
A
Graphical User Interface (GUI)

for
designing interactivity

in
game creation

Jonathan van Wunnik

September 2001 - May 2002

TU team:
dr. P.J. Stappers (UHD)

ir. A. Hoeben
ir. J.C. Verlinden

Company mentor:
dr. ir. M.W. Gribnau

Company:
NaN Holding BV

su
m

m
ar

y

37 mm

IIIS e p t e m b e r 2 0 0 1 - M a y 2 0 0 2

J.v.W.

The subject of this graduate report is the inter-
active creation part of the Blender application.
Blender, developed by Not a Number BV (NaN),
is an application with which users can model, ani-
mate and do postproduction of 3D content. NaN
has two offi ces. One in Amsterdam and one in
Eindhoven. In Amsterdam, the headquarters are
located while the development and content teams
are located in Eindhoven. The development team
creates the Blender application while the content
team creates actual content with Blender for
promotional purpose and gives feedback to the
development team.

In this project a new Graphical User Interface
(GUI) for the interactive creation part of Blender
was designed. The interactive creation part
allows the user to add, in a visually manner, ‘life’
(interactivity) to 3D objects and worlds.
The new GUI had to provide means for organizing
the networks of logic bricks (the building blocks
for creating interactivity graphically), but also
means for creating interactivity on a ‘higher’ level
than the current logic bricks concept. Higher level
means interactivity such as state engines, behav-
ior and/or artifi cial intelligence (AI).

To become familiar with the interactive cre-
ation part of Blender an interactive ‘game’ was
designed and built within Blender. Different types
of 3D interactive content, the design process of
the content team of NaN and other game develop-
ment teams were analyzed. A game development
process was extracted and the specifi cations for a
new GUI were determined. A list of criteria was
set up to use as guide for the concept creation.

After the analysis phase, the conceptual phase
started where (partial) solutions were created for
the problems that were found. This resulted in a
fi nal concept that was evaluated by two members
of the content creation team of NaN. The evalu-
ation showed that the design solves the prob-
lems determined and fullfi lls the demands and
wishes.

The results were applied in a fi nal design that
offers a GUI for designing interactivity on the level
of behavior without (less) coding and a means of
organizing all logic used.
The fi nal design can be used as a blueprint for
actual implementation in Blender. Although the

Summary

design has been evaluated with the content team
a few times, it is inevitable that modifi cations will
need to take place during and after actual imple-
mentation. Besides, valuable insights for future
additions to the logic system came up during
the process. These include debugging, ordering
of states, which kind of logic bricks are (really)
needed etc.

Now the question is, will the design be imple-
mented in Blender? This is at the moment of
writing uncertain (NaN went bankrupt halfway
through the project). Currently NaN is undergo-
ing a re-organization. The prospects are that one
or two smaller companies will continue develop-
ing and using Blender one way or another. One
of those would benefi t picking up this project and
implementing it.

T.O.C.

VIIS e p t e m b e r 2 0 0 1 - M a y 2 0 0 2

J.v.W.

37 mm

ta
bl

e
of

 c
on

te
nt

sTable of Contents

1. Introduction 11

2. Company Profi le Not a Number (NaN) 11

3. Problem defi nition and assignment 12

I Analysis

4. Using Blender for interactive 3D content 15

4.1 Introducing Blender (history) 15

4.2 Functionality overview 15

4.3 The user interface 16

5. A small interactive 3D production with Blender 19

5.1 The house 19

5.2 List of available logic bricks 21

5.2.1 Pulses (timing) 21

5.2.2 Sensors 21

5.2.3 Controllers 22

5.2.4 Actuators 22

5.3 Conclusion 23

6. Types of interactive content 24

6.1 Games 24

6.1.1 Skill-and-action games 24

6.1.2 Strategy games 25

6.1.3 Hybrids 26

6.2 Other interactive 3D content 26

6.2.1 Simulations 26

6.2.2 3D content (for internet) 26

6.2.3 Product Presentations 26

6.2.4 Game prototyping 26

6.3 Conclusion 26

7. Game development teams 27

7.1 Content creation team NaN 27

7.2 Postmortems 28

7.2.1 Lionhead Studios’ Black & White [4] 28

7.2.2 Lucas Arts’ Star Wars Starfi ghter [5] 29

7.2.3 More postmortems 30

7.3 Conclusion 30

8. Development process 31

8.1 Game development process 31

8.2 Conclusion 32

9. Interactivity and Blender 33

9.1 Target group Blender 33

9.2 What kind of 3D content? 33

9.3 Example games 33

9.4 Game elements 35

9.5 Levels of interactivity 35

9.6 Conclusion 35

10. Blender compared to other applications 36

10.1 Overview 36

10.2 Other 3D interactive creation applications 36

10.2.1 MindAvenue’s Axel 37

10.2.2 Act3D’s Quest3D 37

10.2.3 Virtools’ Virtools Dev 38

10.2.4 Alias|Wavefront’s Maya RTA 39

10.3 Other graphical creation tools 40

10.3.1 Maya’s Hypershade editor 40

10.3.2 Softimage XSI’s Render tree 41

VIII S e p t e m b e r 2 0 0 1 - M a y 2 0 0 2

J.v.W.

37 mm

table of contents

10.4 Overview of other interactive creation tools 41

10.5 Conclusion 42

11. Other GUI’s 43

11.1 Criteria for a good GUI 43

11.2 Conclusion 44

12. Program of Requirements 45

II Synthesis

13. Ideas 49

13.1 Result 49

13.1.1 Idea 1 49

13.1.2 Idea 2 50

13.1.3 Idea 3 50

13.2 Conclusion 50

14. Concepts 52

14.1 Concept A 52

14.1.1 State-editor 52

14.1.2 Logic editor 53

14.1.3 Example concept A 54

14.1.4 Evaluation concept A 55

14.2 Concept B 56

14.2.1 State editor 56

14.2.2 Action editor 58

14.2.3 Logic editor 58

14.2.4 Evaluation concept B 59

14.3 Concept C 60

14.3.1 Transition editor 60

14.3.2 Evaluation concept C 60

15. Final concept 62

15.1 Conceptualizing States 62

15.2 States 63

15.3 Transitions 64

15.4 Global States 64

15.5 Actions 65

15.6 Logic 65

15.7 Physics 66

15.8 Reusing 66

15.9 Properties 66

16. Evaluation fi nal concept 69

16.1 Approach 69

16.2 Process 69

16.3 Findings 70

16.4 Conclusion 72

17. Final design 72

18. Conclusions 80

18.1 Recommendations 80

18.2 Future development 80

19. Process evaluation 81

IXS e p t e m b e r 2 0 0 1 - M a y 2 0 0 2

J.v.W.

37 mm

ta
bl

e
of

 c
on

te
nt

sAppendix 83

Appendix I: Blender features 85

Appendix II: Questionnaire 86

Appendix III: Evaluation concept A 87

Source listening 88

11S e p t e m b e r 2 0 0 1 - M a y 2 0 0 2

J.v.W.

37 mm

in
tr

od
uc

ti
on

The starting points for this project existed of two
main questions. What should a graphical user
inteface for creating higher level interactivity
(e.g. state engines, behavior and/or artifi cial
intelligence) look like? And in what manner can
logic (the building blocks for creating interactivity)
be organized?

The process is divided into three main parts: the
analysis, synthesis and optimization.

First a company profi le is given in section 2. In
section 3 the problem defi nition and assignment
are described, before the actual analysis.

The analysis started with building an interactive
3D game within Blender to get familiar with the
current interactive creation tools and to get an
overview of Blender itself. This is described in
sections 4 and 5. Secondly, a survey of differ-
ent types of 3D interactive content was made,
described in section 6. To get an overview of how
the content creation team of NaN and other game
creation studios do work and which problems they
come along, a analysis of these teams was made
in section 7 linked together with the develop-
ment process in sections 8. To defi ne what kind
of 3D interactive content should be created within
Blender, example games are defi ned and the
‘levels’ of interactivity are described in section 9.
In section 10 Blender is compared with other 3D
interactive creation applications to obtain infor-
mation about how these applications make it
possible to create interactive content. Also appli-
cations that are not directly used for the creation
of interactive content, but do have a graphical
interface for the workfl ow of connecting different
nodes (resembling connecting logic bricks) are
described to explore different design solutions.
Section 11 shows the ‘look-and-feel’ of other
graphical user interfaces. What criteria should be
of interest for the GUI for creating interactivity?
All the information obtained fi nally resulted in a
program of requirements, described in section 12,
which the fi nal design has to fulfi l.

The synthesis, the second part of the process,
existed of bringing all the information, obtained
during the analysis, down to a solution for the two
starting points mentioned above.
The synthesis started with the creation of ideas,
described in section 13. The best parts of these

Introduction1.

early ideas were mixed and put together conclud-
ing into the fi rst concept. In total three concepts
were created. The three concepts were not three
completely different concepts, as usual within the
methodology of the design process. Instead, it
was a more iterative process, the second concept
continued on the fi rst and the third on the second.
Every concept was discussed with some members
of the content creation team leading to the next
adjusted concept. These concepts are described
in section 14. Finally this process of optimizing
lead to the ‘fi nal concept’. The fi nal concept is
described in section 15.

The third part of the process, the optimization,
covered the evaluation of the fi nal design. The
approach, fi ndings and conclusions regarding the
evaluation can be found in section 16. In section
17 the conclusions of the evaluation and the ‘look-
and-feel’ of a GUI (section 11) lead to a ‘fi nal
design’. This fi nal design describes and shows in
short all the aspects of the GUI as designed for
creating interactive content.
In section 18 recommendations and future devel-
opments are described and fi nally, in section 19, a
process (project) evaluation is given.

NaN Technologies B.V. (Not a Number) is a tech-
nology company establishing new standards in
real time 3D content creation, playback and deliv-
ery of real time 3D for use across all networks and
devices. Ton Roosendaal, Creative and Technical
Director, founded NaN in June of 1998 to further
develop and market Blender Software and its
underlying technologies.

At SIGGRAPH 2000 in New Orleans, NaN unveiled
Game Blender 2.0, which enables the creation
and playback of real-time interactive 3D content
such as computer games and product presenta-
tions. Blender is designed around a solid-body
dynamic simulation, in which forces such as grav-
ity, impacts from weapons, character interactions
and collision detection are handled transpar-
ently by the software. Traditionally, artists team
up with programmers to add interactivity to the
product. This is a slow process, especially since
reuse of existing software (previous code) is dif-
fi cult. Therefore, in most productions, interactivity
has to be created from scratch. Contrary to this,
Blender offers support for design and prototyping
interactive behaviour of content in a production.
The result is a signifi cant faster development pro-
cess.

Company Profile Not a Number
(NaN)2.

12 S e p t e m b e r 2 0 0 1 - M a y 2 0 0 2

J.v.W.

37 mm

introduction Problem defi nition

The Graphical User Interface (GUI) for the design
of interactivity in Blender is based on a technique
(logic bricks), which provides artists a way to
create behaviour. To achieve this behaviour, art-
ists have to connect these logic bricks (sensors,
controllers and actuators). The current GUI works
fi ne for small projects. When the project grows
however, logic brick networks can become com-
plex and confusing. Artists do not have a means
to organize the networks now.
There is need to design behaviour on a higher
level than the logic bricks technique. The inte-
grated Python scripting language is now the only
means to create interactive behaviour with the
environment on a higher-level. NaN is investigat-
ing ways to ease the design process of creating
interactivity. The plan is to create a new GUI for
the design and development of higher-level inter-
active behaviour.

Assignement

Design, prototype and test a new Graphical User
Interface (GUI) for creating an interesting inter-
active production (game) without or with less
intervention of programmers (Python scripting).
The new GUI must be easy in use, especially for
new users to Blender as well as for experienced
users. Hereby the new GUI should provide means
for organizing networks of logic bricks, but also
interactive behaviour on a higher level than the
logic bricks concept (e.g. states, behaviour and/or
artifi cial intelligence).

Problem definition and assign-
ment3.

ANALYSIS

15S e p t e m b e r 2 0 0 1 - M a y 2 0 0 2

J.v.W.

an
al

ys
is

37 mm

4.
Using Blender for interactive
3D content

out compiling or preprocessing.

Game creation:
The ‘game creation’ part of Blender allows the
user to create interactive content within Blender
itself without or with less programming. The
‘game engine’ supports the following: collision
detection and dynamics simulation, 3D audio,
multi-layering of scenes for overlay interfaces and
animation features are also supported within the
‘game’ engine.

Embedded scripting language:
Blender has an embedded scripting language:
Python. With the addition of Python it is possible
to add advanced control of game logic.

4.1

General set-
tings tab or

‘info window’
(hide/unhide)

3D windows

‘Buttons’
window

the different ‘buttons’ (i.e. ‘render’,
‘material’, ‘light’ etc.), see 4.3

active ‘buttons’ window

4.1 Introducing Blender (history)

Blender is a 3D content creation package, as told
in the introduction. It allows modeling, animation,
rendering, postproduction, interactive 3D creation
and playback.
The interactive 3D creation is not always been a
part of Blender. Originally Blender was an in-house
tool of the Dutch animation company NeoGeo.
When this company stopped existing early 1998,
a SGI version of Blender was posted on the web,
just for fun. The success and attention it got and
also the porting to other operating systems like
Linux and FreeBSD, made Ton Roosendaal decide
to found NaN halfway 1998.
But to survive and to get attention in the 3D
market, it was decided to focus on special key-
features to distinguish from other 3D packages.
Because of the neglected arena of realtime 3D in
other 3D packages, NaN saw an opportu-
nity in extending Blender with a realtime
creation part. With the later extension of a
webplugin it is now also possible to create
and publish interactive 3D content like
games and 3D presentations for the web.
Therefore, the main point of focus will be
more and more on this part of Blender.

4.2 Functionality overview

What will follow now is an overview of the
functionality (key features) of Blender.
This will be a short description of all the
key features offered within Blender. For a
offi cial list of features, see appendix 1.

Modeling:
Modeling includes the following types:
polygon meshes, curves, NURBS (lim-
ited), metaballs and vector fonts.

Deformations:
There are two forms of deformations. Lat-
tices deformations (a lattice consists of
a three-dimensional grid of vertices and
when moving one of these vertices will
cause a deformation of the child object
it is assigned to) and bones deformations
(used to deform a character during a walk
animation, for example).
Animation:

The following kinds of animations are possible
within Blender: key frames, motion curves, mor-
phing, inverse/forward kinematics (character ani-
mation) and path animation.

Particle systems:
Particles can be used to generate fi re, smoke,
clouds etc. Every mesh-object can serve as an
emitter for particles and every mesh-objects can
be used as a particle.

Rendering:
The render engine within Blender supports among
other things: solids, transparency, halo/lens-fl are
effects and radiosity.

Postproduction:
Blender supports also sequence editing of images
and postproduction effects with the build in
editor.

Real-time 3D:
An engine for playback of real-time 3D is inte-
grated within Blender itself. With this it is possible
to playback interactive creations on the fl y, with-

fi g. 4.1
The full interface of
Blender.

16 S e p t e m b e r 2 0 0 1 - M a y 2 0 0 2

J.v.W.

analysis

37 mm
4.3 The user interface

As can be seen in fi gure 4.1 (previous page),
Blender is divided into three parts. From top to
bottom: the ‘info window’, the ‘3D window(s)’ and
the ‘button window(s)’.

The info window is normally ‘hidden’ at the top of
screen and can be revealed by dragging the menu
bar down. The info window shows general settings
of Blender. In here you can tell Blender where to
store autosave fi les or activate the tool tips func-
tion for instance.

The ‘3D window’ compares to 3D windows in
many other 3D packages. In this window objects
can be rearranged and edited, animations can be
defi ned and lights and cameras can be added.
Many views can be added. These can be perspec-
tive or orthogonal (top, front and side) views.
Apart from the ‘3D views’, you can also open the
following ‘windows’ in any 3D window:
- The fi le window:
 This window provides the interface for loading

and saving fi les.
- The image (select) window:
 This window is for selecting and loading images.

These images are provided as thumbnails and
it is used for loading image textures maps, for
instance.

- The IPO window
 In this window you can edit the time-lines that

are associated to different object properties,
like their position and rotation (IPO stands for
interpolation).

- The text edit window:
 This window is mainly used for writing Python

scripts, but it can also be used to keep notes of
animation projects for instance. The advantage
of using the text edit window is that the notes
are stored inside the Blender project fi le.

Lastly, at the bottom of the screen is the ‘buttons
window’. This name can be confusing. The buttons
window is strictly speaking a collection of buttons,
but basically it is the place in Blender where you
can edit, assign and build different aspects of a
project. These different aspects are provided in
a ‘tab’ like way. You can switch between them
by clicking on the associated button. There are
thirteen different ‘button windows’ (see fi gure
below). What will follow now is a description of

every ‘buttons window’ from the left to the right.
The corresponding content of each window is
shown in fi gures 4.2 to 4.14.

4.2

4.3

4.4

4.5

4.6

17S e p t e m b e r 2 0 0 1 - M a y 2 0 0 2

J.v.W.

an
al

ys
is

37 mm

4.7

4.8

4.9

4.10

4.11

- The lamp buttons (fi g. 4.2, previous page):
 This window allows to change all of the param-

eters of lamps, like their color, energy, type
(regular lamp, spotlight, sun or hemi) and
quality of shadows.

- The material buttons (fi g. 4.3, previous page):
 This window allows the control over proper-

ties as object color, shininess, transparency,
textures, texture types and texture projection
methods.

- The texture buttons (fi g. 4.4, previous page):
 This window allows the assignment of texture

maps to a material. You can choose out of many
different texture methods, like a image, clouds,
wood, marble, stucci and noise for example.

- The animation buttons (fi g. 4.5, previous
 page):
 This window allows to set properties for things

like curve following, automatic object duplica-
tion and object tracking. It also allows object
effects like particle systems and wave effects.

- The realtime buttons (fi g. 4.6, previous page):
 This window makes it possible to build inter-

activity into a project. This part of the inteface
will be the subject of this project. In section 5.1
this window will be explained in more detail.

The name ‘realtime buttons’ is maybe a little bit
confusing. It suggests more the ‘speed of calcula-
tion’ than what it really stands for, namely build-
ing interactivity. Therefore I will name this part of
the interface the ‘interactivity window’.

- The edit buttons (fi g. 4.7):
 This window allows to edit objects in your

scene. The buttons that are shown depend
on the kind of object that you have currently
selected.

- The constraint buttons (fi g. 4.8):
 This window allows to add constraints to anima-

tions and IK (Inverse Kinematics) skeletons.

- The sound buttons (fi g. 4.9):
 This window allows to add sound to a project.

The sounds can be assigned to interactive
objects. For example, a creaky sound when a
door goes open.

- The world buttons (fi g. 4.10):
 This window allows to set up horizon colors,

ambient lightning, fog effects and starfi elds.
- The paint buttons (fi g. 4.11, previous page):

18 S e p t e m b e r 2 0 0 1 - M a y 2 0 0 2

J.v.W.

analysis

37 mm
 This window allows to add or paint a color onto

vertices. Besides this, it also allows to take into
account if a object will be visible, lighten or
will be used for collision in the game engine or
not.

- The radiosity buttons (fi g. 4.12):
 This window allows to produce ‘realistic’ 3D

images. Radiosity is based on radiative heat
transfer. In real world, colors of objects are
not only affected by direct lighting, but it is
also affected by lights bounced off from other
objects. This window makes it possible to
achieve this effect.

- The script buttons (fi g. 4.13):
 This window allows to call up scripts. This can

be done in three different ways: on ‘frame
changed’, on ‘redraw’ and on ‘onload’.

- The display buttons (fi g. 4.14):
 This window allows to control the way Blender

will render images. In here the size and render
quality can be set. With the ‘render’ button, a
still image

These are all the ‘button windows’ available within
Blender. With all these windows the modeling,
texturing, animations, interactivity etc. is done.

Finally, at the top left of the screen there are the
menus. These menus are:
- File: standard things like open, save, save as,

save image etc.
- Edit: things like duplicate, delete, edit mode,

rotate, scale etc.
- Add: with this menu it is possible to add geom-

etry and objects to a scenes, like add mesh,
add curve, add surface, text, camera, lamp
etc.

- View: this menu let makes it possible to switch
the selected view to front, right, top and
camera.

- Game: this menu is specifi c for interactive pro-
ductions within Blender, it can switch on or of
the following settings: “enable all frames”, “dis-
able sounds”, “show framerate and profi le” and
“show debug properties”.

- Tools: this menu makes it possible to pack or
unpack all external data used (textures, sounds
etc.) into one fi le. Very useful for distribution of
fi les.

The menus fi le, add and edit (with most of the
other function within Blender) duplicated in the
toolbox. The toolbox will appear when the space-
bar is pressed (see fi g. 4.15). A function within
this toolbox is selected by clicking it with the

4.15

mouse. Working with the toolbox can speed up
the workfl ow within Blender.

4.12

4.13

4.14

19S e p t e m b e r 2 0 0 1 - M a y 2 0 0 2

J.v.W.

an
al

ys
is

37 mm

The goal of building a small interactive production
was twofold. First of all, it was done to learn the
basic features of Blender. How long did it take to
learn the different parts of making the interactive
3D production? Second, the steps (sequences)
were used in combination with the information
obtained from other game development teams
(see section 7) to extract a ‘user process’ of build-
ing an interactive 3D production.

5.1 The house

What follows now is a description of building
my own interactive 3D production. In section
8.1, a more general game design process will be
described.

Idea generation (basic concept)
I have chosen to build my own house. It is a big
student’s house with many rooms. The player can
walk around, look around (fi rst person perspec-
tive) and open doors after he fi nds the key for
it. It is not a game in the meaning of shooting
opponents, but solving a puzzle. There is only the
house itself where the character can walk around.
The house exists of three fl oors with seven main
rooms and seven smaller rooms. The player is not
able to walk outside the house.

Rules, content and behaviour description
The rules are basic. The player has to fi nd all the

5.
A small interactive 3D produc-
tion with Blender

fi g. 5.1, 5.2
Basic concepts for the
house.

fi g. 5.3
Conceptual represen-
tation of colors and
textures for the rooms.

