyond 512 x 512 the frame rates drop
rapidly. The situation gets even worse when dealing with
slow networks like Wireless LAN 802.11b (11 Mbps) or
DSL (2 Mbps). There is only one option to solve this prob-
lem: Reducing the amount of data which has to be transmit-
ted over the network.

However, the quality of the network connection is not
the only parameter having influence on the achievable frame
rates. Another issue is latency, the time that passes between
the start of the rendering and the sending of the final im-
age. This server-side latency is even increased when com-
pression algorithms are applied. Therefore, methods for
handling both latency and data reduction are necessary to
achieve increased frame rates on the client.

4.1 Data Rate Reduction

A basic idea for reducing the data rate without much ef-
fort is to simply reduce the amount of data created on the
server. For some applications, having a true-color visual is
not necessary—16 bit or even 8 bit color depths might be
sufficient. However, this is not always desired (e.g. in med-
ical applications) and only helps to reduce the data amount
by a factor of two to three which is not enough in most
cases. Therefore, avoiding redundant information (from a
coding theory’s point of view) is more appropriate. EXx-
ploiting redundancies for creating a more compact version



Table 1. Frame rates for different scenarios.
Top: 802.11b WLAN, bottom: Fast Ethernet.

WLAN Ethernet
Compression  Ratio/PSNR/FPS  Ratio/PSNR/FPS
none - - 06 - - 10.2
LZO 17 - 9.0 33 - 1700
ZLIB 40 - 94 79 - 72.0
CccC 8 37 75 8 42 138.0
CCC.LzO 52 37 100 89 42 1384
BTPC 32 17 35 61 18 20.0

of the original data is the approach of data compression al-
gorithms.

4.1.1 Software Compression

Many general compression algorithms and also many spe-
cial image compression algorithms can be found in the lit-
erature [16]. However, an algorithm suitable in a remote
visualization scenario has to fulfill certain criteria: 1. High
interactivity, meaning both short compression and decom-
pression times for not increasing latency more than neces-
sary; 2. Good image quality, especially in the case of med-
ical (volume) visualization. Compression artifacts could
otherwise lead to misinterpretation of data with crucial con-
sequences; 3. High compression rates for fast image trans-
mission even over slow network connections.

Since remote visualization systems basically have to deal
with synthetic images, it has to be taken into account that
some compression algorithms (e.g. JPEG) do not behave too
well for these kind of images.

Our revised remote visualization system includes five
software compression algorithms based on three differ-
ent groups of compression techniques: ZLIB [5] and
LZO [11] for lossless compression, Color Cell Compres-
sion (CCC) [2] exploiting spatial redundancy, a combina-
tion of CCC with LZO (CCC_LZO0), and Binary Tree Pre-
diction Coding (BTPC) [13]. These five different compres-
sion methods are evaluated by examining the compression
ratio, the achievable frame rates with different network and
client configurations, and the image quality according to the
peak signal to noise ratio (PSNR).

Table 1 shows the results measured for two different
client/server and network configurations. The slow network
is a 11 Mbps 802.11b WLAN, the fast network is a 100
Mbps Fast Ethernet. For both network configurations, a PC
with an Intel Pentium 111 1 GHz, 256 MB Memory, and an
NVIDIA Geforce2 was used as server. The client for the
slow network was a Compaq iPAQ 3850 with a 211 MHz
StrongArm CPU. For the fast network, a PC with an AMD
Athlon 1.5 GHz processor was used. One of the applica-
tions from [15] was used for the measurements: “gears”.
For the WLAN, the window was set to 240 x 320 pixels

(the display size of the iPAQ) at 16 bit color depth, and to
512 x 512 pixels at 24 bit color depth for the PC client.

The WLAN frame rates are lower than expected re-
quiring further explanation: First, the maximum measured
throughput was only 197 KBytes/s even with best possible
reception. Second, the iPAQ only supports 16 bit colors
whereas the special image compression algorithms assume
and encode only 24 bit color images. This means that the
same amount of data (24 bit) is passed to the compression
algorithms and that we, therefore, cannot profit from a re-
duced color depth regarding compression/decompresssion
and transmission times.