5.1

keys to open the doors. The keys can only be
found in one order; the player has to fi nd the key
for Anna’s room fi rst before he can enter Sandra’s
room, because the key for Sandra’s room is
located in Anna’s room, for example. Some keys
will be hidden in the (already) open hallways and
others in the rooms to be opened. After the player
has found all the keys and has entered the last
room (the cellar) the ‘game’ is fi nished. When
the player enters this last room (the door to the
cellar), he will fall in a deep hole and the message
“you pass the test and you are now ready to live
in our house” will be shown.
A sketch of the interaction diagram (see fi g. 5.5,
next page) shows all the related game elements
and their connections.

Description of main character and game
pieces (assets)
Main character: This is the ‘character’ the player
will move around in the house. The character
wants to fi nd a room in Delft, because he is going
to study at the Technical University.
Game pieces (assets): These are all the objects
that will interact (dynamically) with the player
(main character). All the objects that are not
static (rooms, environment, buildings etc.). In
this case only the keys and the doors are game
pieces (assets). The keys will be fl oating in the
air and are placed in different rooms. When the
player fi nds a key, the key will disappear and an
overlay picture of the key will appear. The other
game pieces, the doors, go open when the player
is close enough, provided that the player has the
key for the door.

Graphical and sound description (the design
‘Bible’)
All the rooms need a different look. There will be
wooden fl oors, colored walls and a neutral ceiling
(see fi g. 5.3). All surfaces will get their ‘look’ with
textures (pictures). Outside the house a sky will
be visible. The atmosphere must be a little dark.

5.2

There will be sounds for opening doors (cracking
and creaking), picking up a key (bleeping), falling
on the ground in the deep hole (crunching) and a
continuous sound in the background (sinister).

Building the house
During the process of building the house some
diffi culties arose. Building the house for the fi rst
time, the amount of polygons was too high to get
an acceptable frame rate. The house was build
again with less polygons.
Lighting was another diffi culty. To give each room
its own sense of atmosphere, every room had to
be on a separate ‘layer’, because within the game
engine light go trough walls and will lit also every-
thing behind it. It was very diffi cult to set this up
properly.

Making it interactive
To make the components (objects) interactive,
the ‘interactive window’ was used. A description
of the ‘interactive window’ will be given instead of
describing the interaction built particular for the
house.

The ‘interactive window’ is divided in four columns
(see fi g. 5.4, on next page): the attributes (I), the
sensors (II), the controllers (III) and the actua-
tors (IV).

With the attributes it is possible to set an object to
be part of the physics engine. To do so the object
has to become an ‘actor’ (see fi g. 5.5, next page).
Once set to ‘actor’ the physics engine will evalu-
ate the object and will do collision detection. A ball
will bounce when dropped on a fl oor, for instance.
But when the ball also has to obey the laws of
physics, the object must not only be set to ‘actor’
but also to ‘dynamic’ within Blender.

5.3

20 S e p t e m b e r 2 0 0 1 - M a y 2 0 0 2

J.v.W.

analysis

37 mm

5.4

I II III IV

object set to ‘actor’

5.5

fi g. 5.4
The ‘realtime buttons’
window.

fi g. 5.5
Sketch of the ‘interac-
tion’ diagram for the
house.

With the sensors, controllers and actuators an
object can be made interactive. You can think of
sensors as the senses of a life form, the control-
lers are the brain and the actuators are the mus-
cles. The row beneath the sensors, controllers and
actuators are called the ‘logic bricks’. It is possible
to add as many logic bricks as you like.
There is only one way to build an interaction net-
work and that is from left to right. The position
of the sensor, controller and actuator bricks are
all fi xed in one column. Besides, every logic brick
(i.e. sensor, controller or actuator that is part of
an interaction network) is always assigned to an
object, but more than one object can be part of an
interaction network.

21S e p t e m b e r 2 0 0 1 - M a y 2 0 0 2

J.v.W.

an
al

ys
is

37 mm
5.2 List of available logic bricks

The following list is shown here, to give an impres-
sion of the possible means to trigger objects within
Blender. The means (bricks) to built interactivity
into projects.

5.2.1 Pulses (timing)
I will start with pulses (fi gure below), because
pulses are coming from every sensor and trigger
both the controllers and the actuators.

A pulse is like a transistor between the values
TRUE or FALSE. Each controller is always evalu-
ated when it receives a pulse, whether the pulse
is TRUE or FALSE. The input ‘gate’ of a controller
remembers the last pulse value. This is necessary
for controllers being linked by multiple sensors,
then it can still do a logical AND or OR operation
on all inputs. When a controller is triggered, and
after evaluation of all inputs, it can either decide
to execute the internal script or to send a pulse to
the actuators.
An actuator reacts to a pulse in a different way,
with a TRUE pulse it switches itself ON (makes
itself active), with a FALSE pulse it turns itself
OFF.

Now what is the ‘timing’ of these pulses? That is
sometimes diffi cult to say within Blender. Anyway,
it is not consistent or clear when (precisely) a
pulse is send and how an actuator reacts on it.
The reason for this is that not all the different
actuators evaluate these pulses the same way.
Besides, the game engine is, in contradiction to
the physics engine, variable in speed. This means
that the physics engine ‘obeys’ its resources to
keep on track, while the game engine will slow
down when resources drop. This is related to the
fact that the physics engine clock runs on time
(seconds); every nth second the state of objects
is updated/evaluated, while the game engine runs
on frames; every frame a network of logic bricks
is evaluated. Pulses on their turn are ‘fi red’ every
nth second.

At the moment NaN is busy to make an overview
of the current functionality and implementation of
the logic system (sensors, controllers, actuators
and pulses) in Blender.

5.2.2 Sensors

Always sensor:

The always sensor gives a pulse ‘always’. ‘Always’
means every frame. The pulses trigger both the
controllers and the actuators. The pulses can be
set to positive (true) or to negative (false).

Keyboard sensor:

The keyboard sensor provides the interface (inter-
action) between the game and the user. Every key
can be assigned to trigger events.

Mouse sensor:

The mouse sensor is able to watch for mouse
clicks, mouse movement or a mouse over. But to
get the position of the mouse pointer, a python
script has to be used.

Touch sensor:

The touch sensor fi res a pulse when the object it
is assigned to, touches an object with a certain
material.

Collision sensor:

The collision sensor is a general sensor to detect
contact between objects.

Near sensor:

The near sensor can react on actors near the
object it’s assigned to.

Radar sensor:

The radar sensor scans the environment for an
object along the “x”, “y” or “z” axis. The angle and
distance to be scanned can be set.

Property sensor:

The property sensor checks an attribute of an
object attached to the same object.

22 S e p t e m b e r 2 0 0 1 - M a y 2 0 0 2

J.v.W.

analysis

37 mm
Motion actuator:

The Motion Actuator is maybe the most important
Actuator. It moves, rotates or applies a velocity to
objects.

Constraint actuator:

With the Constraint actuator you can limit an
objects freedom of movement in x, y and/or z
direction to a certain degree.

IPO actuator:

The IPO actuator can play the ‘IPO-curves’ for the
object that owns the Actuator. ‘IPO-curves’ are
the Blender terminology for the animation curves.
‘IPO’ stands for interpolation.

Camera Actuator:

The Camera actuator tries to mimic a real cam-
eraman. It keeps the actor in fi eld of view and
stays at a certain distance from the object. Also
the motion is soft and there is some delay in the
reaction on the motion of the object.

Random sensor:

The random sensor fi res a pulse randomly, every
xth frame, according to the pulse settings.

Ray sensor:

The ray sensor casts a ray for the preferable dis-
tance to set. If the ray hits an object with the right
‘property’ or the right ‘material’ the sensor fi res
its pulse.

Message sensor:

The message sensor fi res its pulse when a ‘mes-
sage’ arrives for the object carrying the sensor.

5.2.3 Controllers

AND Controller:

The AND controller combines one or more inputs
from the sensors. All inputs must be active to pass
the AND controller.

OR controller:

The OR controller combines one, two or more
inputs from sensors. One or more inputs need to
be active to let the OR controller pass the pulse
through.

Expression controller:

With the Expression controller it is possible to add
some ‘code’ to the game logic. With the Expres-
sion controller the output of sensors attached to
it can be accessed and through this the properties
of the object.

Python controller:

The Python controller is the most powerful con-
troller in Blender. A Python script can be attached
to it, which allows objects to be controlled ranging
from simple movement up to complex gameplay.

5.2.4 Actuators

Action actuator:

The Action actuator can trigger IPO curves (Inter-
POlation curves; animation curves). It can play
these animations at fi ve different modes:
- Play:
 Plays the action from “Sta” (start) to “End” at

every positive pulse the Actuator gets. Another
pulse while playing is discarded (fi gure).

- Flipper:
 Plays the action from “Sta” to “End” on activa-

tion. When the activation ends it plays back-
wards from the current position. When a new
activation reaches the actuator the action will
be played from the current position on.

- Loop Stop:
 Plays the action in a loop as long as the pulse is

positive. It stops at the current position when
the pulse turns negative.

- Loop End:
 This plays the Action repeatedly as long as

there is a positive pulse. When the pulse stops
it continues to play the action to the end and
then stops.

- Property:
 Plays the action for exactly the frame indicated

in the property entered in the fi eld “Prop”.

23S e p t e m b e r 2 0 0 1 - M a y 2 0 0 2

J.v.W.

an
al

ys
is

37 mm
Sound actuator:

The Sound actuator plays a ‘sound object’ when it
gets a pulse.

Property actuator:

The Property actuator can be set to three different
modes:
- Assign:
 Assigns a value or Expression to a Property

(fi gure above).
- Add:
 Adds the value or result of an expression to a

property.
- Copy:
 Copies a Property from the Object with the

name given in “OB: Sphere” into the Property
“Prop: Proppy”. This is a way to pass informa-
tion between objects (picture above).

Edit Object actuator:

This actuator performs actions on objects itself,
like adding new objects, deleting objects, etc.

Scene actuator:

The Scene actuator is meant for switching scenes
and cameras in the game engine or adding over-
lay or background scenes. There are eight dif-
ferent scene actuators: restart, set scene, set
camera (fi gure), add overlay scene, add back-
ground scene, remove scene, suspend scene and
resume scene.

Random actuator:

An often-needed function for games is a random
value to get more variation in movements or
enemy behavior. There are ten different random
actuator types.

Message actuator:

This actuator sends a message out, which can be
received and processed by the Message sensor.

5.3 Conclusion

Working with Blender can be rewarding. Learning
the basic tools for polygon modeling does not take
that much time, assuming that you have modeled
before in another 3D package. But modeling for an
interactive production is different than modeling
for static pictures to be rendered. Polygon count
has to be as low as possible to gain an accept-
able frame rate. Modeling, texturing and lighting
took almost two weeks to be fi nished. It has to be
taken into account that within these two weeks I
learned (the basis of) working with Blender and
I built the house twice; the second time with
fewer polygons to boost the number of frames per
second. Compared with simple polygon modeling
- for the fi rst time - making the house interac-
tive took less time. The interactive editor is quite
straightforward. For a small interactive production
as the house it works fi ne. It took one and a half
week to learn and fi nish assigning the interactivity
to the house. For the house, only four different
kinds of sensors, one controller and three actua-
tors were used to build the interactivity. Besides,
no extra scripting (Python) was used.

Regarding creating interactivity, the following ini-
tial observations were made.
For a simple interactive production, there is no
need to have any knowledge of scripting. The
‘interactive window’ interface does not become
that cluttered with a small production. So that is
a good thing. But as soon as a project become
bigger and more complex, the ‘interactive window’
interface becomes disordered. All the different
sensors, controllers and actuators are stacked on
top of each other. To gain space these can all be
collapsed, but then you do not have an overview
of what is inside. A drawback is that there can
be a lot of ‘wires’ connecting the different sen-
sors, controllers and actuators. At this point it is
almost impossible to see clearly which one’s are
connected or not, especially when more than one
sensor is connected to a controller.

24 S e p t e m b e r 2 0 0 1 - M a y 2 0 0 2

J.v.W.

analysis

37 mm
6.1 Games

Computer game history does not go that far back.
The fi rst commercially released games became
available in the mid seventies. Despite being a
young fi eld there is a distinction possible between
games. Games can be divided into two broad
categories: skill-and-action games (emphasizing
perceptual and motor skills) and strategy games
(emphasizing cognitive effort). Each of these two
major categories has subcategories. A third cat-
egory is coming up: hybrids (a combination of two
of the ‘standard’ categories).

6.1.1 Skill-and-action games
This is probably the largest and most popular cat-
egory of the computer games. Most of the com-
puter games are associated with skill-and-action

After a study of different kinds of interactive con-
tent, diverging from simulations to games, the
‘interactive 3D content’ diagram was made (see
fi g. 6.1, below).
This diagram is constructed in a way I think 3D
interactive content can be (sub)divided. This is
my perception, their are other possible diagrams
and probably it is not complete, but either way
its purpose is to give an insight to interactive 3D
content.

games. Arcade games are skill-and-action games.
This class can be characterized by real-time play
and heavy emphasis on graphics and sound. The
primary skills demanded of the player are hand-
eye coordination and fast reaction time.

Shooters (combat games)
Shooters all present a direct, violent confronta-
tion. The player must shoot and destroy the bad
guys. The challenge is to position oneself properly
to avoid being hit by the enemy while shooting
him. Two subcategories can be distinct: First-
person Shooters (FPS) and Third-person Shooters
(TPS). There are many variations on this theme,
most with small variations on the geometry of the
situation or the weaponry.

6. Types of interactive content

fi g. 6.1
Interaction 3D content
diagram; (sub)-divided
in a way according to
me.

6.1

25S e p t e m b e r 2 0 0 1 - M a y 2 0 0 2

J.v.W.

an
al

ys
is

37 mm
Examples:
- Space Invaders (1978, Taito America Corp.)
- Wolfestein 3D (1992, Grey Matters)
- Doom (1993, Midway Entertainment)
- Quake III Arena (1999, id Software)
- Unreal (1998, Epic Games)

Sports games
These games model popular sports. Sports games
offer the player a game he is already familiar with.
Thus there are games based on soccer, basket-
ball, baseball, tennis, boxing, skating, golf and
many others.

Examples:
- Fifa (soccer) (Electronic Arts Inc.)
- Madden NFL (football) (Electronic Arts Inc.)
- Tony Hawk’s Pro Skater (2000, Activision)
- NHL (ice hockey) (Electronic Arts Inc.)

Race games
Some race games involve a straightforward race.
Others allow the player to move at a constant
speed, but extract time penalties for failure to
skillfully negotiate an assortment of hazards. A
checkpoint has to be reached before the time has
elapsed.
The race games can be divided in real life simula-
tion (rally and formula one racing games) and the
more ‘futuristic’ race games. In the futuristic race
games the ‘car’ does not necessarily have wheels.
It can hover just above the ground (wipe out).

Examples:
- Outrun (1985, US Gold)
- Need for Speed (2000, Electronic Arts Inc.)
- Formula One 2000 (2000, Electronic Arts
 Inc.)
- Collin McRae Rally (1999, Codemasters)
 Crazy Cars (1997, Synaptic Soup)
- Wipe Out (1999, Psygnosis)
- Megarace (2001, Cryo)

Platform games
With platform games the player has to fi nd his
way trough several levels and solve puzzles and
‘fi ght’ his way trough impossible courses; he has
to climb, jump, dodge, swim etc. It is all about
skills. Like the name suggests, the player often
has to jump form one ‘platform’ to the other. Plat-
form games have always a third person of view
perspective.

Examples:
- Super Mario Bros. (1986, Nintendo)
- Prince of Persia (1989, Broderbund Software

inc.)
- Tomb Raider (1996, Core Design Ltd.)

- Sonic Adventure (1999, Sega)

The next two categories are not widely spread
anymore, but I think they will become more
interesting again with mobile (internet) devices
(mobile phones (UMTS), PDA’s (Pocket PC’s)
etc.). Because of the small screen size and lack
of extensive input devices, small games like
paddle and maze games are perfect to suite these
devices. The examples mentioned below are not
real 3D games, because they are from before the
‘3D age’, yet some of them have been ported to
3D.

Paddle games
This term covers all the PONG-based games.
Paddle games can be seen as the sports games of
yesterday. The central element in these games is
a paddle-controlled piece. The player has to use
the ball as a ‘weapon’ to batter or he as to use it
to catch the (many) ball(s), rather than to defl ect
it.

Examples:
- Pong (1958, Willy Higinbotham; he build
 a pong like game around a computer and a
 CRT at Brookhaven National Laboratory, [2])
- Breakout (1976, Atari)
- Avalanche (1978, Atari)

Maze games
The characteristics of maze games are the maze
of paths trough which the player must move. Most
of the time the player is pursued by bad ‘guys’.
The most successful of these is probably PAC-
MAN.

Examples:
- Pac-Man (1980, Namco)
- Jawbreakers (1982, Tigervision)

6.1.2 Strategy games
Strategy games are the second broad class of
computer games. These games emphasize cog-
nitation rather than manipulation. This does not
mean that skill-and-action games do not have any
strategic element at all. The major distinguishing
factor between strategy games and skill-and-
action games is the emphasis on motor skills.
All skill-and-action games require some motor
skills: strategy games do not. Another difference
between strategy games and skill-and-action
games is the fact that strategy games typically
require more time to play.

Adventures
These games derive from one of the oldest com-
puter games, called ‘adventure’. In these games

the adventurer must move through a complex
world, accumulating tools and booty adequate for
overcoming each obstacle, until fi nally the adven-
turer reaches the treasure or goal. The player has
to be aware of the different predator animals,
unidentifi able creatures, and henchmen lurking
around, while fi nding his path around. Adventures
are sometimes closer to puzzles than to games.
Adventures present intricate obstacles, which
once cracked, provide no longer a challenge to
the player.

Examples:
- Larry (1987, Sierra)
- Myst (1993, Cyan Productions)
- Alone in the dark (1997, I*Motion)

Role Playing Games (RPG’s)
In a RPG the player becomes another person.
He plays a role. The player is a wizard, a king, a
troll or one of the Knights of the Round Table for
instance. Most of the times the player can choose
between two or more sides he wants to be with
and which other character he wants to be. The
player must then search through a wide (fantasy)
world to fi nd and rescue a princes, but on the way
he must fi ght monsters and thrives. Because most
of the time the player is a fantasy character, Role
Playing Games are also called Fantasy Role Play-
ing games (FRP).

Examples:
- Diablo (1996, Blizzard Entertainment)
- Starwars Galaxies (2002, Lucas Arts)

Realtime Strategy games (RTS)/War
Games
In RTS games the player is in command of whole
army’s. The player has to move his men, weap-
onry, tanks, boats etc. carefully and strategic to
conquer the enemy. RTS games can be laid out in
WO II, future wars (WO III), the middle ages, in
space (fantasy, Star Trek) etc.
In the beginning these strategy games were turn
based instead of real time. Now computers and
internet connections become faster and the built in
‘artifi cial intelligence’ is more capable of handling
the decisions to be made in such realtime strategy
games, turn based strategy games become out of
date.

Examples:
- Myth: The fallen lords (1997, Bungie Soft-
 ware)
- Age of Empires (1997, Ensemble Studios)
- Civilization II (1996, MicroProse)
- Command & Conquer (1995, Westwood Stu-
 dios)

26 S e p t e m b e r 2 0 0 1 - M a y 2 0 0 2

J.v.W.

analysis

37 mm
- Commandos 2: Men Of Courage (2001, Pyro
 Studios)
- Gangsters (1998, Hothouse Productions)

Sims
Sims are (arcade) simulations of real life situa-
tions. The player has to build a city and satisfi es
its citizens for instance. Or the player has to fl y
a (passenger) plane. Not arcade like but a ‘real’
plane with all the possible controls available. The
player has to take of, fl y to a destination and land
the plane in the end. So there are more examples
possible, but the main key of sims is to represent
‘real’ life as real as possible. The player can con-
trol near every aspect.

Examples:
- Flight Simulator 2000 (1999, Microsoft)
- Sim City 3000 (1999, Maxis)
- The Sims (2000, Maxis)
- Railroad Tycoon (1996, PopTop Software)

(On-line) multiplayer games
Multiplayer games can be all kind of games.
The important difference is that the player plays
against another human instead of the computer.
The interpersonal relationship between players
seems to be a very important aspect of playing
a computer game. Due to the increasing internet
speed and accessibility it becomes more and more
popular. The reward of defeating a human oppo-
nent can be far greater than defeating the com-
puter.
The two most popular (on-line) multiplayer games
are the First Person Shooters (FPS) and the Real
Time Strategy games.

Examples:
- Quake III Arena (2000, id Software)
- Team Fortress (2000, Valve Software)
- Planetside (2002, Sony On-line)
- Halo (2002, Bungie)

6.1.3 Hybrids
In this category boundaries become blurred. Two
or more ‘standard’ (sub)categories are combined
to a new experience in game playing. Hybrids will
be more and more common in game design. For
example, a game in which the player can fl y and
shoot in a space craft, land in a space station,
steps out of his space craft and starts shooting the
‘bad’ guys (‘Falcone: Into the Mealstrom’ by Point
Blank). This example is a blend of arcade-space
dogfi ghting and a fi rst person shooter (FPS).
Another example is Warcraft. Warcraft is a blend
between a Realtime Strategy game (RTS) and a
Role Playing Game (RPG).
It must be said that these hybrids are not as

new as they sound like. Some games mentioned
in sections 6.1.1 and 6.1.2 are already a sort of
hybrid, but with the availability of new technolo-
gies, faster computers and better graphical cards,
it is now really possible to integrate different
categories into a new sort of game. Like with
the example I mentioned before (Falcone: Into
the Mealstrom), it was previously not possible to
make a game in where you could fl y and shoot
around in deep-space and on the other hand could
walk around in a small space station (compared
to the big space around) and battle man against
man. The game engine to support this needs a
very fast computer.
As said, hybrids have been around for longer, but
were not always that obvious. For instance Deus
Ex (2000, Eidos Interactive). This game mixed a
variety of genre elements, including action and
point-of-view of First Person Shooters, story,
character development and exploration of Role
Playing games and the economic management
and strategic expression of Strategy games.

6.2 Other interactive 3D content

Besides games there is also ‘non-game’ interac-
tive 3D content, described below.

6.2.1 Simulations
3D simulations can be used to imitate real life sit-
uations. A car accident has to be investigated for
instance. With the clues from the scene, the simu-
lation can be built and conclusions can be made
afterwards. But a set of marbles rolling down a
course is also a simulation.
The interactivity to be built in such simulations is
not the possibility to navigate trough a scene by
ones self, but the interaction of the various ele-
ments in the scene itself. The elements have to
react on each other.

6.2.2 3D content (for internet)
The creation of 3D (interactive) internet content
will become more important and widely spread.
I think it will be the next step, but it has to be
seen if it will be integrated well. But it will be a
welcome addition to the fl at interfaces of today’s
sites, especially when it is used for navigation.
In this area you can also think of 3D (multiplayer)
games to be played in the web browser.

6.2.3 Product Presentations
Another possibility is 3D product presentations
that make it possible for the client to view the
product from all sides before he will buy it or even
before it is actually produced. With the addition of

interactivity the client is also able to open doors,
look inside products or start a virtual CD player
for instance. Product presentation is close to ‘3D
content for internet’, because most of the time
this concept of pre-visualisation is offered on the
internet.

6.2.4 Game prototyping
Prototyping is done to make an example of how
the end result will look like in a very short period
of time. Prototyping can be done for almost
everything, but in this perspective you can think
of prototyping a concept for a new game. Build-
ing the environment, the character, the opponents
and the interaction to see if some ideas will work
properly, as you would expect. After you or your
client is satisfi ed you can start building the fi nal
game.

6.3 Conclusion

This overview of interactive 3D content has been
given to describe the terminology of interactive
3D content. This terminology is used throughout
the rest of this report. Especially in section 9.3
where example games are listed which are pos-
sible to make with Blender at this moment.

27S e p t e m b e r 2 0 0 1 - M a y 2 0 0 2

J.v.W.

an
al

ys
is

37 mm

This section will give a description of existing
game development teams. How they manage
their projects and deal with problems they come
along. The information is obtained from different
sources, diverging from the content creation team
at NaN itself to the ‘postmortems’ of Gamasutra.
The information obtained from the content cre-
ation team is also used for the ‘game develop-
ment process’ described in section 8.1.

 7.1 Content creation team NaN

For the interviews a questionnaire has been used
(see appendix II) as a guide. Therefore, a brief
summary of the different interviews is given
with the different members of the content team
together.

The content team:
The content team at NaN exists of four people
with different backgrounds and nationalities. The
different backgrounds are from an architectural
and a graphical nature, while the nationalities are
Dutch, American and Canadian. All were mem-
bers of the ‘Blender community’ and were using
Blender as a hobby before they start working at
NaN.

Environment:
The environment stimulates the work process of
all four members. The position of the desks and
computers is towards each other. So they can see
each other directly, what makes fast communica-
tion possible. Besides the positioning of the furni-
ture, the content team owns a lot of movies and
games for inspiration and of course relaxation.
To write down initial ideas, most of the members
use sketch books. They sketch with pens, pencils
and markers. To sketch out the big picture for a
project they use a big paper on the wall. This is
also used for storyboarding animations. The big
advantage of using ‘wall paper’ is that everybody
can see it clear how far the project has been pro-
gressed and what still has to be done.

Productions ever made with Blender by the
content team:
- Graphics (stills)
- Holograms
- Animations
- Fly troughs

7. Game development teams

- TV commercials
- Games:
 2D shooters (top down view)
 ‘On rail’ shooters (like Virtua Cop and Time

Crisis)
 3rd person shooters (like Mechwarrior)
 Race games (from futuristic like Wipeout to
 more standard race games)
 Platform games
 Puzzle games

All the productions (games etc.) made by the con-
tent creation team are (almost) always for promo-
tional purpose on-line.

Design sequence:
- Assignment briefi ng:
 A description of the project will be given by a

3rd party (management and/or PR team). Time

7.1

7.2

7.3

7.4

schedule is made and the decision is made
about how many people will participate on the
project

- Brainstorming with the hole team about:
Genre, style (cartoons, science fi ction, what kind
of animations etc.), gameplay and story.

- Inspiration and reference:
 Inspiration for the different projects is taken

from a wide amount of resources. Including
movies, television, commercials, books, comics,
magazines, internet and sometimes other com-
puter games.

- Storyboarding and visualization:
 Sequences of pictures are drawn for the cut-

scenes (animations, no interactivity); for the
in-game buildings, characters etc. only a few
pictures are drawn to get an impression and to
decide which designs will be used.

- Building the geometry:
 When all the designs are fi nished and been

approved, the designs will be built in Blender.

- Game logic (interactivity):
 When there is enough time the game logic will

be laid out on paper. All the objects that partici-
pate in the interaction are connected in a way
they will interact to each other. But most of the
time the game logic is build by one person by
trail and error.

- Sound design:
 After assigning the game logic is done, one

person adds the different sound samples.
Strictly speaking is the process of adding
sounds a process of building game logic too.
For example, the sound of a opening door must
only be played when the door actually opens.
So not only a IPO actuator, but also a sound
actuator has to be added to the door.

 The sounds used in a project are extracted
from sound libraries or recorded live. Then
these ‘rough’ sounds are edited until they suite
the atmosphere they will be used in.

- Execution:
 When all the different parts of the game are

build, all these parts will be put together and
tested until the game is fi nished for release.

- Deployment:
 Finally, pictures for on-line use on the Blender

site are rendered.

fi g. 7.1 - 7.4
An example of a (part
of) storyboard for an
animation. (Courtesy
of and © by Reevan
McKay, member of the
content creation team
of NaN)

28 S e p t e m b e r 2 0 0 1 - M a y 2 0 0 2

J.v.W.

analysis

37 mm

Consistency. Within Blender sometimes it is hard
to predict what’s going to happen. The sensors
and/or actuators are not predictable and consis-
tent through out a project. When a set of logic
bricks work fi ne in one condition and situation,
does not mean that it will work the same on
another object and place.

7.2 Postmortems

The ‘Postmortems’ from Gamasutra [3] describe
the process and pitfalls of making a (specifi c)
game. Gamasutra is a part of the Gama Network.
The Gama Network provides resources for game
development. These resources are available in
print (Game Developer magazine), a yearly event
(Game Developers conference) and thus on-line
(Gamasutra.com).
In this case I will only describe ‘what went wrong’
according to the ‘Postmortems’, because that can
give extra information on how to improve the
game development process. The ‘game data’ will
also be listed to give an overview of how exten-
sive the project really was. The ‘game data’ are
the fi gures of how many people worked on the
project, how long it took (from start to release)
and what soft- and
hardware was used.

Lionhead Studios’ Black
& White and Lucas Arts’
Star Wars Starfi ghter
are described here,
because their game
development process
involves problems
too. It gives insight
into the workfl ow and
problems of a major
studio during a game
development process,

7.6

compared to the (earlier described, see section
7.1) problems of the (relative small) content cre-
ation team of NaN. Besides, I liked to play these
games personally.

7.2.1 Lionhead Studios’ Black & White [4]
Black and White is a mixture between a role play-
ing game in ‘god mode’ and an adventure. As a
player you can control and infl uence people in an
entire world. The player can choose between good
and evil to rule and change the world.

Planning the story. It was very hard to estimate
how long it would take to construct and write the
story element. The free-form nature of the game
required an unfolding tale to give it some struc-
ture and lead it to a conclusion. It was expected
that the story would take no more than two
months, but after a while it was decided to hire a
professional games scripter writer. In the end the
story was more than 60,000 words, the size of a
novel.

Fixing the bugs. Hitting the ‘Alpha’ (fi rst play-
able game; all elements are put together), there
were more than 3,000 bugs. These bugs had to
be reduced to zero within six week. But when one
bug was solved, three more were created. By this
stage the team was very tired and the only thing
that kept the team going was the sense that the
end was in sight. The last ten bugs were the hard-
est to fi x and it almost was as if the game did not
wanted to be fi nished.

The project was too big. Black & White got to be so
large that it almost felt as if you were lost within
it. In the end there were over a million lines of
code within the game. Loading up even the most
simple of the smallest tools would take many min-
utes, and compiling the entire game took over a
hour, which meant that even a tiny change could
take a whole day to implement.

7.7

Task sharing:
The different task of modeling, making textures,
animations, music and game logic are divided by
the strengths of every individual member and/or
what every individual likes to do. The last things
to be added are the game logic and music.

Problems/diffi culties:
Very little development time. The content creation
team gets normally three to six weeks to fi nish
a project, while other game development teams
get six to twelve months for a comparable project.
So most of the time some initial ideas have to be
dropped to fi nish the project within the given time
schedule.

The physics engine. Because of the ‘general’
nature of the physics engine, it is diffi cult to make
specialized games. During the game development
this has to be kept in mind.

The game logic. Making a 3D world interactive
causes a lot of frustration. A large production
makes the (game) logic interface very complex.
There are too many data blocks (i.e. logic bricks)
and connection ‘wires’ that clutter the inteface and
makes it very hard to fi nd the way around when
adjustments has to be done. There is no means to
organize the logic bricks. There is no way to get
an overview of all the objects and connected logic
related to the project. Another aspect of this, is
the fact that all the logic bricks and properties are
linked to objects. So when you have to change a
property that is spread over more objects, you
have to select all the objects one by one and
change the appropriate property.

7.5

fi g. 7.5
Concept Drawing for
the Creature [4].

fi g. 7.6
The fi nal product. A in-
game picture [4].

fi g. 7.7
Several ship models
developed for Star
Wars Starfi ghter, and
an early screenshot of
a pirate bomber [5].

29S e p t e m b e r 2 0 0 1 - M a y 2 0 0 2

J.v.W.

an
al

ys
is

37 mm
Leaving things out. As in every project some fea-
tures did not make the fi nished product. But in
this case it was not because of problems caused
by software or hardware, but it came down to
emotional issues. For example, the original idea of
the ‘Creatures’ was that the player could choose
to make any living thing a Creature. The player
had to be able to select an ant and grow that,
or a human being from a tribe, and raise him or
her. One of the artists, spent a long time drawing
concepts and sketches depicting what the Crea-
tures could look like at various stages of their
development. This of course included humans.
But because of the idea that people would have
certain expectations from a human. Players would
not expect a turtle to learn as quickly as a man,
but if the people would be dumped down, they
would seem like a proto-hominid race from eons
ago, and that was not the intention either.

In summary:
The problems the team of Lionhead Studio’s came
along were: a lack of planning, lack of prototyping,
and they started too late in the project with play-
testing.

Game data:
Creator: Lionhead Studios
Publisher: Electronic Arts
Start date: February 1998
Release date: March 2001
Full time developers: 25
Budget: $5.7 million

Hardware used: 800Mhz Pentium III’s with 256MB
RAM, 30GB hard drives, Nvidia GeForce graphics
cards

Software used: Microsoft Dev Studio, 3D Studio
Max

7.8

Notable technologies: Bink for video playback,
Immersion touch sense for force-feedback mouse

Lines of code: approximately 2 million

7.2.2 Lucas Arts’ Star Wars Starfi ghter [5]
Star Wars Starfi ghter is a space-combat game in
arcade style. As a player you can have the control
over three different starfi ghters (i.e. planes). With
the starfi ghter you have to save innocent citizens
from an invasion of pirates. Space dogfi ghts,
attack runs and escort missions are the outcome.

Initial lack of detailed design. Initially it was
assumed to stay as far as possible from the events
in the fi lm Star Wars: Episode I, where the game
is based on. Because the game was going to tell
one of the fi rst original stories set in the time line
of the new fi lm (Episode II, yet to be released).
There was no feeling of where the boundaries
were with respect to planets, characters, vehicles
and the like.
The fi rst game design described a pirate war far
divorced from the events of the fi lm. After circu-
lating this design, ‘Licensing’ contacted the team
and explained that the design contained too many
pirate elements; the games should contain more
elements of the fi lm. The “moving target” nature
of this exchange ended up being very disruptive
and effectively paralyzed the design effort for
weeks at the time that the design team wandered
from idea to idea, wondering what fi t into continu-
ity with the fi lm and what was straying into areas
that should not be entered.

Not enough attention paid to performance. There
was a pervasive attitude among many of the team
that code problems could safely ignored until they
showed up as hotspots on a profi ling run. There
is some merit to this strategy, since premature

7.9

optimization efforts can be more wasteful than
not fi xing the code at all. But since profi ling can
turn up hidden problems in areas of the code
that the team had previously thought complete
or issue-free. But in this case it was important
that the team had started much earlier than it did
to overcome some problems. For example, there
were severe performance problems in the collision
detection systems that would have been identifi ed
immediately if it had been profi led sooner. As it
happened, by the time it was realized that the col-
lision detection was working poorly, the best that
could be done was apply spot fi xes instead of the
large-scale reworking that the problem actually
demanded.

Space-to-planet. If there was anything about the
original Star Wars Starfi ghter pitch that met with
widespread enthusiasm within the team, it was
the idea of seamlessly transitioning from planet-
side environments to the depths of space and back
again. Dog fi ghting close to the planet surface has
its own appeal, but the idea about the promise of
being able to pull back on the stick and blast off
all the way into space that was great. This concept
was so exciting to the team that the original game
pitch featured this idea predominantly.

First, there were the technical considerations. A
planet is big, really big. Even a small planet
would require dynamically creating thousands of
terrain tiles. Although most of these tiles could be
procedurally generated, they would still need to
be created and discarded on the fl y; depending
on the player’s location, custom mission-area tiles
would have to be streamed in from the hard disk,
all while maintaining frame rate. Since the idea
was to allow the player to fl y absolutely anywhere
on the planet, ordering this data on the disk in
a streaming-friendly format was problematic. The
situation was exacerbated by requiring even the
lowest-resolution terrain height maps to be much
higher resolution than they really needed to be.
This in turn made higher theoretical demands on
the streaming and resource systems.

This single feature had introduced a tremendous
amount of technical risk to the project, and yet
the team had blindly charged ahead anyway
because of the idea’s inherent coolness factor. The
technical issues, however, did not describe the full
extent of the problems with this feature. Quite
quickly the team also came to realize that there
were plenty of game design issues implied by the
space-to-planet concept. For example, there was
the constant issue of player craft speed. It was
decided that the ships should have a top speed
of about 450 miles per hour, because dog fi ghting

fi g. 7.8
The ‘Eve’ level design
tool used to build Star
Wars Star-fi ghter [5].

fi g. 7.9
Design shematic for
one of the Lock mis-
sions.
Level designers made
elaborate plans, such
as this example, for
every level [5].

30 S e p t e m b e r 2 0 0 1 - M a y 2 0 0 2

J.v.W.

analysis

37 mm
and bombing ground targets becomes extremely
diffi cult if you move much faster. However, at
that speed it would take the player 20 minutes
to achieve a low-planet orbit. To circumnavigate
a small planet the size of the moon could take as
long as 16 hours. Although the team was able to
brainstorm several fanciful solutions to this prob-
lem, most were time- or cost-prohibitive, and all
of the solutions threatened to shatter the illusion
that you were in a small fi ghter craft, engaged in
small, intimate battles.

In summary:
The problems the team of Lucas Arts’ came along
were: initial lack of a detailed game design before
starting to build the game, lack (or too late) of
testing code on performance issues, lack of tech-
nical considerations; the game idea happened to
be too complex.

Game data:
Creator: Lucas Arts
Publisher: Lucas Arts
Start date: April 1998
Release date: February 2001
Full time developers: approximately 40

Hardware used: 700Mhz Pentium III’s with 256MB
RAM, Nvidia GeForce graphics cards, PS2 (Play-
station 2) tools

Software used: Windows 2000, Microsoft C++,
Metroworks for PS2, 3D Studio Max, Softimage,
Photoshop, Bryce, Visual SourceSafe, Perl, After-
Effects, Premiere

Notable technologies: Eve level design tool, Miles
Sound System, ObjectSpace STL, Macromedia/
Secret Level Flash, Planet Blue’s Tulip for preren-
dered cut scene lipsynching

Lines of code: 301,000 (including tools)

7.2.3 More postmortems
To give some more impressions of game projects
and there magnitude, there will only list the ‘game
data’.

Poptop Software’s Tropico [6]
In Tropico the player becomes a dictator of a small
tropical island. As the dictator the player must
feed his people and keep them happy, healthy,
and safe (both from themselves as well as from
outside threats). The dictator must also provide
entertainment and places of worship and he has
to ensure that the island’s economy grows con-
tinuously.

Creator: Poptop Software
Publisher: Gathering of Developers
Start date: April 1999
Release date: April 2001
Full time developers: 10 (7 artists, 3 program-
mers)
Budget: $1.5 million

Hardware used: 550Mhz Pentium III’s with 512MB
RAM, 40GB hard drives

Software used: Visual C++ 6.0, Visual Source-
Safe 6.0, 3D Studio Max 3.1, Character Studio
2.2, Photoshop 5.5, Three Factory plug-in for 3D
Studio Max

Notable technologies: Bink Video, Miles Sound
System

Lines of code: approximately 150,000 (plus 20,000
for tools)

Muckyfoot’s Startopia [7]
Startopia is a building and resource management
game from the same genre as SimCity and Theme
Park. The player takes charge of an abandoned
space station and his task is to turn it into a thriv-
ing complex where alien space travellers can stay
or even live.

Creator: Muckyfoot Productions
Publisher: Eidos Interactive
Start date: March 1999
Release date: June 2001
Full time developers: Core team - 6 programmers,
4 artists, 3 testers, 1 designer, 1 musician (Sup-
port resources - 2 programmers, 2 artists)
Budget: $3.0 million

Hardware used: 550Mhz Pentium III’s with 128MB
RAM, 20GB hard drives, various 3D accelerator
cards

Software used: WordPad, MS Visual C++, Sourc-
eSafe, Photoshop, Paintshop Pro, 3D Studio Max,
paper, pencils and pens

Notable technologies: Direct X, Bink, Peer Engine

Lines of code: 33,5000

Raven Software’s Soldier of Fortune [8]
Soldier of Fortune is a First Person Shooter (FPS).
The player is an ex-special operative agent and
he is tasked with infi ltrating Soviet-held Prague
during the height of the Cold War.

Creator: Raven Software
Publisher: Activision
Start date: April 1998
Release date: March 2000
Full time developers: 20
Budget: multi-million-dollar budget

Hardware used: 550Mhz Pentium’s with 128MB
RAM, 18GB hard drives, TNT2 graphics cards

Software used: Microsoft Visual C++ 6.0, Microsoft
Visual SourceSafe 6.0, 3D Studio Max 2.5, Softi-
mage 3D, Photoshop

Notable technologies: Licensed the Quake 2 engine
from id Software (using OpenGL), motion-capture
data from House of Moves, force feedback, A3D/
EAX 3D sound, World Opponent Network (WON)
match making services

Lines of code: 406,044

7.3 Conclusion

Every game development team or game devel-
oper has to deal with several diffi culties during
the game development process, even a small
development team as the content team of NaN is.
All have to deal with a tight time schedule. But the
biggest difference for the content creation team
of NaN compared with other development teams
is that the content creation team of NaN has only
four to six weeks compared with two to four years
of development time for a new game. It tends to
be that there is less and less time for prototyping.
The available time for creating a new game title
will be more or less the same, but the complexity
and magnitude of a game will expand. Players are
ever and again expecting more exciting and new
features and game play.
So game development teams need a application
with which they can design, build, texture, create
interactivity and playtest in a very short period of
time.

31S e p t e m b e r 2 0 0 1 - M a y 2 0 0 2

J.v.W.

an
al

ys
is

37 mm

8. Development process

The design process of making the house is
described in section 5.1 and an impression of
game development teams (especially NaN’s con-
tent team) and their processes is described in
section 7. A more general approach for the game
development process will be given now.
Before this is done, it has to be said that game

development is complex process. It is the creative
mind that (should) guide to develop a great game.
It is an artistic process in the fi rst place. Second,
it is also a very technical process. A lot of code has
to be generated. Probably, the game development
can be best compared to the fi lm making and/or
product development process.

8.1 Game development process

The game development process, or any other cre-
ative process, will never be a real linear process,

but a process of different stages which will overlay
and will interact with each other. Considering that
it is hard to write down a non linear process or a
way of thinking, a process in a successive order
is given. These are the steps that are, most of
the time, taken during game development. This
process is shown in fi gure 8.1, below. To show
the game development process can be compared
with product development process. The product
development process is shown below the game
development process.

This diagram (fi g. 8.1) results from the process of

fi g. 8.1
The game development
process.

8.1

(1) The I/O structure is the system
that communicates information
between the computer and the
player.

 The game structure is the internal
architecture of causal relation-
ships that defi ne the obstacles
the player must overcome in the
course of the game.

(2) Deliverables: what is fi nished
after every step.

(3) The design Bible describes the
(background) story for the game
and it includes sample descrip-
tions of what the play will do such
as:

 - What form is the interaction
 taking?

 - Are the players making story
 choices in a branch story
 composed on scenes, or are
 they roaming an environment
 as in a adventure game?

 - Do the players pick up items?
 - How do the players talk to

 people they meet?
 - What does the interface look

 like?
 - etc.

(4) The product development pro-
cess for comparison.

32 S e p t e m b e r 2 0 0 1 - M a y 2 0 0 2

J.v.W.

analysis

37 mm
building the house, the information obtained from
the content creation team at NaN and it is loosely
based on the product development process.
The following steps are included in the game
development process:
- Briefi ng
- Research
- Brainstorming
- Storyboarding and visualization
- Finalizing the design
- Building the game elements
- Building the interactivity
- Play testing
- Publishing the project

8.2 Conclusion

As said before the game development process will
never be a process in a successive order. Within
a development team, a lot of steps will and can
be done simultaneous. When later on a start is
made with creating new concepts for ‘building
interactivity’ (section 13), it can be useful to take
this process into account.

33S e p t e m b e r 2 0 0 1 - M a y 2 0 0 2

J.v.W.

an
al

ys
is

37 mm

Now the ‘game development process’ has been
described in the previous section, I will look whom
Blender and especially the interaction creation
part is intend for. What is and will be the target
group.