4.1.2 Motion Handling

To reduce the image data even further, it is possible to ex-
ploit the human eye’s insensitivity to details of moving ob-
jects by adjusting the quality parameter of the compres-
sion algorithms or by downsampling the image to a quarter
of its original resolution during user interaction or anima-
tions. The server can employ a heuristic to automatically
detect these situations by considering the average number
of buffer swaps per time unit. The image is scaled back to
its original resolution by the client. Of course, downsam-
pling leads to a definite loss in image quality. Therefore,
when the user stops to interact with the application or the
animations stops, a high quality version of the last gener-
ated image is sent to the client. This approach reduces both
the rasterization load of the server and the raw image data
to a quarter. Applications that are rasterization bound will,
therefore, profit from this solution in double respect. To test
the efficency of the downsampling, another experiment was
carried out using the Fast Ethernet scenario. It was possi-
ble to increase the frame rates with LZO compression from
170 fps to over 260 fps. The frame rates could not be in-
creased as expected (about a factor of 4) since the client has
both to rescale and to mirror the image in software. This
takes about 3.5 ms in total for a 512 x 512 image, yielding
a maximum frame rate of about 286 fps.

4.2 Latency Reduction

Remote visualization using the described library in-
volves phases of high CPU utilization as well as phases of
high GPU utilization. Four major phases can be identified:
image rendering, framebuffer read-out, image compression,
and data transmission. Provided that the rendering phase
makes extensive use of advanced OpenGL features like dis-
play lists and assuming that the framebuffer read-out can
be done with a DMA operation, these two phases can be
classified as GPU-dominated work. The latter two CPU-
dominated phases (compression and transmission) are us-
ing the CPU exclusively, potentially consuming resources
required by the graphics card driver and consequently slow-
ing down the rendering. This can be alleviated given a suit-
able parallel architecture as depicted in Fig. 3. The solution
is based on POSIX pthreads and uses two semaphores for
synchronizing the exchange of image data.



Image Read-Out Transmission

-~-—___ P(Copysem)

e

Copying

P(RenderSem)_____ -

-~

Rendering Compression

Figure 3. Parallel processing in the remote
visualization library.

Using a dual-processor AMD Athlon MP 2200+ PC as
render server, a frame rate increase of about 42% (195 vs.
137 fps) could be experienced. However, parallel process-
ing is just one means for improving latency. An alternative
is to reduce the compression time.

5 Hardware Compression

The graphics adapters of many modern PCs include
a powerful programmable processing unit. This GPU is
capable of even outperforming modern CPUs for certain
highly parallelizable tasks. Some image compression algo-
rithms, e.g. the Color Cell Compression proposed by Camp-
bell et al. [2], match this criterion, which suggests a CCC
implementation on graphics hardware. Besides an expected
reduction of the compression time, a hardware-based com-
pression has the advantage that only a fraction of the origi-
nal data has to be read from the framebuffer, making expen-
sive framebuffer reads much more bearable.

In a hardware-based decompression algorithm the GPU
can also benefit from the reduced image data by utilizing
a texture map with the encoded image and reconstruct the
image on the fly without performance penalties compared
to rendering a textured quadrilateral. If OpenGL is avail-
able on the interaction server this can be a significant per-
formance gain compared to writing the decoded image to
the framebuffer with XPut | mage.

Understanding our hardware compression requires
knowledge of the CCC algorithm. The CCC algorithm first
decomposes the source image given in a 3 bytes/pixel RGB
format into independently processed cells of 4 x 4 pixels.
For each cell, a mean luminance £,,.., is calculated using
the well-known luminance equation £ = 0.3R + 0.59G +
0.11B. Next, all pixels of the cell are divided into pixels
with luminance less than or equal to £,,c., and pixels with
luminance greater than £,,,cqn. A 16 bit bitmask is then cre-
ated in which pixels with luminance values greater £.,cqn
are marked with 1. Additionally, two RGB color values are
stored per cell which are the arithmetic mean RGB values
of the pixel groups. The image is reconstructed from the
bitmask and the two colors by setting the first color where
the corresponding cell’s bitmask is 0, and the second color
where the bit is 1. Using this approach, a cell can be en-
coded with 243+ 3 = 8 bytes. Additionally a quantization
of the group colors is applied storing only the 5, 6, and 5

most significant bits of the red, green, and blue channel re-
spectively, yielding an overall compression ratio of 1 : 8.