9.1 Target group Blender

The interactive creation part within Blender is not
only intended for game creators, despite the fact
that until now there is only talked about ‘game
creation’. The possibility to use interactive Blender
fi les within a web browser (Blender 3D Plug-in)
and to export Blender fi les as ‘stand alone’ pro-
ductions (like a Macromedia Director™ projector),
makes Blender also interesting for other users
than game creators alone.
With the 3D plug-in it is, of course, possible to
make 3D games integrated in a web site, but also
3D product presentations (on-line shops) and
architectural walkthroughs (visualizations of build-
ings). The possibility to use Blender fi les within
Powerpoint™, Word™ and Director™ means also
that 3D multimedia presentations can be built.
The target group can be divided into ‘profes-
sional’ and ‘home’ users. The professional users
can be subdivided again into game- and multime-
dia developers.

Game artists/creators
Game artists can use Blender to build entire
games within Blender. They can build, texture,
animate and make it interactive and publish it as
a stand-alone game or publish it for use in a web
browser with the available plug-in.
Another possibility is to use Blender for concept
testing (prototyping). To build - with less pro-
gramming - game ideas fast and test them.

Multimedia and web designers/developers
Multimedia and web designers can use Blender
to build 3D web environments, product presenta-
tions, walkthroughs (for architects), 3D site navi-
gation structures, 3D advertisement banners and
to enhance presentations in general with (interac-
tive) 3D diagrams, graphs etc.

‘Home users’
Because of the wide ‘user base’ NaN has reached
with its free of charge version of Blender (Cre-
ator), the home user has to be taken into account

9. Interactivity and Blender

too. The home user or hobbyist can use Blender
for their own purpose. This can be applied to one
or more of the mentioned things above. On the
understanding that a home user is willing to learn
Blender, because it is not a easy done.

The target group of Blender is widely spread.
Assuming that not all the (future) users are able
to built their 3D content within Blender (e.g. they
import fi les from other 3D packages), they must
be able to make their 3D content interactive within
Blender. The different users, with different back-
grounds, must be able to use and understand the
working and principles of building the interactivity.
This process must be easy to adopt and well laid
out as well for beginners as for advanced users,
whom are using Blender and its current ‘interac-
tive building’ part.

9.2 What kind of 3D content?

Now I have described the users I will give a more
detailed description of what kind of interactive 3D
content Blender is (will be) meant for.

Games:
- Small games which are ‘chapter’ or ‘sequential’

based
 With the rise of internet and the forthcom-

ing second (and third) generation of mobile
phones, games that can be developed for these
two purposes in a fast and easy way will have a
great potential. With Blender these games can
be developed very fast within one package.
For instance, every week (or month) a new
chapter/level can be added to the game.

- Games which require a short development
time

 This is very related to the ‘chapter’ based
games or games that require to be released in
a very short period.

- Games for mobile devices (PDA’s, mobile
phones)

 Small games for small screens, that can be
made in an easy way and can be played with
the controls available on the mobile device.
Also related to ‘chapter’ based games, with the
difference that it not necessarily has to be a
chapter based game, but it can also be a game
on its own.

- 3D games for internet
 Games that can be played within a web browser.

This can be standalone games or multiplayer
games played over the internet.

- Prototyping games
 Before committing to the process of making a

game, a developer fi rst wants to know if his

ideas will work as he intended them to do.
Blender can be used for this kind of ‘games’.
Parts of a new game can be made very quick
and tested. In this way a developer can change
some ideas and let them aprove by others
before building the actual game.

Other 3D content:
- 3D presentations
 Presentations can be accompanied by (interac-

tive) 3D elements. You can think of 3D diagrams
which change over time or when you click on
them. This and other 3D enhancements can be
included within multimedia/presentation pack-
ages like Powerpoint™ and Director™.

- Architectural walkthroughs
 As the name suggests, architects can make

their buildings in 3D and ‘walk’ trough it inter-
actively. Clients can see their house from the
inside, see how the sun light falls in a room etc.
before it is actual build.

- 3D site navigation structures
 You can also think of navigating trough a web-

site with a 3D menu or you can go even a step
further, a virtual room where you can walk
around and fi nding the information you are
after.

- 3D advertisement banners
 Instead of the ‘standard’ gif animations used

on web sites, it is possible to make the banners
3D. This is not a real interactive application,
but it is possible to make it interactive with the
addition of special placed links within the 3D
environment.

- Simulations
 Simulations can be made of real life events to

show what can happen or what has happened.
For instance a car accident can be simulated to
show in a clearer way what really happened. In
this case the interactivity to be built is how the
different cars and their environment will inter-
act with each other.

9.3 Example games

What follows now is an indication of what sort
of games are possible to make with Blender and
must - at least - be possible to make with the new
graphical interface to be designed.
Essentially any kind of game can be made with
Blender, but there are some restrictions on the
graphical output, the physics engine and the game
logic. Graphically not every aspect of most recent
games is available in Blender’s game engine.
There are, for instance, no refl ections, particle
effects (explosions) and transparency (limited).
The particle system mentioned in section 4.2 (4th

34 S e p t e m b e r 2 0 0 1 - M a y 2 0 0 2

J.v.W.

analysis

37 mm
out) to more regular.

Why are this good examples?
The examples shown in fi gure 9.4 are all games
that can be made within Blender. Some are very
old (Asteroids), but they represent what is pos-
sible with the game logic within Blender without
coding to much in Python. All example games
given here are games without real ‘intelligent’
opponents, what would be the case with a soccer
game or a quake alike shooter with a lot of ‘intel-
ligent’ bots.

9.4

item) does not work wothin the game engine, but
is only for rendering animations or stills.
The physics engine has a ‘general’ nature as
mentioned before in section 7.1 (problems/dif-
fi culties), which makes it hard to build specialised
games. And to make more complicated games
(with behaviour etc.), a lot of programming in
Python is needed

Despite some lack of features, attractive games
can be made with Blender. To give an indication,
some examples are shown in fi gure 9.4. There is
made a distinction between the following games,
which could have been made with Blender:
- 2D shooters (top down):
 This are games with a 2D view, but the objects

are 3D. The examples given are ‘older’ games
and made with 2D sprites instead of 3D
objects.

- On rail shooters:
 ‘On rail’ means that the player is not walking on

his own, but goes from one predefi ned location
to the next when he fi nished shooting his oppo-
nents. The examples given are ‘Virtua Cop’ and
‘Time Crisis’. The content creation team of NaN

9.1

9.2

9.3

fi g. 91 - 9.3
On rail shooter: Hard-
mashed, made by the
content creation team
of NaN.

fi g 9.4
Example games for
Blender.

made also his own ‘on rail’ game: Hardmashed
(see fi g. 9.1, 9.2 and 9.3)

- Puzzles:
 With puzzles you can think of 3D ‘tetris-like’

games, maze games etc. The players has to
solve the puzzle before the game continuous to
the next level.

- Third Person Shooters:
 TPS like mechwarrior. The player follows the

main character from a third person standpoint
of view, instead of looking trough the eyes with
a First Person Shooters.

- Race games:
 Any kind of race game; from futuristic (Wipe-

35S e p t e m b e r 2 0 0 1 - M a y 2 0 0 2

J.v.W.

an
al

ys
is

37 mm
9.4 Game elements

Below a description of game elements can be
found that have to be taken into account building
games mentioned.
The game elements are all the individual parts
that together make up a game.

- Story:
 The story is not an asset like the other ele-

ments mentioned here, because it is not some-
thing tangible.

 A story can make or break a game. It is (obvi-
ously) not enough on its own, but it will help
creating a good game. Not every game needs
a good story. For instance a car racing game
does not need a good story at all, but elements
like car handling (game play), sounds and
opponent AI will make such a game a great
game, if implemented right.

 But the story creates the atmosphere in which
the game will play and defi nes the backgrounds
for the characters.

- Characters:
 These are all the ‘living’ creatures that inhabit

the game. From the main character (from fi rst
person or third person of view) to all the oppo-
nents.

- Environment (levels):
 This is everything from buildings, rooms, trees,

stairs, furniture etc. Basically all the ‘dead’ or
static elements within a game.

 A game is (normally) divided into different
levels. Each level has its own environment and
specifi c objects that defi ne the level.

- Sounds:
 A game is not fi nished without sound. Sound

is as important as nice graphics. With sound
a game comes alive. Think of sounds for foot-
steps, shooting, explosions, water (fountains),
environment (suspense) etc. Although sounds
are not visible, they can have a location within
a game environment. These are ‘3D sounds’.
For instance, when the character is walking
towards a fountain the sound of the running
water has to become louder and louder when
the character comes closer to the fountain.

- Animations:
 The environment and of course the characters

need to be animated to come alive. For instance
doors have to go open and elevators have to
go up and down. Concerning the characters,
these have to walk, walk upstairs, shoot, crawl,
swim, die etc. All these different ‘states’ have

to be pre animated.

- Cut scenes:
 These are small (pre-rendered) animations

(movies) between different levels to tell the
story and to connect the different levels. Cut
scenes can deepen the atmosphere of the
game when implemented right, but are often
assumed as interruptions of the game play,
because the player can only watch and cannot
interact with what he sees.

9.5 Levels of interactivity

Interactivity is no game element in the strict
sense, it (only) makes it possible to play the
game. It defi nes the scope a player can interact
with the game elements. Links are made between
elements that defi nes the ‘game play’.

Interactivity can be divided into different levels
of ‘complexity’. These levels are described below.
Separations between these levels are not always
that obvious and can be interpreted in differ-
ent ways. The conception of how these levels of
interactivity have to be subdivided are derived
from NaN itself. These levels from - ‘simple’ to
‘complex’ - are :

Logic

States

State engines

Behaviour

Artifi cial Intelligence (AI)

- Logic:
 ‘Logic’ is the lowest level of interactivity. In this

level the basic interactivity is assigned to the
different game elements. For instance, assign-
ing a key to a object to let it move or assigning
a sensor to a door to let it be opened when
something comes near.

- States:
 ‘States’ are the different conditions a char-

acter can be in. A character can have walk,
run, bump into a wall, fall, jump, shoot, die,
wounded etc. states. All these states are used
to play (trigger) different animations.

- State engines (see note 1):
 ‘State engines’ are advanced or automatic

‘states’. These ‘state engines’ describe the
transitions between different states at specifi c
moments or situations. For instance, when a
character bumps into a wall, the character has
to stop walking, even as the player still pushes
the forward (walk) button, so the character
must transit from a ‘walking’ state into a ‘stand
still’ state.

- Behaviour:
 ‘Behaviour’ is harder to describe. It is hard to

say when a ‘state engine’ becomes ‘behaviour’.
Behaviour assumes some kind of intelligence or
at least that game opponents (re)act in a way
like they are intelligent. This means that game
opponents will behave different when they are
in a different ‘state’.

 An example of ‘behaviour’ is when a guard will
start shooting on a player when this player
enters the guard’s sight of view. Or when an
alien only hunts down all the yellow gnomes
and leaves the red ones for what they are.

- Artifi cial Intelligence:
 AI is the highest level of interactivity. AI is

the name for decision-making techniques
like: decision trees, fuzzy logic, neural net-
works, genetic algorithms and others. These
techniques are used to develop group (team)
‘behaviour’. This means that different game
elements will react to the ‘behaviour’ of other
game elements. This all is used in RTS games,
squad maneuver for FPS (pathfi nding), team
play for a sports game or for deciding what are
tactical good locations for building a base (ter-
rain reasoning) etc. [9].

9.6 Conclusion

In this project, the graphical interface for creating
interactivity facilitate at least building the exam-
ple games mentioned in section 9.3, but in a more
fl uid and neatly workfl ow than is possible with the
current interface.
Concerning the levels of interactivity, the high-
est level that must be supported is the level of
‘behaviour’. The level of AI is too specialized, too
much coding would be involved creating AI. This
means for the graphical interface that AI will not
be included, but left to scripting. But maybe it is
possible to include ‘autonomous’ packages of logic
like pathfi nding, fl ocking etc. that can be assigned
to game elements within a game to provide a
means of AI within the interaction creation part
of Blender.

(1) Strictly speaking, a ‘state engine’ should be called a ‘state net-
work’. A state network executed by an engine. However, to the
user a ‘state network’ can be explained as a representation of the
‘state engine’. Throughout the rest of this report the term ‘state
engine’ will be used.

36 S e p t e m b e r 2 0 0 1 - M a y 2 0 0 2

J.v.W.

analysis

37 mm
Discreet’s 3DStudio Max (interface, polygon
editor, texturing, animation editor etc. are the
same), so it is possible to make custom levels,
characters, vehicles etc. for existing game
titles, but only for games which support gMax.
Games that already (or will) support gMax are:
Quake III, Flight Simulator 2002, Dungeon
Siege and Microids (6).

- Specialized 3D creation, modeling and ani-
mation applications. These applications can
not build interactivity. They often provide an
option to export the data to applications that
are capable of building interactivity (like the
export option to the Shockwave 3D format for
Macromedia’s Director) (7).

 10.2 Other 3D interactive creation appli-
cations

First, other 3D interactive creation applications
that can be compared with Blender in functionality
are described. A description of their functionality
is given and a list of advantages and disadvan-
tages.
Second, other (parts of) applications that make
use of a graphical manner of creating and organiz-
ing content will be described in section 10.3.
Finally some other 3D web creation tools with less

How does Blender compare to other 3D (inter-
active) content creation applications? First, to
give an impression, Blender is plotted with other
applications against the ‘development process’
described earlier in section 8.
Second a more detailed description of other 3D
interaction creation applications is given; their
functionality, advantages and disadvantages. But
also programs that are not intended for building
interactivity but use a graphical interface to pro-
vide an overview or way of organizing objects.
The reason why these other interactive creation
applications are described here, is to obtain infor-
mation and inspiration about means of creating
interactive content.

10.1 Overview

In fi gure 10.1 Blender and other 3D (interaction)
applications are plotted against the ‘development
process’. This is shown to give an indication of
the steps taken during the (game) development

10.1

(1) Creative mind
(2) Pen and paper

(3) Blender
(4) MindAvenue’s Axel, Act-

3D‘s Quest3D, Virtools’
Virtools Dev, Conitec’s 3D
Game Studio, Alias | Wave-
front’s Maya RTA.

(5) Cycore’s Cult3D, Pulse’s
Pulse, B3D’s b3d studio
Macromedia’s Director

(6) Discreet’s gMax, Epic’s
Unreal engine, id Soft-
ware’s Quake engine

(7) Discreet’s 3D Studio Max,
Alias Wavefront’s Maya,
Avid’s Softimage, NewTek’s
Lightwave, Maxon’s
Cinema4D XL

process Blender and the other applications can be
used. The following fi ve categories can be distinct.
The numbers indicated after every category can
be found in fi gure 10.1.
- Blender as reference (3).
- Other 3D interactive content creation applica-

tions like Blender. The building and animation
features of these applications are (most of the
time) less extensive compared with Blender.
But these applications have the opportunity to
import 3D data from more specialized 3D appli-
cations.

 Alias|Wavefront’s Maya RTA (Real Time Author)
can not completely be compared with applica-
tions like Blender, because it is a sort of exten-
sion (plug-in) for Maya. It allows to built and
edit interactivity within Maya and when fi nished
to export the data to Macromedia’s Director,
which on his turn makes it possible to publish
the project (4).

- Applications mainly or alone for the creation of
(interactive) 3D web content. All of these appli-
cations need another (specialized) package to
build the geometry (5).

- Game level editors. A lot of game engines
provide a editor to make your own or adjust
existing levels within a existing game. Dis-
creet’s gMax is maybe a bit different from the
rest, because it provides the functionality of

fi g 10.1
Blender compared to
other packages, plotted
against the ‘develop-
ment process’.

10.
Blender compared to other
applications

37S e p t e m b e r 2 0 0 1 - M a y 2 0 0 2

J.v.W.

an
al

ys
is

37 mm
extensive possibilities for creating interactivity
(compared to Blender) will be described in section
10.4.

10.2.1 MindAvenue’s Axel
Axel is a program that is dedicated to creating
and publishing 3D interactive web content. It pro-
vides a set of (basic) modelling, animation and
interactivity tools. To overcome the basic model-
ling tools, Axel provides (only) VRML import. To
view on-line content created with Axel, a special
Axel plug-in is needed.

Now the question is: how does the ‘interactivity
editor’ work, what is its functionality?

Axel has three kind of interaction ‘types’:
- Sensors
- Reactions
- Handles

With sensors it is possible to trigger reactions. The
following different sensors are available:

- Mouse
- Time
- Proximity
- Position
- Orientation
- Parameter Change
- Parameter Range
- Time Pulse
- Download
- Refresh rate
- Keyboard (two different kinds: A-Z key sensor

and Arrow key sensor)

Reactions are actions that occur when they are
triggered by a sensor. Reactions can be anima-
tions, sounds, color changes, and so on. They can
be triggered by mouse overs, time marks, key
strokes, and so on. The following different reac-
tions are available:
- Play animation
- Play sound
- Set parameter
- Toggle parameter
- Set WebCam (‘WebCam’ is the name Axel uses

for the camera)
- Set Pose
- Set material
- Set geometry
- Tooltip text
- Hyperlink
- Download Axel stream
- Go to Time
- Control Time
- Call JavaScript

With the addition of handles to objects it is pos-
sible for users to manipulate these objects. Han-
dles can also be added to the webcam (camera)
so that users can navigate in and around the 3D
world. When a handle is added to an object or to
the webcam (camera), a reaction and a sensor
are automatically created and linked. The follow-
ing different handles are available:
- Translate
- Rotate
- Scale
- Push
- Bend
- Orbit WebCam
- Rotate WebCam
- Translate WebCam
- Zoom WebCam

Advantages:
- Axel has a ‘world explorer’ (see fi g. 10.2). In

the world explorer all the objects and their set-
tings, materials sensors etc. are shown. From
within this window you can select everything

you want.
- The ‘parameter editor’ is a content selec-

tive window. It shows all the ‘parameters’ of
a selected object or - most useful - all the
common parameters if more than one object is
selected so these can be edited all at once. It
also shows the properties of selected sensors,
reactions and handles.

- To add more functionality or advance interac-
tion it is possible to use the ‘Call JavaScript’
reaction. This can also be seen as an disadvan-
tage, because you have to know Java, but for a
better integration within a web page it can be
good to have.

Disadvantages:
- The interaction editor is divided into two fi xed

columns (see fi g. 10.3). In the left column all
the sensors are located and in the right column
all the reactions and handles. The position of
the sensors is alphabetical and fi xed.

- The interaction editor shows always all the
sensors, reactions and handles used in a pro-
duction. There is an option to only show the
selected sensors, controllers and/or handles.
But this is of no use at all, because you do not
have an overview anymore and all the prop-
erties editing is done outside the interaction
editor. So it is not necessarily to take apart a
(or group of) ‘logic brick(s)’.

- The ‘parameter editor is an advantage, but at
the same time a disadvantage: it is the only
place where properties can be edited. So it is
not possible to edit settings of the ‘sensors’,
‘reactions’ and ‘handles’ directly in the ‘interac-
tion editor’.

- To create a new sensor, reaction or handle, a
object, parameter, material, animation etc. -
depending on what has to be triggered - has
to be selected fi rst or non of these can be cre-
ated.

10.2.2 Act3D’s Quest3D
With Quest3D it is possible to create interactive,
realtime 3D applications. It can produce stand-
alone animations, visualizations, screensavers,
web content and games. Quest3D has no facil-
ity for creating object meshes or textures itself.
For this you need a separate application. To view
the content on-line, a special Quest3D plug-in is
needed.

How does the ‘interactivity editor’ work?

Everything in Quest3D is represented as a ‘chan-
nel’. A channel can store data or perform an action
or both. For instance, a sound sample would be
one channel, a texture would be another and a

fi g. 10.2
The ‘world explorer’
within mindAvenue’s
Axel.

fi g. 10.3
MindAvenue Axel’s
‘interaction editor’.
Within the left row the
‘sensors’ and in the
right row the ‘reactions’
and ‘handles’.

10.3

10.2

38 S e p t e m b e r 2 0 0 1 - M a y 2 0 0 2

J.v.W.

analysis

37 mm

With Virtools it is possible to create interac-
tive, realtime 3D applications just like Axel and
Quest3D. The difference is that Virtools uses
“behaviors” as a sort of ‘building blocks’ (or ‘logic
bricks’). To create interactivity within Virtools, a
starting ‘building block’ has to be selected from a
list of almost 400 predefi ned scripts and must be
assigned to an object. This ‘building block’ has to
be dragged over an object in the 3D view to assign
it or has to be dragged directly into the schematic
view (interaction editor). When released over an
object, the starting script for this object is added
to the ‘schematic’ view (see fi g. 10.7). In the
schematic view all the objects with a ‘building
block’ assigned are listed on top of each other on
the left of the screen. This list of objects can be

10.5

10.6

10.7

starting script
(building block)

objects

command to rotate an object might be a third.

Quest3D comes with many predefi ned drag-and-
drop channels. These predefi ned ‘channels’ are
essentially C++ functions and often only wrap-
pers for DirectX functions. The interface is divided
into three different sections: the channel section,
the object section and the animation section.
The channel section is the place in where the
interactivity is built. To give an overview of what is
possible with Quest3D, a list of some channels is
given. A predefi ned channel is often a set or group
of other channels. Some channels need another
channel before they can perform their function.
For instance, a channel that can clear the screen
(redraw) needs a color channel before it can clear
the screen. This color channel exists of three
values: R, G and B. In Quest3D these color values
are children of the clear screen channel. In effect,
channels are simply functions and procedures
and the connections represent function calls and
parameter-passing between them. To connect two
channels, a line is dragged from the bottom of one
channel to the top of another, but the connection
will be made only if the channels are of the right
type to supply valid data to one another.

Here are some of the available channels:
- DX8 3D Object:
 This channel joins a set of other channels to

form a channel that can be displayed by ren-
dering it with a DX8 3D Render channel.

- Text:
 This channel can store any text (strings). This

channel is the base channel for many text oper-
ating channels.

- MessageBox:
 This channel will show a Microsoft Windows

style default Message Box.
- DX8 Collision Response:
 The DX8 Collision response is a channel that

can replace the position vector of an object or a

10.4

fi g. 10.4
Channels connected
within the channel-
graph view of Quest3D.

fi g. 10.5
Full interface of Virtools.

fi g. 10.6
‘Building blocks’ within
the shematic view.

fi g. 10.7
Another example of the
shematic view with
‘building block’.

Camera. The collision response makes it possi-
ble to let a camera or object react as expected
when a collision occurs.