Obviously, the CCC algorithm allows all cells to be
processed independently. This matches the architecture of
modern graphics adapters with several pixel pipelines oper-
ating in parallel very well. The following description relates
to an implementation on an NVIDIA GeForceFX graphics
card that—with slight modifications—has also been suc-
cessfully adapted to the ATl Radeon 9700.

5.1 Encoder

The hardware-based CCC algorithm renders a quadrilat-
eral with a size of one fourth of the source image in each di-
mension. Thus, each pixel generated from this quadrilateral
maps to one cell of the source image. The color data of the
source image is provided by a texture map that is updated
in each frame. Since OpenGL allows to efficiently copy
data directly from the framebuffer to a texture map, this
step hardly involves any overhead compared to the expen-
sive framebuffer read of a software solution. The alterna-
tive of using NVIDIA’s r ender _t ext ure_rect angl e
OpenGL extensions [7] that allows to directly define a tex-
ture from the framebuffer without copying was discarded
due to a negligible performance benefit.

To map rendered pixels to cells, a fragment shader is ap-
plied that performs 16 lookups in the source image texture
for acquiring the cell’s color information and for generating
the bitmask and the two group colors. The shader imple-
mentation is almost a 1:1 mapping of the software encoder
since NVIDIA’s high level shading language Cg [9] was uti-
lized for the hardware implementation.

The bitmask and the two group colors ideally should be
written with 16 bit precision to the red, green, and blue com-
ponent of the framebuffer. Unfortunately, only 8 bit frame-
buffer precision is currently available. A possible solution
would have been to use an additional output target and to
write the bitmask to the red and green components of the
target and the colors to the red/green and blue/alpha chan-
nels of the framebuffer, respectively. However, currently no
multiple render targets are available for the NVIDIA card.
Another alternative, 16 bit pbuffers, had to be discarded due
to huge performance penalties caused by context switches.

For these reasons, three rendering passes are applied.
The first pass computes the bitmask, whereas the second
and the third passes compute the two colors. Each value
is computed with 16 bit, split into a high and a low byte
and written to the red and alpha component of the frag-
ment. After each pass, the pixels covered by the rendered
quadrilateral are read from the framebuffer. Actually, a two-
pass solution is also sufficient: one pass for the bitmask and
one pass for both colors. However, this requires a fragment
shader for the decoding to separate the colors on the graph-
ics card. On an AMD Athlon XP 2200+ PC the three-pass
encoder took 20.6 ms for compressing a 512 x 512 image.
Compressing the same image with two passes only required
14.2 ms.



5.2 Decoder

Whereas the encoder requires the extended fragment
processing features of the latest graphics hardware gener-
ation, a hardware-based decoding can be achieved basically
with OpenGL 1.0 functionality. The reconstruction requires
three passes. First, the bitmask data is written into the
stencil buffer. In the second pass, a screen-sized quadri-
lateral is rendered with the second color mapped as a tex-
ture. The OpenGL stencil-test is exploited to write only
pixels with their corresponding bit in the bitmask set. In
the third pass using the first color as a texture only pixels
with a corresponding unset bit are written by inverting the
stencil-test. This solution took 5.4 ms for decoding a 512
x 512 image on the test system. The reconstruction can be
reduced to a single rendering pass if the interaction server
offers multi-textures and extended fragment color combina-
tion (as provided since NVIDIA’s GeForce256 chip via the
regi st er _conbi ners extension [7]). In this case, the
bitmask and the two group colors are bound as three tex-
tures and the combiner setup routes either the first or the
second color to the fragment color depending on the value
of the bitmask texture. This decoding required 5.3 ms which
implies that the texture setup is more expensive than the ren-
dering itself.

The color textures can directly be defined from the CCC
image stream, provided that the encoded data for the bit-
mask and the colors are stored consecutively and not inter-
leaved as in the original CCC description. OpenGL intrin-
sically supports the 5/6/5 quantized color format. All that
is necessary is to provide OpenGL with the right offset in
the data block. Unfortunately, the bitmask requires more
effort. OpenGL does not allow to specify a texture from
bit data; therefore, the bitmask first has to be converted to a
byte stream with one byte per bitmask bit. Using a fragment
shader for the reconstruction, the bitmask texture can also
be defined directly from the image stream since the individ-
ual bits per pixel can be extracted from the fragment shader
on the fly. Thus, as programmable fragment processing be-
comes a common feature for each desktop PC in the near fu-
ture, the need for unpacking the bitmask data is eliminated.
The fragment shader implementation required 6.8 ms when
using three individual textures for the bitmask, the first and
the second color. This is slightly slower than using an al-
ready unpacked bitmask. However, on systems with slower
processors, a significant speed-up from 20.3 ms to 8.9 ms
could be measured.

6. Results and Conclusion

Our experiences suggest the use of lossless image com-
pression algorithms for both scenarios (WLAN/PDA and
Fast Ethernet/PC). In addition, parallel processing can in-
crease the frame rates significantly if the render server pro-
vides multiple CPUs. On the contrary, hardware compres-
sion currently has no considerable impact since carefully
hand-optimized software implementations achieve equal or

even higher performance (our reference CCC implementa-
tion took 12.5 ms and 5.4 ms for encoding and decoding,
respectively). However, the pure processing power of mod-
ern GPUs already beats general CPUs and projecting re-
cent developments of graphics adapters we expect the gap
to even widen. Extended features will remove the necessity
for work-arounds, further accelerating hardware compres-
sion. For motion handling, we see little potential unless
networks with bandwidths much below WLAN are used.

Acknowledgments

We would like to thank our student Gueorgui Ovtcharov
for integrating some of our ideas into the system.

References

[1] W. Bethel. Visualizaton dot com. Computer Graphics and
Applications, 20(3):17-20, May/June 2000.

[2] G.Campbell, T. A. DeFanti, J. Frederiksen, S. A. Joyce, and
L. A. Leske. Two bit/pixel full color encoding. In Pro-
ceedings of the 13th annual conference on Computer graph-
ics and interactive techniques, pages 215-223. ACM Press,
1986.

[3] K. Engel, O. Sommer, and T. Ertl. A Framework for Inter-
active Hardware Accelerated Remote 3D-Visualization. In
Proceedings of EG/IEEE TCVG Symposium on Visualiza-
tion VisSym *00, pages 167-177,291, May 2000.

[4] J. Fulton and C. K. Kantarjiev. An update on low bandwidth
X (LBX). In The X Resource, number 5, pages 251-266,
January 1993.

[5] J.-L. Gailly and M. Adler, 2002. http://www.gzip.org/zlib.

[6] M. J. Kilgard. Programming OpenGL for the X Window Sys-
tem. Addison-Wesley, 1996.

[7] M. J. Kilgard, editor. NVIDIA OpenGL Extension Specifica-
tions. NVIDIA Corporation, 2001.

[8] K.-L. Ma and D. M. Camp. High performance visualiza-
tion of time-varying volume data over a wide-area network
status. In Supercomputing, 2000.

[9] NVIDIA Corp. Cg Language Specification, 2002. Available
at http://developer.nvidia.com/cg.

[10] A. Nye, editor. Volume 0: X Protocol Reference Manual. X
Window System Series. O’Reilly & Associates, 4th edition,
January 1995.

[11] M. Oberhumer, 2002.
opensource/lzo.

[12] T. Richardson, Q. Stafford-Fraser, K. R. Wood, and A. Hop-
per. Virtual Network Computing. IEEE Internet Computing,
2(1):33-38, 1998.

[13] J. A. Robinson. Efficient General-Purpose Image Compres-
sion with Binary Tree Predictive Coding. In Procceedings
of IEEE Transactions on Image Processing *97, pages 601—
607. IEEE, 1997.

[14] Silicon Graphics, Inc. OpenGL Vizserver 3.0 — Application-
Transparent Remote Interactive Visualization and Collabo-
ration, 2003. http://www.sgi.com/.

[15] S. Stegmaier, M. Magallon, and T. Ertl. A Generic Solution
for Hardware-Accelerated Remote Visualization. In Proc-
ceedings of EG/IEEE TCVG Symposium on Visualization
VisSym ’02, 2002.

[16] 1. H. Witten, A. Moffat, and T. C. Bell. Managing Gigabytes.
Morgan Kaufmann Publishers, 1999.

http://www.oberhumer.com/