- DX8 Light:
 This channel will add a light to a scene.
- This channel holds sound data and it plays

sounds when a command is send to it. Com-
mands to this channel are send with the DX8
Sound command channel.

There are some 95 available predefi ned channels.

Advantages:
- Channels can be combined into groups to col-

lapse the view. To view which channels are in
a group, simply double click on this group and
a new view with all the channels in it will be
shown.

- Quest3D allows only connections between two
channels if they are both of the right type.

Disadvantages:
- Essentially, building interactivity with the chan-

nels is still programming and it requires a good
understanding of the DirectX API to use well.

- For a relative small project a huge number of
channels is required, because everything is a
channel. So this turns the channel-graph view
(editor) into a spidery mess.

- The channels are grouped by type and within
these groups there are sub-groups. The layout
is far from clear. It is very hard to fi nd the
channel you are looking for and to select a
channel, a lot of groups have to be clicked
open.

10.2.3 Virtools’ Virtools Dev

Note:
Virtools Dev and Maya RTA (described in sections
10.2.4) were not actual evaluated in this project.
The information to give an description is obtained
from different resources like internet and maga-
zines (3D World).
The reason they are described here, is the fact
that they seem to be very interesting applications
to build interactivity with.

39S e p t e m b e r 2 0 0 1 - M a y 2 0 0 2

J.v.W.

an
al

ys
is

37 mm

which allows the end user to have control of its
position and orientation.

- Timer:
 Starts a timer. The completion of the timer

action is generally used to trigger subsequent
actions.

- Animation:
 The animation action causes the motion of a

specifi ed set of objects over a specifi ed range
of frames to play. The completion of the ani-
mation can be detected and used to trigger
subsequent actions. Animation actions can be
looped.

- Sound:
 Plays a specifi ed sound fi le. Sound can be

ambient or spatial. Spatial sound is controlled
by a Maya manipulator that depicts point of
origin and extent in 3 dimensions. The comple-
tion of the sound action can be used to trigger
subsequent actions. Sound can be looped.

- Hyperlink:

10.8

10.9

10.10 fi g. 10.8
Maya interface with
down left of the screen
the RTA interaction
editor.

fi g. 10.9
The RTA interaction
editor.

fi g. 10.10
Visual editing of a spa-
tial sound. Handles for
min. and max. distance
can be dragged in 3D
perspective view.

collapsed. When a object in this list is unfold, the
building blocks are shown for this object from left
to the right (see also fi g. 10.7).
Just like Quest3D, Virtools has no facility for cre-
ating object meshes or textures itself, another
application has to be used.

Some of the predefi ned ‘building blocks’ (scripts)
that are available within Virtools are:
- Set as active camera
 Sets the selected camera as active camera.
- Look at
 This scripts makes it possible to let the active

camera always look at an object it is attached
to.

- Character controller
 When this ‘building block’ is dragged over an

object (character) a parameter window appears
in where animations (created earlier) can
be assigned to different states of the object.
These (standard) states are: stand animation,
walk animation, backward walk animation and
run animation (see fi g. 10.6, previous page).

- Keyboard controller:
 This ‘building block’ makes it possible to use the

arrow keys to navigate a character. Assigned to
the character, it translates the arrow keys that
are pressed into messages. These messages
are received by the character controller and
executes the animation corresponding to that
message.

- Character keep on fl oor:
 This ‘building block’ will cause a character to

remain on the fl oor. To let this script work the
‘behavioral engine’ must know that an element
is to be treated as a fl oor. So only an object has
to be marked as fl oor.

- Object slider:
 The object slider ‘building block’ causes a char-

acter to collide with objects. To let this work,
the object slider requires, just as with the keep
on fl oor building block, that elements to be
treated as obstacles are selected and assigned
to this ‘building block’.

These are just a few examples of the available
‘building blocks’. As mentioned before, there are
some 400 predefi ned ‘building blocks’, but it is
also possible to program your own “behaviors”
with Virtools Development Kit (SDK). But this will
(defi nitely) not be an option for the non program-
mers, because this has to be done in C++.

Advantages:
- It is possible within Virtools to directly drag a

‘behaviour’ (building block) onto an object in
the 3D view.

- It is possible to create new and reusable behav-

iors by graphically combining existing ones and
save them as a new ‘building block’.

- Visually drag-and-drop ‘building blocks’ onto
objects directly in the 3D view.

10.2.4 Alias|Wavefront’s Maya RTA
Maya RTA is a plug-in for Maya. It adds he RTA
(Real Time Author) interaction editor to the
interface of Maya. The ‘interaction editor’ allows
the creation and connection of sensors, actions,
and viewers. The ‘interaction editor’ workfl ow is
similar to Maya’s HyperShade editor where shader
networks are created (see section 10.3.1).
With the ‘interaction editor’, the networks that
are built control scene behaviors and ways for the
user to interact with the 3D content.

Sensors can trigger actions, which are events that
will (only) occur when played back within the fi nal
Shockwave application (Macromedia’s Director).
This means that when an environment is built
and has to be tested, it fi rst has to be exported to
Director.

The following sensors are available:
 - Touch:
 Detects the user touching an object within the

3D scene. The user selects the object from
the list of geometry meshes within the scene.
Touching can be defi ned in a variety of ways
including clicking on with cursor and mouse,
or simply rolling the cursor over or off of the
specifi ed object(s).

- Keyboard:
 Detects the user pressing or releasing a speci-
fi ed keyboard key or keyboard key plus modi-
fi er (Shift, Alt, Ctrl).

- Mouse:
 Detects the user pressing or releasing a speci-
fi ed mouse button.

 - Proximity:
 Detects the current camera moving into or out

of a volume type selected by the user and
placed within the 3D scene. Proximity sensor
volume types are cube, cylinder, and sphere.
They can be transformed (translated, rotated,
scaled), parented, and animated as necessary.

 - Actions as sensors:
 The completion of most RTA actions can be used

to trigger subsequent and additional actions.

Actions are Maya events that are triggered by the
sensors. The following actions are available:
- Bind Camera:
 Switches the 3D display to the view from a

specifi ed camera. The camera may have a
pre-choreographed animation, or it may be the
camera associated with a viewer (see below)

40 S e p t e m b e r 2 0 0 1 - M a y 2 0 0 2

J.v.W.

analysis

37 mm

can be freely moved around in the work area and
it is possible to zoom in and out.
After the nodes are dropped in the ‘work area’,
they have to be connected to each other. To con-
nect two nodes it is possible to middle-mouse-
button drag a node onto another node, a window
appears with a list of specifi c input attributes of
that node it can be connected to. Another method
is to click on the output selection arrow (see also
fi g. 10.12), choose which specifi c output of the
node has to be connected and than click on the
input selection arrow of another node to select the
input it has to be connected to.
Most of the time it is enough to middle-mouse-
button drag a node onto another and the con-
nection is made automatically when there are no
specifi c in- and output attributes. For instance,
when a 2D (or 3D) texture node is dragged onto a
material swatch (blinn, phong etc.) it is automati-
cally connected to the color attribute of it. If more
than one connection is made between nodes,
more connection wires are visible. To change spe-
cifi c attributes of a node the ‘attribute’ editor has
to be opened. This window is laid over the inter-
face, when another node is selected the content of

10.12

output selection

input selection

fi g. 10.11
Maya’s Hypershade
window.

fi g 10.112
Close-up of connected
nodes within the Hyper-
shade window.

 Launches a specifi ed web page when trig-
gered.

- Lingo Script:
 This is an action provided for use by Director

Lingo programmers. It allows the Maya artist
to put sensors in a Maya scene which are set to
trigger Lingo scripts provided by the Director
user.

Viewers are types of cameras and controls that
can be placed into a scene and exported to Direc-
tor and the Shockwave Player. The following view-
ers are available:
- Walk Viewer:
 The walk viewer provides fi rst person ‘game’

type camera controls that allows a user to walk
through a 3D environment. Control attributes
provided to the Maya user are speed, step
height, and collision distance. Speed is the
speed with which the camera moves through
the 3D scene. Step height is the height limit
over which the camera will move. Above that
height it will be blocked. Collision distance is
the distance at which the camera bumps into
obstructions.

- Tumble Viewer:
 The tumble viewer provides Maya type camera

controls for viewing and interacting with a 3D
object.

- Moded vs. non-moded Viewers:
 The option to make viewer cameras ‘moded’

or ‘non-moded’ is provided to accommodate
a range of content complexity and a range of
prospective users. The moded version can be
used for more complex scenes. In these cases
the user explicitly determines that the camera
will be moved and hits a specifi ed control key
to enter camera control mode.

 The non-moded viewer option puts the camera
immediately into control mode. As soon as the
user clicks in the 3D scene, camera control is
initiated. This moded viewer can be used with
less complex 3D scenes.

Conclusion:
It is hard to describe advantages or disadvan-
tages for Maya RTA without working with it. The
only reason why it is described here is that in
conjunction with Macromedia’s Director it can
be a good 3D interaction creation bundle. I only
wanted to describe its functionality.
With Macromedia’s Director on its own, it is hard
to create 3D interactivity. All the interactivity
has to be coded from scratch in Lingo (Director’s
own scripting language). In combination with
Maya RTA all the modelling, texturing, animation
and interactivity can be done within Maya. After
testing the interactivity within Maya, all can be

exported to Director to publish it from there for
use on the web or as a stand-alone production.
The output that is created by Maya RTA for Direc-
tor is all in the Lingo scripting format. So these
scripts are accessible within Director and can be
adjusted and optimized. It would be nice if these
adjusted and/or optimized scripts can be read
back into Maya, but at the time of writing this is
not clear if possible.

10.3 Other graphical creation tools

Note
The next two descriptions - Maya’s Hypershade
editor and Softimage XSI’s Render tree - are not
applications to build interactivity with, but parts
of 3D applications. The reason they are described
here is the fact that they both have a graphical
interface for the workfl ow of connecting different
building blocks (nodes) to create an objects mate-
rial appearance (shader network).
This can be interesting for this project, because it
can provide inspiration how to handle the work-
fl ow for the ‘interactive window’ within Blender.

 10.3.1 Maya’s Hypershade editor
As mentioned in the previous section, the Maya
RTA ‘interaction editor’ workfl ow resembles very
much the workfl ow of Maya’s Hypershade. The
Hypershade is the place within Maya, materials
(shader networks) are created.

How does it work building these shader net-
works?
First, some nodes (blinn, texture, bump map etc.)
are dragged from the left list pane to he right into
the ‘work area’ (see fi g. 10.11, below). The nodes

10.11

material
appearance

node

connection wires
texture node

41S e p t e m b e r 2 0 0 1 - M a y 2 0 0 2

J.v.W.

an
al

ys
is

37 mm

bute list by clicking on the grey arrow next to the
node name. A list with all the attributes of that
node is shown below the node name (see also fi g.
10.13). Now when a connection wire is dragged
from another node, all the attribute names it can
be connected to will have a green circle in front of
their names. All the attributes to which the spe-
cifi c node cannot be connected to have a red circle
in front of their names.

Only one Render tree is shown at a time. The
render tree is assigned to an object. Selecting
another object causes the Render tree window to
show the corresponding Render tree for the new
selected object. A Render tree can be build fi rst

10.14

10.15

fi g. 10.13
Softimage XSI’s Render
tree window with differ-
ent nodes connected
with each other. All the
possible node attributes
are visible.

fi g. 10.14
The Render tree
window with nodes col-
lapsed to only show
the connected node
attributes.

fi g. 10.15
The Render tree again,
but now only showing
the connected nodes
(collapse all).

the ‘attribute’ window is changed according to the
settings of the new selected node.

When creating a material is done, it is possible to
clear the ‘work area’. Only the ‘material appear-
ance node’ is visible in the ‘materials’ window.
This window shows all the created materials.
Now when a material has to be edited afterwards,
it can be dragged again into the ‘work area’ in
where it will unfold again, showing all the nodes
instead of only the ‘appearance’ node as in the
‘material ‘ window.

10.3.2 Softimage XSI’s Render tree
Softimage XSI’s Render tree is just like Maya’s
Hypershade. The graphical interface for creating
the appearance of materials.
The Render tree is a tree of shaders (see fi g.
10.13, below), where the output of one shader is
connected to an attribute of another shader.
To create a Render tree, fi rst the different nodes
have to be selected and created from a menu
within the Render tree window. Second the nodes
have to be connected to each other. This is done
by click-and-drag on the red circle next to the
node name. A wire with a arrow on it appears.
This wire has to be released over another node.
When released a list appears with only the attri-
butes it can be connected to. Select an attribute
and the nodes are connected.
Another manner is to fi rst unfold a node’s attri-

10.13

material
appearance

node

connection wireimage node used as
texture input for the

blinn node

picture node

node attributes

before it is assigned to an object or more objects
at once. A fi nished Render tree can be saved and
used later or in another project.
The make space within the Render tree window
the different nodes shown can all be collapsed at
once to only show the used attributes by select-
ing the proper command from a menu within the
Render tree window (see fi g. 10.14). It is also
possible to collapse all the nodes at once to only
show the node names of the connected nodes
(see fi g. 10.15).
Another functions is to ‘update’ the Render tree
window, this will reposition all the nodes in a well-
ordered way and so that all the used notes are
visible at once.

 10.4 Overview of other interactive cre-
ation tools

In section 10.2 four different interactive creation
tools are described. There are many more tools
that do create interactive content in one way or
another. As mentioned, the only reason why these
four are described, is to obtain information and
inspiration about means of creating interactive
content.
But to give a better overview of the (many) more
applications/tools a list is given with a short
description, subdivided in ‘other 3D interaction
creation applications’, ‘web 3D creation tools’ and
‘miscellaneous tools’, tools that cannot be placed
along the other two categories, but are worth
mentioning. It strictly has to be said that this list
is not trying to be complete.

Other 3D interaction creation applications
Applications like Blender, MindAvenue’s Axel and
Virtools’ Virtools Dev (as described in section
10.2).

- Discreet’s Plasma
 An application just like Maya RTA (see sec-

tion 10.2.4), but instead of being a plug-in
for Discreet’s own 3DStudio Max, it is a sort
of stripped down version of 3DStudio Max
with different features to build and create
interactivity and, just like Maya RTA, to export
to Macromedia’s Director Shockwave Studio
to further adjust and refi ne the exported code
(Lingo) and 3D world within Director.

- Macromedia’s Director Shockwave Studio
 Director is a little bit a special case. It didn’t

start out as a creation tool for 3D interactivity,
but this was added to version 8.5.

 With Director it is now possible to create inter-
active 3D media for the Web. There is one
drawback, within Director itself it is not pos-

42 S e p t e m b e r 2 0 0 1 - M a y 2 0 0 2

J.v.W.

analysis

37 mm
sible to create the 3D geometry itself. This
has to be done within a dedicated 3D creation
application.

- Robolab (Lego Mindstorms)
 Robolab is a template-based programming

environment providing a interface to give life
and function to Lego® robots (robots build with
‘real-life’ Lego® bricks). Robolab is designed as
a string of icon commands. The strings visually
describe the response and action of the inputs
and outputs.

Web 3D creation tools
These tools have in common that they provide a
way of exporting 3D for ‘realtime’ viewing within
a web browser, but they do not have a kind of
logic editor. 3D objects have to be imported from
a dedicated 3D application. All the mentioned
tools need their own web plug-in to view content
on-line. These tools are ‘perfect’ for 3D product
presentations on-line, but they are not meant for
creating (small) games.

- Viewpoint
- Pulse3D
- B3D
- Cult3D

Miscellaneous tools
- jMax
 jMax is a visual programming environment

for building interactive musical and multi-
media applications. These applications are
built by placing modules on a graphic surface
and connecting these modules together with
patch cords. The connections represent paths
on which values or signal streams are send
between the modules. These modules are
either processing units (arithmetics, timing
etc.), data containers (tables etc.), system
inputs and outputs (audio, MIDI etc.)

- LabVIEW
 LabVIEW is a graphical software system for

developing high-performance scientifi c and
engineering applications. It consists of a front
panel and a block diagram. The front panel
(with knobs, switches, graphs etc.) represents
the user interface, while the ‘real’ programming
is done within the block diagram, which is the
executable code. The block diagram consists of
icons that operate on data connected by wires
to pass data between them.

10.5 Conclusion

Now, what is useful? What kind of work meth-
ods, seen in these other applications/tools, are
useful to remember, to use within the ‘interactive
window’ within Blender?

After looking to these other applications one thing
becomes clear. The use of sensors, controllers
and actuators is not that bad at all. The appli-
cations that do use this kind of ‘methaphors’ do
only make use of sensors and actuators (Axel and
Maya RTA), but lack the controllers. But especially
the controllers provide a higher level of control
over the interactivity.

Having worked with Blender creating the interac-
tive House (see section 5) and having compared
the interactive part of Blender with other appli-
cations, the decision is made to stick with the
sensors, controllers and actuators for creating
the ‘low’ level interactivity. Besides the fact that
this method competes very well, the fact that a
wide user base is already using this system and
is already used to it. This is in itself not enough
reason to make this decission, but the current
logic editor within Blender provides no means for
creating ‘higher’ levels of interactiviy and efforts
can better be put in fi nding an addition to the cur-
rent logic editor to provide means of ‘higher’ level
interactivity than in fi nding other work arounds
for the lower level part. Of course, the current
logic editor is not perfect at all and problems
working with it have already been mentioned, but
the decision is made to stick with the system of
sensors, controllers and actuators.

Finally, providing a kind of ready made drag-and-
drop ‘behaviors’ like in Virtools would be a nice
addition to the logic editing. It could provide a
means for the less advanced users to get started
and to learn from these pre-build ‘behaviors’.

43S e p t e m b e r 2 0 0 1 - M a y 2 0 0 2

J.v.W.

an
al

ys
is

37 mm

11.2

Other GUI’s11.

The look and feel of the GUI can be very impor-
tant while working with an application. A ‘good’
GUI can persuade the user to use it, speed up the
workfl ow and does not distract form the content
worked upon. These are the reasons why this sec-
tion is placed here.
What will follow now is a description of some
‘good’ GUI’s (and what is good about them), on
the basis of pictures of applications which do have
a ‘good’ GUI according to the members of the con-
tent creation team of NaN.

11.1 Criteria for a good GUI

The surroundings of people working day in day out
with 3D software and/or compositing applications
is most of the time very dark, with the only light
being the monitor. Often more than one monitor is
used, posing the danger of dazzling the user.
The three applications mentioned in this section
all use little or no color to distinguish buttons and
the total color intensity is not too bright.
The reason for this is, probably, the dark sur-
roundings described above. This said, it does
make sense that the appearance of the applica-
tion’s interface will be ‘dark’.

Figure 11.1 and 11.2: Discreet’s Combustion
Combustion is a video effects and compositing
application. As can be seen in the pictures, the
global color intensity is very low. Everything,
including the buttons, does have a dark gray
color.
What is good about this GUI? Because of the dark
colors used within the interface, the user is less
distracted from the content worked upon. In this
case the video sequence. All the buttons do have
the same dark grey color as the background of the
interface. Only buttons that are important at the
moment, dependent on the selected tool, do get
a distinct highlight to get noticed by the user (see
blue color buttons in fi g. 11.1 and 11.2).

Figure 11.3 (next page): Chrome Imaging’s
Matrix
The same as Discreet’s Combustion. A dark grey
color for the complete interface with the differ-
ence that the buttons do not get highlighted but
do have a lighter grey color do distinguish from
the background.

fi g. 11.1
User interface or
Discreet’s Combustion
2 compositing applica-
tion.

fi g 11.2
Another screen of the
interface of Discreet’s
Cumbustion 2.

11.1

44 S e p t e m b e r 2 0 0 1 - M a y 2 0 0 2

J.v.W.

analysis

37 mm

fi g. 11.3
User interface of
Chrome Imaging’s
Matrix compositing
application.

fi g. 11.4
Material editor Interface
of Pixels’ Pixels3D 3D
application.

11.3

Figure 11.4: Pixels’ Pixels3D
The connection wires between the different ‘node’
are all straight lines. This can be diffi cult to follow
the connection wires from one node to the other.
To ease this, the connection wires do have a dif-
ferent color.

11.2 Conclusion

What criteria will be useful to (re)use within the
design of the ‘interactive window’?
- First of all the overall color intensity has to be

low. The background has to exist of a dark grey
color, that doe not distract from the content
worked upon.

- Buttons that are important for the user at a
certain moment (depending on the selected
tool, for instance) must have a different color
to distinguish from the rest.

- Connection wires between different nodes,
when straight or zigzag, can better be of differ-
ent color to easier follow them.

11.4

45S e p t e m b e r 2 0 0 1 - M a y 2 0 0 2

J.v.W.

an
al

ys
is

37 mm

Program of Requirements12.

In this section the program of requirements is
listed. The requirements (demands) are not quan-
titative, but will be a sort of guidelines for the rest
of this project the graphical interface for creating
interactivity has to fulfi ll.
When ‘interface’ is mentioned in the requirements
below, it means the Graphical User Interface (GUI)
for designing interactivity, which will be designed
in the next phase of this project.

A.1 The ‘interface’ must integrate within
Blender, it should not be a program within
another program.

A.2 The ‘interface’ must support the workfl ow of
the other parts within Blender. For instance,
selecting a object in the 3D view provokes
also the selection of the logic that goes with
the selected object.

A.3 The ‘interface’ must - at least - contain
the same functionality (same logic bricks)
as the current user interface for designing
interactivity.

A.4 The ‘interface’ should provide a fl ex-
ible manner of creating interactivity. For
instance, providing a order of creating
interactivity that is not necessarily linear.

B.1 The working of all the elements within the
‘interface’ should be consistence (e.g. the
timing).

B.2 Operations throughout the ‘interface’ must
be consistent on all levels.

B.3 The look and feel of the ‘interface’ must
be consistent throughout all the levels of
operation.

C.1 The interface must allow users to group dif-
ferent elements of logic.

C.2 The ‘interface’ must support means to orga-
nize the logic.

C.3 The ‘interface’ must allow to reuse (groups)
of logic. Therefore the ‘interface’ must allow
the logic to be disconnected from objects:
object independent.

C.4 There must be a way to get an overview
(list) of all the elements (game pieces
(assets), geometry, logic etc.) in a project
and make selections with it.

D.1 All the related functions to the interaction
‘interface’ have to be able to fi t in one ‘sub-
window’ within the 3D view of Blender.

D.2 With different screen resolutions, all the
important information provided by the
‘interface’ must be visible in one overview,
whether it is by zoom-in/out, or other
means.

D.3 The interface must support the different
levels of interactivity: states, state engines
and behaviour (as described in sections
9.4).

SYNTHESIS

49S e p t e m b e r 2 0 0 1 - M a y 2 0 0 2

J.v.W.

sy
nt

he
si

s

37 mm

 Ideas13.

After fi nishing the fi rst part of this project,
the analysis, the second part, the synthesis,
is described here. The analysis part existed
of exploring the problem defi nition of ‘design-
ing interactivity with a Graphical User Interface
(GUI)’, laying down the needs for such a GUI and
defi ning the fi eld of solution.
The synthesis combines the information obtained
during the analysis into a solution for the problem
defi nition.

During the synthesis part all the ideas and con-
cepts have to fulfi ll the different requirements
formulated in section 12. Of course, the ultimate
concept has to fulfi ll all of the requirements, but
during the synthesis I will use three require-
ments (C1, C2 and D3; see section 12) as guides,
because these three cover most the main prob-
lems of means of organizing logic and creating
higher levels of interactivity graphically.
Based on the requirements the three most impor-
tant questions to be answered during the idea and
concept phase are:

1. How can logic be ordered?
2. How can logic be reused?
3. How can the creation of low-level and high-level

interactivity be combined into one workfl ow?

The fi rst outcomes of the three questions were
some early ideas and are described in section
13.1. However, these ideas do not address the
whole problem, but are starting point for the
complete solution

13.1 Result

What will follow now is a description of three dif-
ferent ideas and how they relate to each other.

The three ideas described here try to fi nd a solu-
tion for the three ‘questions’ mentioned above.
Ideas 1 and 2 try to be solutions for questions
1 and 2: “How can logic be ordered?” and “How
can logic be reused?”. While idea 3 tries to be a
solution to question 3: “How can the creation of
low-level and high-level interactivity be combined
in one workfl ow?”.

13.1.1 Idea 1
Idea 1 (see fi g. 13.1) exists out of two fi xed col-

13.1

13.2

50 S e p t e m b e r 2 0 0 1 - M a y 2 0 0 2

J.v.W.

synthesis

37 mm
umns at the right and left side of the working
area. In between is the work-space for creating
and editing controller networks. The left column
lists sensors and the right actuators.
The workfl ow is quite similar to the current
Blender interface. The difference is that the user
is free to add/link as many controllers as needed
between sensors and controllers in series and/or
in parallel. Second the user can move the different
controllers freely around within the work-space.
To get an ordered overview of the used logic
attached to an object, only the controller(s) and
actuators connected to the selected sensor will be
shown. All the other controllers and actuators will
‘fade’ away. The other way around works as well;
when a actuator or controller is selected only the
logic bricks connected to it will be shown. When
nothing is selected all the logic bricks will be
shown (see fi g. 13.4, next page).
With idea 1 it is possible to reuse controllers
within a logic network of another object or within
a complete different project. To reuse a number
of controllers the user is able to select, group and
save them. When a set of controllers is grouped
this group will be shown as a new controller ‘brick’
with all the in- and outputs visible and named for
easy reuse without the need to open the group to
see what the in- and outputs exactly are (see fi g.
13.8, next page). These in- and output names are

generated automatically or can be given manu-
ally.

13.1.2 Idea 2
Idea 2 (see fi g. 13.2, previous page) focusses on
a manner to seperate the creation of sensors, con-
trollers and actuators from making connections
between them. Within the ‘fi rst’ window there are
three layers. One for the creation and editing of
the sensors, one for the controllers and one for the
actuators (see fi g 13.5, next page). These layers
are located in front of each other on the z-axis.
When clicking on the ‘actuator-layer’ icon (or on a
actuator in the ‘actuator-layer’) when being in the
‘sensor-layer’, for instance, causes the window
to ‘zoom’ into the depth (z-axis) to the ‘actua-
tor-layer’, while passing the ‘controllers-layer’.
When being in one layer, other (visible) layers will
be dimmed, so the user can create and edit, for
instance, the sensors, without being distracted
from the actuators and/or controllers.
Within the ‘second’ window the different sensors,
controllers and actuators (created in the ‘fi rst’
window) can be connected with each other (see
fi g. 13.6, next page).
The advantage of this idea is that the user can
create, edit and connect every aspect in its
own window/layer while having a more ordered

look and overview of all the elements within a
window.

13.1.3 Idea 3
Idea 3 (see fi g. 13.3) provides a means for deal-
ing with higher-level interactivity. In the middle of
the working-space is a circle located. The circle is
the starting point for all the logic created around
it and it is the place-holder for creating and edit-
ing global (available for all objects) variables. The
space around the circle can be split in as many
smaller areas as needed. In every area a sensor
‘brick’ is connected to the ‘starting’ circle. And just
like in the current workfl ow of Blender, from there
on controllers and at last actuators are connected.
The difference is, within every logic cycle (is the
time that all the logic will be evaluated), that the
order of evaluation is clockwise, starting with the
logic within the area defi ned as ‘starting logic’.
The fi rst advantage of this is that the user has
control over the order of evaluation of the logic
attached to one object. The second advantage is,
dependent on what global variables are generated
by other objects or by the same object within the
previous logic cycle, only those ‘logic areas’ are
evaluated that meet the current global variables.
So depending on what ‘state’ (global variable) a
object or the game is in, different logic will be
executed.
The logic is attached to a object by selecting the
object in the 3D-view and then starting to gen-
erate the logic bricks for it or by selecting the
object from the ‘object manager’ at the left of the
screen (see also fi g. 13.7, next page). The ‘object
manager’ makes it also easier to jump back and
forward between different objects for comparing
the attached logic, instead of selecting the object
within the (cluttered) 3D-view.

13.2 Conclusion

With these fi rst ideas in mind, these ‘small’ solu-
tions had to be put in place. The different ideas
don’t provide a solution to the three questions
on their own. To fi nd the right direction the ideas
were submitted to the content creation team of
NaN (see section 7.1).
These discussions with some members of the
content creation team resulted in some consider-
ations concerning the concept to be developed.

 One thing was clear: idea one with two fi xed
columns for the sensors and actuators with a
work-space for (more) controllers in between,
for the creation of low-level interactivity was also
‘approved’ by the members of the content cre-
ation team of NaN, besides the fact that I person-13.3

51S e p t e m b e r 2 0 0 1 - M a y 2 0 0 2

J.v.W.

sy
nt

he
si

s

37 mm

13.4

13.5

13.6

13.7

13.8

A clear input name for a group is
given to make reusing it easier.

13.9

The properties of a (in
this case) sensor and
actuator can be fold
open to edit. To gain
space the properties
can be collapsed all at
once or individual per
sensor/actuator.

13.10

A possible manner to add
controllers to the work-space is
to click on the add button - a list
will be unfold - and then click
on the controller in the list to be
added. Maybe a distinction can
be made between different kind
of controllers (i.e. more than
one ‘add’ buttons).

ally already made the decision to stick with them
in section 10.5.

On the other hand idea two with the ‘3D-workview’
and two different screens for creating and con-
necting sensors, controllers and actuators was
- maybe - too ambitious. It is too much based on
a gimmick instead of providing an ordered work-
fl ow.
Idea three proved to the content creation team
that there is a way of providing a Graphical User
Interface for creating interactivity on a higher
level. The idea of providing a manner to decide
which logic - attached to an object - should be
evaluated and which not, depending on differ-
ent generated parameters seemed a good idea
to the content creation team. The side note to
idea two was that it did not provide a ready-for-
use solution, but only a starting point for a GUI
for creating higher-level interactivity. In the next
phase, the concept phase, this idea is worked out
further.

52 S e p t e m b e r 2 0 0 1 - M a y 2 0 0 2

J.v.W.

synthesis

37 mm
the logic for a state and defi ning the conditions
(parameters) for a state change is the next step.
But before a start is made with the logic for every
state, the actions have to be created.

Actions are on a less high abstraction level than
the states. Actions defi ne things like ‘walk’, ‘shoot’
and ‘jump’, while states defi ne ‘fi ghting’ and ‘fl ee-
ing’. In other words, changing parameters causes
a state to change from one to the other - states
are variable - while these parameters do not effect
actions. Actions only defi ne the states. One state
can exist of different actions, while one action can
be connected to more than one state.
Just like the states, when an action is created it
contains nothing, no logic or code. By connecting
actions to states the user defi nes which actions
can be executed within that state.
After setting up all the states, actions and connec-
tions the next step comes in: creating the logic
for every state (transition) and action within the
logic editor.

14.1.2 Logic editor
The logic editor is the place where the logic is cre-

Concepts14.

The ideas created within the previous section
are further developed within the concept phase,
described in this section.
The standard way of working within the concept
phase is to provide more than one concept, all
fulfi lling the requirements (see section 12).
During this project of designing a Graphical User
Interface for creating interaction, the workfl ow
was a little different.
Instead of developing different concepts, one
‘global’ concept was developed out of the differ-
ent ideas and the feedback. Instead of choosing
between different concepts and then further detail
the chosen one, the one concept was evolved step
by step.
This ‘evolution’ of the concept was done within
three steps. Step one was the development and
evaluation of concept one. Feedback from this
fi rst evaluation was used to further develop the
concept. This step of development and evaluation
was repeated two more times to fi nally come to
the ‘fi nal concept’ described in section 16.

The three concepts are discussed on the basis of
the workfl ow. The workfl ow clearly shows the dif-
ference between the concepts and what has been
changed compared to the previous concept.

14.1 Concept A

The following is a description of the concept and
its workfl ow of creating interactivity that emerged
from ideas and discussions with the content cre-
ation team of NaN during the idea phase (see sec-
tion 13).

First the different parts of the interface will be
explained with the workfl ow in mind. This work-
fl ow is shown in the ‘workfl ow-diagram’ (see fi g.
14.1) and shows which steps have to be under-
taken to create the interactivity within the user
interface of concept A.
For this concept their are two main screens. The
state- and logic editor. How they work and relate
to each other will be explained in section 14.1.1
and 14.1.2. After the explanation of the two main
screens, a game example is given within the
interface in sections 14.1.3 to give a better under-
standing of the workfl ow for a specifi c case. In
section 14.1.4, the concept has been evaluated.

14.1.1 State-editor
The state editor (see fi g. 14.2, next page) is the
place where the workfl ow starts after a object is
selected to create interactivity for it. Within the
state editor the user creates the states needed
for that object. It depends on the user how many
and what kind of states there will be created. For
instance, for a ‘smart’ door you could think of two
different states: 1) closed: as long as the player
doesn’t have the key, the door stays closed; 2)
always open: the door will go open always and for
everyone (also computer controlled opponents).

Strictly, these states created by the user do not
contain anything. They do not contain any logic so
far or - when created - provide any kind of visible
interaction.
After creating the individual state, they have to be
connected. These connections represent the pos-
sible inter state changes. So, when two states are
connected with each other, it is possible to change
from the one state to the other.
Creating connections between states does pro-
vide one thing automatically, it creates a ‘change-
state’ actuator within the logic editor. Creating

14.1

hi
gh

le
ve
l

lo
w
le
ve
l

state editor

logic editor

select object

select state
to be edited

select action to
be edited

create / define
states

create / define
actions

connect the
states

connect the
actions to states

create transition
conditions (logic) for
the selected state

create logic for the
selected action

Th
es

e
st

ep
s

ha
ve

 to
 b

e
re

pe
at

ed
 (e

ac
h

st
at

e
or

 a
ct

io
n

ha
s

to
 b

e
se

le
ct

ed
 in

di
vi

du
al

ly
 to

 a
dd

 lo
gi

c
to

 it
) u

nt
il

al
l t

he
 s

ta
te

s/
ac

tio
ns

 a
re

 d
on

e.

fi g. 14.1
Workfl ow diagram of
concept A.

53S e p t e m b e r 2 0 0 1 - M a y 2 0 0 2

J.v.W.

sy
nt

he
si

s

37 mm
ated and edited for every state and actions. As
said in sections 13.2, the logic editor has remained
its current types of logic bricks: the triggers (for-
merly known as sensors, see note 1), controllers
and actuators. But the interface didn’t remain the
same. As shown before in fi rst ideas, instead of
having three fi xed columns, there will only be two
fi xed columns left and one ‘fl exible’ (controllers
are freely movable) column in the middle for the

creation of controllers. The two fi xed columns are
for the triggers (on the left) and for the actuators
(on the right), see fi gure 14.3.
The big difference with the current interface is
that there will be more different kinds of control-
lers available to use. Besides, it must be possible
to connect more than one controller in series and
to have more than one in- and/or output per
controller. These additions have to provide more

functionality to the logic editor.

(1) During a content and development meeting it has been decided
that from now on sensors will be called ‘triggers’.

 The term ‘trigger’ covers the functionality of this kind of logic bricks
better than the term sensor does.

State editor close-up:

1. Defi nes the start state.
2. General state brick; the ‘dashed line’ determines that the logic

within this state is used within every other state. The ‘dashed line’
can be assigned to every state, but only to one at the same time.

3. State brick.
4. Two way connection between states. The state change can go

either way.
5. One way connection between states. The state change can go

only one way. So when the state change has occurred there is no
way back to the previous state. For instance, when player is dying.

6. Action brick.
7. Connection from action brick to state. Determines which actions

are possible during which state.
8. A lot of arrows coming out of a state brick, meaning that this state

is connected to every other state that’s within it’s region (brown
dashed line).

TRIG / GEN ACTUATOR

14.3

logic editor

List of
triggers.

Work area
for creating
controllers.

List of
actuators.

check
health

14.2

state editor

1

2

34

5

6

7

8

54 S e p t e m b e r 2 0 0 1 - M a y 2 0 0 2

J.v.W.

synthesis

37 mm
14.1.3 Example concept A
To give a better overview of concept A an example
is given within the concept. This example exists
out of a ‘computer controlled character’ within any
FPS (First Person Shooter). First, it tries to hunt
down the player and then to kill him.

Computer controlled character
This opponent is a character fi ghting against
the player’s character. While hunting and killing,
the computer (the game) has to make decisions
on what it should do next or what it should do
depending on things that are happening around
the computer controlled character.

The computer opponent can have the following
states:
- Idle/living:
 health is between 100% and 1%
- Dying:
 health is 0%, computer opponent will fall at the
fl oor and struggle for his life, but stays down at
the fl oor

- Hunting/tracking:
 looking/fi nding the player and as soon as the

player has been found switch to fi ghting
- Fleeing:
 when the health level becomes below a certain

point, the opponent is going to fl ee
- Fighting:
 trying to kill the player, shoot at the player

The computer opponent can execute the follow-
ing actions:
- Shooting
- Walking
- Running
- Jumping
- Fall down

Result
In fi g. 14.4 the state diagram is shown. The states
have a dark brown color and are connected as
indicated by the green lines with arrows. The idle
state is the ‘general’ state with the logic that is
used trough all of the states.
Actions have a lighter brown color and are con-
nected to states with light-green dashed lines.
The many red lines going to the dying state indi-
cate two things. First, the red line means the tran-
sition can only go to the dying state and not back
to the previous state. Second, many lines going to
a state indicate that it is connected to all states.
This is faster to set up than connecting the dying
state to every state individual. This is also applied
to the shooting action, but with the difference that
there is a light-red dashed connection with the
dying state. This indicates that the action is con-

nected to all the states, except the dying state.
The green arrow attached to the idle state indi-
cates that the idle state is the ‘starting’ state.
The list shown at the left of the state editor window
is for saving and reusing states and actions. For
instance, when a user wants to reuse a state he
simply drags a newly created state into the list
and give it a name. With another object or even
project, the user can drag the saved state from

the list to the work space and the state is there
with all the logic in it.

In fi g. 14.5 the logic for the walk state is shown.

dying

walking

running

jumping

check

health

shooting

idle

fleeing

fighting

hunting

walk

14.4

keyboard

GROUPS TRIGGERS ACTUATORS

charcter

camera

empty

weapon

inv

inv

and

keyboard

keyboard

keyboard

and

and

and

change state:
idle

change state:
run

change state:
jump

change state:
special moves

motion:

force:
torque:
DLoc:
DRot:
LinV:
AngV:

key:

modifier key:

x: y: z:

10

all keys

W

Ctrl Alt Shift

14.5

fi g. 14.4
Example of concept A .
The ‘state editor’ for the
main character.

fi g. 14.5
The ‘logic editor’ for the
main character and in
this case the logic for
the ‘walk state’.

55S e p t e m b e r 2 0 0 1 - M a y 2 0 0 2

J.v.W.

sy
nt

he
si

s

37 mm

fi g. 14.6
Evaluation of
concept A: the state
editor fi lled in by
member one of the
content creation team
of NaN.

fi g. 14.7
The state editor fi lled in
by member two.

14.1.4 Evaluation concept A
It is hard to create an example yourself if you
do not have enough experience creating games.
Submitting the concept to the content team had
to provide feedback and a different point of view
and would most certain give a very different
implementation of the game example compared
to the one I did (try) myself.
The details of the concept were explained without
showing the example described in the previous
section. After the members of the content cre-
ation team did understand the idea behind the
concept, they were asked to create the example
of the computer controlled character within the
given canvas. This was submitted individual to
three members. The most useful information is
shown on this page (see fi g. 14.6 and 14.7).

What can be said about the outcome of this evalu-
ation? The conclusions are described on the basis
of the three questions (see section 12).

How can logic be ordered?
This question was not emphasized, because the
creation of high level logic was at that moment a
part that still needed much more attention than
a means of organizing logic that in one way or
another could be ‘fi xed’ at a later stadium.
This was the reason that there was less feedback
on this aspect, but the members did like the way
the higher-level states and actions did provide a
way of ordering the logic. Instead of having a long
list with all the triggers, actuators and controllers,
they are divided into smaller lists within a state
or action.

How can logic be reused?
This aspect was neglected with this evaluation,
because it was not relevant at this point. This can
be integrated at any point in different ways.

How can the creation of low-level and high-level
interactivity be combined into one workfl ow?
This question took the most attention during the
evaluation. Two aspects came to attention:
1. The idea of states and actions was accepted

very well, but there should be made a clear
distinct between the two. They should be in dif-
ferent windows, instead of being in one window
together (two members putted a dividing line
between the two; see fi gures).

2. Every member created a kind of ‘all-embrac-
ing’ state (a global state) to be able to check
health and/or damage, but these ‘states’ were
not connected to any other. It can be concluded
that these kind of ‘global’ states do need a
place of their own and in where they are able
to infl uence all the other (object) states.

check
health

fleeing

hunting walk

run away
from player

run toward
player

fall down /
struggle

face player

make two different
windows

global state

State Editor: computer controlled opponent

angry

disabled

dying

shoot at
player

fighting

14.7

go to

attack

hunt

wait

defend

decide

flee

walk

idle

damaged
(being hit)

duck

shoot

die

jump

send commands
between windows

check health

check damage

State Editor: computer controlled opponent

14.6

56 S e p t e m b e r 2 0 0 1 - M a y 2 0 0 2

J.v.W.

synthesis

37 mm

fi g. 14.8
Workfl ow diagram of
concept B.

14.8

hi
gh

le
ve
l

lo
w
le
ve
l

hi
gh
er
le
ve
l

state editor

logic editor

action editor

select object

create / define
states

connect states to
create transitions

select transition
to be edited

create / define
actions assign/connect

actions to states

select action to
be edited

create transition
conditions for the
selected node

create logic for the
selected action

Th
es

e
st

ep
s

ha
ve

 to
 b

e
re

pe
at

ed
 (e

ac
h

st
at

e
or

 a
ct

io
n

ha
s

to
 b

e
se

le
ct

ed
 in

di
vi

du
al

ly
 to

 a
dd

 lo
gi

c
to

 it
) u

nt
il

al
l t

he
 s

ta
te

s/
ac

tio
ns

 a
re

 d
on

e.

14.2 Concept B

Concept B followed after the evaluation of con-
cept A. The most important change that followed
out of this evaluation was the fact that states and
actions had to be created in two different windows.
So, the emphasis within the state editor could be
placed on the connections, while within the action
editor only the different actions could created and
could be assigned to the different states.

The workfl ow diagram (fi g. 14.8) shows that a
new step has been added compared to the dia-
gram in fi gure 14.1, the action editor.

What will follow now is description of the state and
action editor and a short description of the logic
editor (remained almost identical to the one of
concept 1). The descriptions give only the aspects
that changed compared to concept A.

14.2.1 State editor
The state editor (see fi g. 14.9, next page) remains
the place to create and edit the states. After cre-
ating all the individual states, the states have to
be connected. The connection is enhanced with a
“transition node”. This transition node is the actual
object the logic is assigned to. As can be seen in
fi gure 14.9 (next page), all transition nodes have
two arrows. These two arrows represent both
direction of a transition. When an object is in one
‘state’ certain conditions will make it transit to
another, while it is in the other ‘state’ the condi-
tions are (probably) different to change back to
the state it came from. To defi ne the conditions
(parameters) a transition will take place, one of
the arrows has to be selected (color will change;
indicating it is selected) and then these conditions
have to be created in the logic editor.

In addition a red arrow has been added to indicate
that a state is the ending state of the state dia-
gram. An ending state can be a ‘dying’ state, for
instance, at the end of the dying state the game
will restart.

57S e p t e m b e r 2 0 0 1 - M a y 2 0 0 2

J.v.W.

sy
nt

he
si

s

37 mm

unting

disabled

waiting /
idle angry

fighting

dying

fleeing

logic

logic

logic

logic

logic

logic

logic

logic

logic

logic

computer opponent

st
at

e
ed

it
o

r

edit logic

edit python

add state

addstart

add end

actions

14.9

1

2
3

4

5

6

7

1. a state
2. a connection wire
3. a transition node
4. a transition arrow of a

‘two-way’ transition node
5. ‘starting’ state arrow
6. ‘ending’ state arrow
7. ‘one-way’ transition

node.

fi g. 14.9
State editor example of
concept B.

58 S e p t e m b e r 2 0 0 1 - M a y 2 0 0 2

J.v.W.

synthesis

37 mm
14.2.2 Action editor
The action editor (see fi g. 14.10) is an addition
to concept B (compared to concept A). The action
editor provides an interface for creating actions
(and after creation) connecting them to states.
The listed states at the left of the screen are all
the states created within the state editor. When
a new state is created within the state editor, the
state list, within the action editor, is updated auto-
matically with the new state listed.
It is possible to view all actions at once or indi-
vidually by selecting one state in the states list
causing only the connected actions to be showing
clearly, while other actions fade away (see fi g.
14.11). Selecting groups of states is also pos-
sible.

A great advantage of the action editor (and one of
the reasons of adding it) is the fact that actions
function as an ordering tool for the logic. Instead
of having a long lists of logic it is broken apart into
small packages within the actions.

Creating the logic for an action within the logic

editor is done by selecting an action and then
switching to the logic editor. The selected action
will change color to indicate that the user is
creating/editing the logic for that action, just like
with the state transition ‘nodes’.

14.2.3 Logic editor
The logic editor (see fi g. 14.12, next page)
remained almost the same, except that the new
inteface style has been applied. A minor enhance-
ment is the addition of a python script editor. This
editor can be accessed by clicking on the ‘python’
button located on the python controller. The
python controller itself is much clearer now. The
in- and outputs are all laid out well, so the user
can see clearly which in- and outputs the python
script calls.
Within the python script editor it is possible to
load an external script or to save the current
script for reuse. The same is true for controller
bricks. These can be saved or loaded as well. This
can be one single controller (f.i. a python control-
ler) or, more likely, many controllers in a group.
The save and load actions are located at the top

(middle-left) of the screen. When clicking on the
save action the selected controller or group of
controllers will be saved. Saving and loading can
increase the speed of working with logic. Logic
does not have to be created twice, but can be
reused from another project.

run away

computer opponent

ac
ti

o
n

ed
it

o
r

walk

die/change

states

shoot

beat up

idle

jump

struggle

run

waiting/idle

hunting

fighting

fleeing

angry

disabled

dying

14.10

run away

computer opponent

ac
ti

o
n

ed
it

o
r

walk

die/change

states

shoot

beat up

idle

jump

struggle

run

waiting/idle

hunting

fighting

fleeing

angry

disabled

dying

14.11

fi g. 14.10/14.11
Action editor window,
showing some actions
connected to states
listed at the left.

59S e p t e m b e r 2 0 0 1 - M a y 2 0 0 2

J.v.W.

sy
nt

he
si

s

37 mm

14.2.4 Evaluation concept B
This second evaluation existed of conversations
with two members of the content creation team of
NaN. Only the changes compared to the previous
concept were made clear to them.

After an explanation, it was apparent that it
seemed immediately clear to them.
However, one important modifi cation was pro-
posed. This modifi cation was the fact that the logic
(transition conditions) for the transition nodes had
to be created in the logic editor, while conditions
are on a very different level than ‘normal’ logic.
This seemed odd, so the conclusion was made
that there had to be a kind of ‘transition’ editor at
the same level as the state editor with the same
functionality as the logic editor. This was the basis
for the next concept, concept C.

jump action
lo

g
ic

ed
it

o
r

triggers actuators
controllers add save load

keyboard ipo

message

motion

sound

near

keyboard

touch

generator

message

key:

modifier key:

all keys

W

Ctrl Alt Shift

motion

force:
torque:
DLoc:
DRot:
LinV:
AngV:

x: y: z:

10

Python Scripting

and

or

and

phytonname

name

name

name

name

keyboard

14.12

fi g. 14.12
The logic editor. Left
and right fi xed columns
for the triggers and
actuators and in the
middle a work pane for
the controllers.

60 S e p t e m b e r 2 0 0 1 - M a y 2 0 0 2

J.v.W.

synthesis

37 mm
14.3 Concept C
An additional step has been added to the workfl ow
as can be seen in fi gure 14.13. This step is the
creation of transition conditions for which a state
transit will occur. These conditions are created
and edited in the transition editor.
Because the addition of the transition editor is the
only change compared to the previous concept
that this is the only part that is described here.
The other parts, like the state, action and logic
editor remained the same.

14.3.1 Transition editor
The transition editor (see fi g. 14.14, next page)
is the place to defi ne conditions for a state tran-
sition, as mentioned above. The addition of a
separate transition editor makes the editing of the
states and transitions an action on its own.

As can be seen in fi gure 14.14, in principal, the
difference with the logic editor is small. The only
big difference is that there are no actuators on the
right anymore. Instead, there are ‘change state’
bricks. When an arrow on a transition node (see
fi g. 14.9, on page 57) is selected, the ‘change
state’ actuator is added automatically. The left
side of the window (with the available triggers)
remains the same as in the logic editor. All pos-
sible triggers can be used to ‘trigger’ a transition,
but message triggers will probably be used most
of the time. These message triggers ‘scan’ for
changing values of a ‘property’, such as ‘health’,
‘damage’ or ‘score’, for instance. These property
changes are the most likely candidates for a tran-
sition. But as mentioned, every kind of trigger can
be used.

The ‘quick switch’ button on the top right of the
transition editor pane makes it possible to switch
fast between the two directions of a transition
node, instead of having to click the other green
button on the transition node in the transition
editor. The transitions between two states are
bidirectional by default, unless the user explic-
itly defi nes a one-way transition (see fi g. 14.9 as
well).

14.3.2 Evaluation concept C
The transition editor is part of the state editor
window (see fi g. 14.15, next page). It is not a
separate window like the action and logic editors.
It has a strong connection with the state editor.
States without transition conditions do not mean
anything. This is the (main) reason to put it at
the same level with the state editor (even within
the state editor), although it resembles the logic
editor very much. As can be seen in fi gure 14.13,

hi
gh

le
ve
l

lo
w
le
ve
l

hi
gh
er
le
ve
l

hi
gh

le
ve
l

state editor

logic editor

action editor

transition editor

select transition
node to be edited

select object

create / define
states

connect states to
create transitions

select action to
be edited

create / define
actions

assign the
actions to states

create the
transition conditions
for the selected node

create logic for the
selected action

14.13

Th
es

e
st

ep
s

ha
ve

 to
 b

e
re

pe
at

ed
 (e

ac
h

st
at

e
or

 a
ct

io
n

ha
s

to
 b

e
se

le
ct

ed
 in

di
vi

du
al

ly
 to

 a
dd

 lo
gi

c
to

 it
) u

nt
il

al
l t

he
 s

ta
te

s/
ac

tio
ns

 a
re

 d
on

e.

fi g. 14.13
Workfl ow diagram of
concept C.

61S e p t e m b e r 2 0 0 1 - M a y 2 0 0 2

J.v.W.

sy
nt

he
si

s

37 mm

the workfl ow is much ‘smoother’ now than with
the other two concept diagrams. The workfl ow is
now top to bottom, instead one of going down
and up again. Anyway, it has to be said that even
when the graphical representation of the work-
fl ow is linear now (from top to bottom), it does
not mean that the workfl ow is restricted. The user
can jump between the different editors anyway
he likes, but the line of thought (mental model) is
now a linear one. This can ease the learning curve
and make it easier to understand the structure
behind logic editing.

waiting -> hunting
tr

an
si

ti
o

n
ed

it
o

r

triggers transition
transitors add save load

touch

near

ray

message

>

<

>=

script

waitingdirection hunting

change state

hunting

14.14

hunting

disabled

waiting /
idle angry

fighting

dying

fleeing

logic logic

logic

logic

logic

logic

logic

logic

logic

logic

logic

logic

st
at

e
ed

it
o

r
edit logic

edit python

addstart

add end

actions

waiting -> hunting

tr
an

si
ti

o
n

ed
it

o
r

triggers transition
transitors add save load

touch

near

ray

message

>

<

>=

script

waitingdirection hunting

change state

hunting

14.15

fi g. 14.14
The transition editor as
proposed in concept C.

fi g 14.15
The location of the tran-
sition editor within the
state editor window.

62 S e p t e m b e r 2 0 0 1 - M a y 2 0 0 2

J.v.W.

synthesis

37 mm

After completing ‘different’ intermediate concepts,
the ‘fi nal’ concept is presented here. The concepts,
described in previous sections, have evolved with
the feedback of the members of the content cre-
ation team of NaN, to this fi nal concept.

The fi nal concept is described with the evaluation
in mind. The concepts described in the previous
sections did have a more predefi ned graphi-
cal look. The fi nal concept has a more ‘sketchy’
look. It is presented in this way, because during
an evaluation the subjects of experiment have to
pay attention to the different steps (actions) that
have to be taken into account to complete a task,
instead of being distracted by the graphical look of
the interface. By keeping the interface pictures as
‘sketchy’ as possible, there will be no discussion
about the looks.

The fi nal concept is divided in nine different sec-
tions. These sections represent a different part of
the interaction creation process.
Next, the fi nal concept is presented using the sec-
tions.

15.1 Conceptualizing States

Conceptualizing states will often be the fi rst step
when creating the interactivity.
The state editor has to be opened in one of the
3D views (see fi g. 15.1). After opening, the draw-
ing ‘layer’ can be turned on in the state editor.
On this layer the user can sketch (with mouse or
drawing tablet) the state engine for the selected
object. After sketching, the user can add text to
explain the design a little bit more, if needed (see
fi g. 15.2).
These steps have to be repeated for every object
that has a state engine.
When fi nished, the user can save the Blender fi le
containing the ‘concepts’ and hand it over to col-
leagues, who can give it feedback on it. The feed-

back can be given digital as well. The colleagues
can sketch and type just like the initial creator
did. Every colleague giving feedback does this on
a seperate ‘layer’. After getting back the fi le, the
initial creator can turn these different ‘feedback’
layers on or off to see what each colleague has
commented on the different state engines.
Another possibility is to print the different stage
engines on paper. One, two or four state engines
can be put on a single paper. Some people may
prefer to write down the feedback on paper
instead digitally. After writing down the feedback
the papers can be returned to the initial creator.
These comments can be used to change or
improve the initial setup of the state engines.
A big advantage of working with state concepts is
that ideas about how different logic has to be cre-
ated can be put on ‘paper’ fast and feedback can
be given by many colleagues at the same time.
Feedback is saved for review in later phase of the
project.

15.1

the state editor

15.2

the drawing layer

15. Final concept

63S e p t e m b e r 2 0 0 1 - M a y 2 0 0 2

J.v.W.

sy
nt

he
si

s

37 mm
15.2 States

After the conceptualizing step is done, the actual
creation of the states can start. The drawing
‘layer’ can be locked. When locked it cannot be
edited anymore, but in this way it can be used as
a guide for creating the actual states.
To create a state, a new state can be dragged
from the ‘creation’ pane on the left onto the edit-
ing pane in the middle. The newly created state
can be given a name to clarify its content. This
has to be repeated for every state needed (see
fi g. 15.3).

To make it easier for another person to ‘read’ and
understand the state engine at a glance, it is pos-
sible to include a picture for every state (see fi g.
15.4). These pictures can be extracted from the
drawing layer or can be dragged from the picture
list (favorites) onto a state. This picture list can
exist out of pictures created earlier on the draw-
ing canvas or pictures that are imported and cre-
ated in another program or by another person. In

fi gure 15.4 can be seen that pictures are assigned
to the different states.

When the drawing layer is not needed anymore
or when all states have been created or when the
layer distracts from the actual states, the drawing
layer can be turned off.
It is also possible to go back to the drawing layer
at any given time to add extra components or
change existing ones. This can be useful when
a user has to fi nish something at a later stage.
He can write/sketch it down on the drawing
layer beneath the states, so the next time he is
reminded to fi nish it.

15.4

a picture to clarify the state

15.3

actual states

editing pane

64 S e p t e m b e r 2 0 0 1 - M a y 2 0 0 2

J.v.W.

synthesis

37 mm
15.3 Transitions

States have to be connected with each other to
defi ne the state transitions. To do so, the user has
to click drag on the border of one state and drag
it, then release it on top of another state. After
release, a connection is created. In between these
states, halfway the connection wire, a ‘transition
node’ can be found (see fi g. 15.5).

A transition between two states is ‘two-way’. This
is the reason two arrows can be found on the tran-
sition node. One containing the transition condi-
tions for state A to B and the other for state B to
A. By default both arrows are greyed out. Indicat-
ing that no conditions have been defi ned. When
an arrow has a green color it is indicating that
conditions have been defi ned. When an arrow is
selected half a side of the node is green, indicat-
ing which transition direction selected.

To edit the conditions for a transition the transi-
tion editor has to be opened. In fi gure 15.5 the

transition editor has already been opened. The
transition editor is located at the bottom of the
state editor window. The transition editor is placed
within the state editor, because these are closely
related to each other. States without transition
conditions do not make sense.
When the transition editor is open, a transition
arrow has to be selected to be able to create a
transition condition.

The transition editor resembles the logic editor
(see section 15.6) closely. The only difference
is that there is only one actuator available. This
actuator is the “change-to-state” actuator. When
creating the conditions for the transition from
state A to B, for instance, the “change-to-state B”
actuator is automatically added.

15.4 Global States

Global states are identical to ‘normal’ states with
the difference that they are not assigned to an
object, but apply to the entire game.

Global states can be created in the same manner
as normal states in the state editor. When nothing
is selected, the state editor automatically shows
the global states. As shown in fi gure 15.6, global
states are most of the time used for start screens,
level management and scores.

The transition editor is also used for editing transi-
tions between global states.

15.5

transition node

transition editor

“change-to-state” actuator

15.6

nothing selected: global states

65S e p t e m b e r 2 0 0 1 - M a y 2 0 0 2

J.v.W.

sy
nt

he
si

s

37 mm
15.5 Actions

Actions are elements of a state. Actions are place-
holders for the actual logic. Instead of creating
the same piece of logic twice for two different
states (when they need a part of the same func-
tionality), one action containing that piece of logic
can be connected to both of the states. One action
can be shared by different states.

The action editor is opened in a 3D view just like
the state editor. It will not happen often that the
state and logic editor are open at the same time.
A list with all the created states is displayed at
the left pane of the action editor. After creating
the actions needed and giving them a name, the
actions can be connected by click-dragging them
on a state. A connection wire will be then cre-
ated automatically. Logic within an action will only
execute/evaluate if the action is connected to the
current active state of the object.

Another advantage of actions is that they provide

a way of organizing the logic. Instead of having
one long list of triggers, controllers and actuators,
the logic is divided in different actions (see fi g.
15.7). For instance, a “run” action contains all the
logic to make a character run. A character can be
running in more than one state. Instead of copy-
ing “run” logic, the “run” state can be connected
to multiple states.

15.6 Logic

An action on itself is not very useful. As mentioned
above, it is a container (placeholder) for logic. To
create logic for an action, an action has to be
selected in the action editor. A selected action has
a different color (see fi g. 15.8).
The logic editor has to be opened. In contrast
with the state and action editor, the logic and
action editor are preferably opened both at the
same time. This makes it possible to select an
action, create and edit the logic, select another
action and so on without opening and/or clos-
ing windows. The logic editor has to be opened

in the ‘buttons window’ area at the bottom of the
Blender interface (see fi g. 15.8).
The logic editor works identical to the original
‘interactive window’ within Blender. At the left the
triggers (sensors), in the middle the controllers
and at the right the actuators. The difference with
the original version is that it is possible to add as
many controllers between a trigger and an actua-
tor as needed. For a more detailed description of
the logic editor see section 14.1.2.

15.7

an action

connection wire

15.8

logic editor

selected action

66 S e p t e m b e r 2 0 0 1 - M a y 2 0 0 2

J.v.W.

synthesis

37 mm
user has forgotten the exact name of this prop-
erty. When entering the wrong name, the fi eld is
cleared automatically when playing the game. Left
wondering why the game is not working, the user
has to fi nd out that the name was typed wrong
and has to look up the correct name.
The property pane solves this problem. As men-
tioned, the user can select an object, which has
a property he is looking for, in the left column
and see in the right column what properties are
assigned to that object and select the right one to
be entered within the property fi eld of the trigger
(or actuator) he is working on.

15.7 Physics

Assigning physics to an object is done at the level
of states. The reason why it is done at the level of
states is that this makes it possible for an object
to take part in physics when it is in one state while
being in another it does not have to take part in
physics.
By clicking in a checkbox in the state, physics can
be activated or deactivated. When activated an
extra pane is added to the states (see fi g. 15.9).
Within this pane the specifi c state can be set to
physics or not. By default a state is set to not take
part in physics. When a state takes part in physics
the connected actions will take part automatically
too, off course. To indicate that a action takes part
in physics a green ‘p’ is added to the action.

15.8 Reusing

Reusing states, actions and logic for another
object or even for another project (fi le) is pos-

sible. States or complete state engines can be
selected and saved as external fi les without
any other data (such as geometry or animation
curves). These can be imported within another
project and exchanged with other persons for use
within their own projects.
When saving states the user can choose to save
only the states (as a framework for a new proj-
ect), states with transitions or states with transi-
tion, actions and logic.
When saving actions the logic is as always included
with the external fi le.

15.9 Properties

The properties pane is located next to the logic
editor within the same window (see fi g. 15.10).
This pane makes it possible to browse to all the
objects and their assigned properties.
A message trigger ‘listens’ to a certain property
that is send by another object’s actuator. Within
this message trigger the property to be listened to
has to be fi lled in by the user. Most of the time the

15.9

extra physics pane

different settings for the physics

green ‘p’ indicating that
this action will take part in
physics too

15.10

OPTIMIZATION

69S e p t e m b e r 2 0 0 1 - M a y 2 0 0 2

J.v.W.

op
ti

m
iz

at
io

n

37 mm

Evaluation final concept16.

The layout of this phase is as follow. Section
16 starts with the approach and the goal of the
evaluation. Secondly, the process is described,
results (fi ndings) are listed and fi nally conclusions
are made.
Section 17 describes the fi nal design, a more con-
crete proposal for the GUI, with some conclusions
of the evaluation already processed. Finalizing
this report with recommendations, future devel-
opments and a process evaluation.

16.1 Approach

The goal of the evaluation was to fi nd out if the
fi nal concept could come up to expectations and
needs of creating interactivity.

The fi nal concept (see section 15) was used as a
framework for the evaluation. The fi nal concept
has nine sections. These sections were used for
the evaluation too. For every section a few slides
were created representing the steps needed to
complete a section (1). During the evaluation
these steps were shown one by one in succes-
sive order. In between every section some ques-
tions were asked. When all the questions were
answered, the next section was shown and so
on.

The questions used for every section were as
follow.

Conceptualizing states
- Would you use a sketching/exchange tool like

this?
- What’s your idea of doing this?
- How would you like it to be done?
- Would you sketch on the screen or would you

rather use pen and paper?”
- Are the tools for sketching on the sketching

layer enough?
- Is it clear how to use the tools (simple sketch-

ing and typing text), or do you need more
sketching tools?

Creating states
- Do you already use the idea of ‘states’ (per

object)?
- Can you explain how ‘states’ are used in your

projects at the moment?

- What do you think of assigning pictures to
states?

- What kind of pictures would you use?
 Would you use something like the ‘picture

list’?
- Do you think the option of importing and

exporting pictures to use within the states is
useful and would you use it?

Creating transitions
- Do you think this second step, creating the

transitions, was a logical step after creating the
states?

- Was it clear to you that the (by default) grey
arrows are the empty (no logic) ones?

 A transition can be two-way. Was this clear and
logical within the design?

- Does it make sense to you to have a special
transition editor?

 Else, how would you create the transitions
(conditions)?

Global states
- What are ‘global’ states according yo you?
- Do you already use the idea of ‘global’ states

and how do you use them?
- Could you reach the same effect with this con-

cept?
- Is it clear if nothing is selected (objects) that

the state editor is automatically set to ‘global’?
- Does this meet the expectations you did have

of ‘global’ states?

Creating actions
- Is it clear that you can subdivide states in

actions?
- Do you think this is a ‘clever’ way of working?

Or do you see other means?
- Do you think it is needed to provide a way of

defi ning a order of evaluation of the actions?
- Why do you think so and can you give an

example?

Assigning physics
- The physics are assigned to the states. What

do you think of this?
- Is this the best way of doing it?
- What do you think of assigning physics to

actions, or assigning it on the logic level (phys-
ics actuators)?

- What can be the advantages and disadvan-
tages of the three means of assigning physics?

Creating logic
- The logic is subdivided by means of the actions.

This is done to provide a way of organizing the
logic (instead of a long list of triggers, control-
lers and actuators).

- You can’t see all the logic at once, do you thinks
this is a disadvantage?

- Can you imagine situations you want to see all
the logic at once?

- Do you need a manner of editing logic that’s
divided over more than one action at the same
time?

Reusing
- When saving state(s) engines, do you think it

is useful to only save the state (placeholder)
or do you only want to save all (states, transi-
tions, actions, logic)?

- To reuse within a project there’s the save/load
option. To reuse a state engine within another
project there’s the export/import option. When
exported, no geometry and animations are
included.

- Do provide these two means of reusing enough
functionality?

Properties
- Properties can be edited within every level

(states, actions and logic). Is this needed?
- Global properties can only be assigned and

edited within the ‘global’ editors, while it’s pos-
sible to assign and edit object properties at
every level within every object. Is this a useful
way of working with properties?

- Do you oversee problems?
- Within the transition and logic editor it is possi-

ble to assign and select a property (of another
object) for a trigger or actuator by browsing to
that property. Do you think this is useful?

16.2 Process

The evaluation was done with two subjects, both
of which were members of the content creation
team of NaN. They were chosen because of their
experience with games in general and their sev-
eral years of experience with Blender and with the
logic system.

The duration of the evaluations lasted for about 1
1/2 and 2 1/2 hours respectively. The difference in
duration was mainly a result of discussions about
related and not related subjects, but not (directly)
important for the evaluation and conclusions of
fi nal concept itself.

The evaluations took place on two separate days.
The second evaluation the day after the fi rst. The
fi rst evaluation took place at the NaN offi ce in
Amsterdam, while the second took place in the
offi ce of the subject’s home.

(1) The complete test program can be found on the accompanying CD

70 S e p t e m b e r 2 0 0 1 - M a y 2 0 0 2

J.v.W.

optim
ization

37 mm
Both evaluations were done behind a computer
screen, because the evaluation was presented
with slides in Macromedia’s Flash, as mentioned
before. Besides the Flash screens, the subjects
also got the different screens on paper.

Afterwards, the plan of the evaluation can be con-
sidered as succeeded. The questions asked (see
previous page) were almost all answered. Most
of them were not answered directly. Many ques-
tions were answered stepping through the slides,
before the actual slide with questions came along.
The questions slide served mainly as support for
not forgetting to ask about certain aspects. Many
questions do not have straight answers, but came
up for consideration stepping through the slides.

16.3 Findings

What will follow now is a summary of the fi ndings
of the evaluation. The fi ndings from the two dif-
ferent subjects are in such a way different that
the fi ndings of them will be described separately.
When there is no subdivision made between the
two subjects, it means that the two almost think
the same about that specifi c part of the fi nal con-
cept.
The fi ndings are order according to the subdivi-
sions made in sections 16.1.

Conceptualizing states
Subject 1 (S1):
A means of conceptualizing states within Blender
itself is ‘out of scope’. S1 would rather use a
white board or a existing application like Adobe’s
Photoshop or Microsoft’s Visio. It would take to
much effort to incorporate a ‘feature’ like this
within Blender.

Subject 2 (S2):
S2 thinks that a ‘feature’ like this would be very
useful.
However, the drawing tools should not be too
extensive. Not necessary within Blender. It does
not have to be a second ‘Photoshop’. Simple draw-
ing tools are suffi cient.

The conceptualizing tools would also be very
useful for story-boarding.

The conceptualizing tools (drawing tools) could
also be incorporated through out all of Blender’s
creation tools (parts).

There could be a kind of interface (tabs, for
instance) to get a overview of how many and to
which objects a ‘state concept’ is assigned. This

would make it possible to click different tabs and
see all the ‘state concept’ in one overview, instead
of having to click-select all the different objects
within the 3D-view to look if there might be a
‘state concept’ assigned to.

Creating states
States are already used by members of the con-
tent creation team, but at present only within
Python scripts. Blender does not provide a way of
using states in a different way.
A Python script can actually be seen as one big
‘state engine’, according to S1.

Creating pictures for assigning to states will be
too much. The two subjects would not do it. A
description or a name in textual form would be
suffi cient enough. The team and projects are too
small at NaN to use such a feature.

Subject 2 (S2):
The use of assigning pictures to states would
(maybe) be useful when working with a team of
15 members.
Within a small team there is (most of the time)
only one person who does create the interactivity
for a game. It is not necessary to exchange fi les.
But a picture would tell more in a glance then
words.
So, when fi les have to be exchanged and more
people are working on it concurrently, it could be
useful, but that has to be found out in practice.
But this was exactly the purpose to add this fea-
ture.

It would also be useful for inexperienced users to
get to get grips with the creation of interactivity
and ‘state engines’ in special.
Providing ready-made states and ‘state engines’
with clear and simple icons (pictures), can explain
and clarify these in a simple manner. Besides new
users can learn how a ‘state engine’ should be
used when these are provided ready-made within
Blender.

Creating transitions
Subject 1 (S1):
There should defi nitely be a way of creating condi-
tions for state transitions, but the location of the
transition editor within the fi nal concept is not the
right place, according to S1.
The transition conditions can be created within
the logic editor as well, with the addition of the
‘change-to-state’ actuator. When created within
the logic editor it is also possible to add other
actuators to be executed at the same time a state
transition will take place. Likely candidates are
‘property’ actuators to set different properties for

speed, health or whatever according to the state
a object transits to.
S1 thinks that this is a more convenient for cre-
ating transitions, instead of creating the transi-
tion conditions in the transition editor and then
creating the properties to be set to be executed
immediately when entering the new state within
the logic editor.

Subject 2 (S2):
The place of the transition editor (within the same
pane as the state editor) seems like a good place
for it. The transition conditions and the states
belong closely together.

When a transition node is explicitly a ‘one-way’
transition, it has to be possible to ‘turn-off’ the
direction you do not want to use. This makes it
possible for someone else to see that it is meant
as an ‘one-way’ direction and not an incomplete
transition.

It would be nice if it is possible to ‘turn-off’ tran-
sitions to evaluate/test the different states inde-
pendently from each other. This would speed up
debugging. Instead of ‘playing’ through all the
states a object has, the creator can test and
debug different states independently.

Global states
The use of ‘global states’ is clear to both of the
subjects. Global states contain logic and proper-
ties that is object independent.

To create ‘global logic’ within the current version
of Blender, dummy objects are often used. For
instance, invisible small planes which serve as a
placeholder for logic. A big disadvantage of this is
that somebody else is at search for a long time,
clicking on a lot of objects before fi nding the one
with the global logic assigned to it.

The means provided within the fi nal concept for
creating and editing global states/logic is a good
and conveniently manner. Creating and editing
global states by deselecting, meets the expecta-
tions of both of the subjects.

Global states are seen as a way of creating and
defi ning the different scenes (levels) of a game.
Every state within the ‘global states’ editor can
be seen as a different level. Every state can turn
layers visibility on and off within a certain level
and will set the right properties for a level.

Concerning the ‘one-click’ (automatic) ordering of
a state engine (within the state editor), both of
the subjects can only say that a feature like that

71S e p t e m b e r 2 0 0 1 - M a y 2 0 0 2

J.v.W.

op
ti

m
iz

at
io

n

37 mm
would be nice, but that it can be done in different
ways. Maybe the user needs more control on how
a state engine has to be ordered to get a better
overview, without having to drag all the states to
the ‘right’ position himself.

Creating actions
Subject 1 (S1):
The actions do provide a way of organizing the
logic. S1 thinks also that it would be very useful
when it is possible to defi ne the order of evalua-
tion of the actions. There are some situations that
action A has to set a property before action B may
be evaluated. If this property is set after action B
is evaluated (when action B is evaluated before
action A), action B will then be evaluated with
the ‘right’ property not until the next game cycle.
This could cause annoying delays in reaction time
of some game elements. When it is possible to
defi ne the order of evaluation of the actions this
can be prevented.

Subject 2 (S2):
The fi rst response of S2 to the action editor was
that it could be skipped. That it was an unneces-
sary step. Why not immediately go to the logic
editor to create the logic for every state?
As a reason for this fi rst reaction, S2 mentions the
fact that he has learned it the ‘wrong’ way with
the current version of Blender. Within this version
all the logic is placed in a long successive list of
triggers, controllers and actuators.
One reason that the actions are there in the fi nal
concept is to provide a means of organizing the
logic. Instead of having one long list, there will
be only small ‘blocks’ of logic divided over the
different actions. When this became clear to S2,
he thought this way of working provides a lot of
advantages.

The use of actions serves the overview of the
logic and makes it more convenient to reuse logic.
Only an action has to be ‘saved’ to store all logic
included. The name of the action provides at the
same time a name for the included logic when
saved.
Actions provide a way of ordering the list of logic
attached to an object. If needed, the logic can
be spread over more actions to reduce the logic
bricks within one action.

Actions also provide a means to design higher
levels of interactivity which is not possible with
‘standard’ logic bricks. Previously, this kind of
higher level interactivity would only be possible to
create with (very diffi cult) hand coding in Python.
Now, it can be provided with ‘special’ actions.
These special actions can include ‘path fi nding’

and ‘terrain reasoning’, for instance. The ‘special’
actions can be made available as ready-made
modules, which can be downloaded.
The actions provide a good way of incorporating
these kinds of higher level interactivity modules
within the workfl ow available in the fi nal con-
cept. Besides the logic editor can function as a
‘how to use’ window. Instead of showing all the
logic bricks, the space available within the logic
editor can be used to show information about the
module, about how to use it and by whom it is
created etc.
S2 wonders why there are no icons (pictures)
used for the actions as well. It would be inconsis-
tent using icons for states, but not for actions.

In many cases the user will only use one action per
state. Most objects do not have very complicated
states, so one action provides enough ‘space’ to
fi ll in the logic. In this light it would be useful
when every state has one action connected to it
by default. When a new state is created within the
state editor one action (with the state name) is
created automatically within the action editor.

Why not subdivide actions into ‘brain’, ‘move-
ment’ and ‘special’ actions. ‘Brain’ actions would
be placeholders only for logic that concerns
properties, decisions etc., while the ‘movement’
actions would contain only logic concerning
movement such as translate, IPO etc. actuators.
The ‘special’ actions would contain the higher
level interactivity, as described above. This can
advance the overview, reuse and overcome prob-
lems assigning physics to states (see next topic
“assigning physics”).

Assigning physics
Subject 1 (S1):
S1 would not assign physics at the level of states.
States need to be something more ‘abstract’. By
using them to decide if a object takes part in
physics during a state or not, does make them too
‘specifi c’ again. That is not the way S1 wants to
see the use of states.
S1 would assign physics at the level of actions.
A ‘special’ physics action would do the job. This
physics action could be connected to every state
that has to take part in physics.

Subject 2 (S2):
S2 thinks it is a good way assigning physics at
state level. He can not think of a better way of
doing it.

A few things should be added. When a state takes
part in physics, all the actions assigned to that
state have to take part in physics to overcome

problems. So one action can only be connected
at the same time to states that do take part or to
states that do not take part in physics. When one
action (with logic only working when being part in
physics) is connected to a state that takes part in
physics and at the same time to a state that does
not take part in physics, feedback has to be given
in the form of a connection wire fl ashing red, for
instance, indicating that it might be a problem or
not working at all. A solution would be duplicating
the action or making both of the states to which
the action is connected to taking part in physics.
As mentioned above (see topic “creating actions”),
different kind of actions can address this prob-
lem. ‘Movement’ actions can only be connected
to states that do take part or do not take part in
physics, but not to both at the same time. While
‘brain’ and ‘special’ actions do not have this ‘draw-
back’, because they do not contain movement
related triggers and actuators, which are effected
by physics.

Both of the subjects would not assign physics at
the level of logic in the form of a special actuator,
for instance. This meets my own expectations,
because physics does not belong at the (lowest)
level of interactivity.

Creating logic
Both of the subjects do not see any problems
creating logic. Mainly, because the interface
resembles closely the current interface for creat-
ing logic.
Both of the subjects think also that the close
relationship between the action and logic editor
will benefi t the clarity of arrangement. Selecting
an action in the action editor will show the logic
within that action in the logic editor immediately,
provided that both of the windows are open at the
same time.

Reusing
The operations of saving and loading is not needed
according to both of the subjects. When the
Blender fi le is saved, everything is saved, includ-
ing states, actions and logic. To ‘load’ a state, for
instance, for use with another object the user only
has to add a existing state with the ‘add’ button.

The possibility to export (and import) logic to
a special fi le format or to the standard Blender
format, but without all the meshes, animation
curves, materials etc. would be useful agreed
both of the subjects.

The possibility to ex- and import is only needed at
the state and action level. Not at the logic level.
When exporting or importing an action, all the

72 S e p t e m b e r 2 0 0 1 - M a y 2 0 0 2

J.v.W.

optim
ization

37 mm
logic included will be exported as well. So there is
no need to ex- and import at a lower level.

When exporting one state at state level all the
attached actions, logic and related properties have
to be exported by default. When exporting two or
more states (or even a complete state engine),
the transitions have to be included as well.

Properties
Using and assigning properties is clear to both of
the subjects. The possibility to ‘browse’ through
all properties of all objects within a project to be
able to select the right property to paste within
a subject fi eld of a trigger or controller would be
very useful.
In current Blender interface, when the wrong
property name is typed, the name is automati-
cally cleared. Instead, the user has to select the
right object with the property he is looking for
and remember the right name and spelling, then
select the object he is working on and type in the
correct name.

Subject 1 (S1):
The subjects would like to see that a sort of
spreadsheet will be added to Blender. Within
this spreadsheet could also all the properties be
edited. The spreadsheet would show all the used
properties and which object are using them. With
a view clicks (without selecting objects one by
one) a whole list of (object) properties could then
be changed, removed or added.

16.4 Conclusion

The goal of the evaluation was to fi nd out of the
fi nal concept could come up with the expectations
and needs of the users (represented by two mem-
bers of the content creation team).

Did the subjects think that the design would suit
their workfl ow and mental model?
It is clear that the concept is an improvement over
the current logic editor. This can be concluded
from comments of the subjects.
However, many aspects of the fi nal concept can
only prove their use when actual implemented
within Blender. According to the subjects, it is
hard to forecast if all the aspects will be used as
long as they are not used for ‘real’.

Are the subjects willing to change their current
workfl ow in favor of the new editor(s)?
They are very used to the current workfl ow, the
fi nal concept has to prove itself when actual
implemented. One of the subjects thought aloud,

during the evaluation, that they (the members
of the content creation team) did learn it the
wrong way, because Blender did not provide any
other way. In other words, it is hard to oversee if
they will use the new editors of the fi nal concept,
because they are not used to it (yet), but the sub-
ject in question could say that the state, transition
and action editor and modifi ed logic editor would
be very useful additions to speed up the workfl ow
and ease the implementation of higher level inter-
action without (or with minimal) coding.
The fi nal concept allows to skip these three parts
to create the complete game only in the logic
editor, (almost) just like it is done within the
interactivity window (current logic editor) now.

It can be concluded that the design of the new
state, transition and action editors and the modi-
fi ed logic editor is successful. Together, they pro-
vide means to implement higher level interactivity
and to order logic.

Final design17.

The following pages describe the ‘fi nal design’.
Compared to the fi nal concept (described in the
previous chapter), the fi nal design has been
improved by adding some of the changes pro-
posed in the evaluation and by applying the
graphical style used in the concepts in chapters
14 and 15.

Some of these changes (such as the draw pane on
page 74) are not yet tested. However, the expec-
tation is that these are improvements since they
were proposed by the subjects in the evaluation
and they are not radical changes to the design.

The appearance of the GUI is dark, the reason for
this is given in section 11 (page 43). The style of
the interface elements is fl at instead of the semi-
3D look most modern computer applications have.
This is a personal preference but it has been topic
of discussions with several members of the con-
tent team and they prefer this style as well.

73S e p t e m b e r 2 0 0 1 - M a y 2 0 0 2

J.v.W.

op
ti

m
iz

at
io

n

37 mm

17.1

2

1

The state editor window (1) next to a 3D-view in Blender. A dark color scheme is used and the connection wires (2) have different colors to better distin-
guish their path, as was described in section 11. The connection wires have rounded corners to ease the process of following their path.

74 S e p t e m b e r 2 0 0 1 - M a y 2 0 0 2

J.v.W.

optim
ization

37 mm

The drawing (con-
ceptualizing) tools
(1) can be opened
by clicking on the
‘draw’ button. The
draw pane exists of
an add button (2)
to add a new layer
for comments and
a remove button
(3) to remove a
selected layer. A
name (4) can be
given to each layer
to indicate who has
added the com-
ments.
Visibility of draw-
ings within a layer
can be turned on and off (5). Text visibility within a layer can be turned on and off as well (6). To protect
content of a layer from being altered, a layer and all its content can be locked (7).
The user has two tools at his disposal. The (simple) drawing pencil (8). In this example this tool has been
selected (light yellow color of the button). And the type tool (9). With this tool selected, the user can type
anywhere on the canvas.

17.2

17.3

1
1

5

9

6

7
4

2 3
8

Adding ‘new’ states to the
work pane can be done in
two different manners. A
new (empty) state (10) or
a fi nished state or (com-
plete) state engine can
be added. To add a state
engine, the user has to
browse (11) for the object
with the state engine to
be reused (12) and click
on its name. Only the
object names with a state
(engine) are listed. To add
a single state (including, of
course, all the connected
actions and logic), the user
has to browse one level
lower, to the list of states
of an object’s state engine
(13) and click on one.

10

11

12

13

75S e p t e m b e r 2 0 0 1 - M a y 2 0 0 2

J.v.W.

op
ti

m
iz

at
io

n

37 mm

17.4 17.5

States (2), the transition nodes (1) in
between, the included actions and logic
can be exported to be used by another
person and/or within another project.
To export states (state engines), fi rst
the states to be exported (2) have
to be selected, indicated with a light
green color. When two or more states
are selected and they are connected
together, the transition nodes will be
selected automatically too.
With the ‘export selected’ function (3)
the selected states (and transitions)
are exported. Instead of exporting only
selected states, a user can also ‘export
all’ (3). With this function the complete
state engine (states, transition, actions
and logic) is exported.

2

1

2

3

1

1

The transition editor (4) has been opened within the state editor window. In this example the transition editor is showing the
(already created) transition conditions for the selected transition arrow (5), from the ‘waiting’ state to the ‘hunting’ state.

The transition editor pane showing triggers (6), different controllers (7) and the (special) ‘change state’ actuator (8). Adding
new triggers and controllers (9) is analogous to adding states (previous page).
Instead of having to select (and fi nd) the opposite transition arrow (5), a quick ‘change direction’ button (10) can be used.

9
6

7

10

8

4

5

76 S e p t e m b e r 2 0 0 1 - M a y 2 0 0 2

J.v.W.

optim
ization

37 mm

17.7

The action editor window (2) next to a 3D-view in Blender. Action and state editors can be opened at the same time if necessary. The different actions (3)
can be moved freely within the action pane. The actions are connected to the states (4). All the states created within the state editor are listed within the
action editor too. They are only listed and can not be edited within the action editor. The connection wires (5) do have different colors to better distinguish
their path. All the connection wires connected to the same state do have the same color. The different colors are automatically and randomly assigned
to the wires.

2

34

5

17.6

When states are being conceptualized and the fi le is shared with col-
leagues to be approved and to get feedback, all the objects with state
concepts are listed (1) to ‘browse’ fast trough all the state concepts,
instead of having to search and click trough all the objects within the
3D-view to see if there might be a state concept created for. This object
list speeds up the workfl ow and makes it also possible to switch fast
between objects (with states) when editing logic.

1

77S e p t e m b e r 2 0 0 1 - M a y 2 0 0 2

J.v.W.

op
ti

m
iz

at
io

n

37 mm

17.8

1

2

2

Assigning physics is done by checking a checkbox (1) on a state itself within the action editor. By checking this checkbox (every state has) an extra pane with the physics properties becomes available (2). Within this pane properties
like ‘mass’, ‘size’, ‘damping’ etc. can be fi lled in and/or edited. Making a state part of physics also means that connected actions will take part in physics.

78 S e p t e m b e r 2 0 0 1 - M a y 2 0 0 2

J.v.W.

optim
ization

37 mm

17.9

The new logic editor (1) at the bottom. The logic editor is showing the logic for the selected action. In this case the ‘jump’ action (2). The logic editor has
three columns. These columns exist of triggers (3), controllers (4) and actuators (5). The triggers and actuators are listed and do have a fi xed location,
while the controllers can be moved around freely within the bounds of the controller column. Properties of triggers and actuators can be edited in a
properties pane (6). This properties pane can be expanded or collapsed. At the right of the logic editor the properties pane (7) is located, presented in
the next page.

1

2

3

4

5
7

6

79S e p t e m b e r 2 0 0 1 - M a y 2 0 0 2

J.v.W.

op
ti

m
iz

at
io

n

37 mm

17.11

17.10

The properties pane consists of two columns. An objects (1) and a proper-
ties (2) column. In the properties column all objects that have properties
assigned are listed. In the properties column all properties are listed for the
selected object in the objects column. This makes it easy to fi nd and copy a
property from another object.
The dark grey object with the arrow (3) is the currently selected object,
showing its properties. The red object (4) is the object for which the logic is
being edited.

3

4

6

5

7 89

If the object selected (6), within the objects list, is the one for which the logic
is being edited, the ‘add’ (7) and ‘remove’ (8) buttons become usable. Prop-
erties can now be added and removed. To switch between objects to edit
and add or remove properties, an object from the objects list can be selected
and the ‘go to’ button (9) can be used. Clicking this button will cause the
content of the logic, action and state editor (if open) to be changed to the
new ‘selected’ object.

1 2

80 S e p t e m b e r 2 0 0 1 - M a y 2 0 0 2

J.v.W.

optim
ization

37 mm

18. Conclusions

The fi nal concept/design has shown that the
design fulfi lled the requirements and wishes of the
users (presented by two members of the content
creation team of NaN during the evaluation).
However, some aspects can be improved. These
aspects are described in the recommendations.
Other aspects do need to be explored yet and are
described in the future development section.

18.1 Recommendations

Many aspects of the fi nal concept (and design)
that were not touched on, but emerged (mainly)
during the evaluation and are useful to implement
or to be improved in one way or another, are
described below.
The aspects are described in the same successive
order as the fi nal concept (section 15) and fi nd-
ings (section 16.2) as long as there is something
to say about.

Conceptualizing states
The method of conceptualizing states can be con-
veyed through more of the interaction creation
parts and maybe in other parts of the Blender
interface too. Within the interaction creation part,
it can be included within the action and logic editor
as well. Within the action and logic editor it could
be useful in itself to only write down comments
and draw attention marks, for instance.
To what extend the drawing (conceptualization)
tools can and must be implemented within other
parts of the inteface was yet to be explored.

Creating states
Concerning the states, the use of pictures to
clarify the content and use is a bit tricky. In small
projects, users will probably not use it, because
it is too much work. So, besides the possibility
of including your own pictures, a picture list of
‘standard’ and other used pictures (icons) can be
included to speed up things and to help clarify-
ing the use of states to new come users. The
same idea could be used for actions. Why include
the use of pictures within states and not within
actions? Within actions it can be as useful as
within states.

Creating transitions
Within the creation of transitions it must also be
possible to set a transition node explicit as a ‘one-
way’ direction transition. This clarifi es to other

users that this was intended that way by the fi rst
creator.

Creating actions
As mentioned in the fi ndings, it should be a wel-
come addition to be able to defi ne the order of
evaluation of actions in certain conditions. So, this
‘feature’ would be good to include, but it has to be
explored in what manner.
Subdividing actions into different kinds of actions,
like ‘brain’, ‘movement’ and ‘special’ actions can
be a good addition. It will bring more depth and
versatility to the use of actions. But this has yet
to be explored.

Assigning physics
It was chosen to stick with the solution given in
the fi nal concept (and design), despite the fact
that both subjects did not agree on this subject.
One of the subjects did think that this was the
best solution, though, while the other subject
thought that assigning physics directly to the
states was an infringement of the higher abstrac-
tion level of the states. Instead, the subject would
like to see a kind of ‘physics’ actions that could be
connected to every state that does need to take
part in physics.
My opinion is that this method is more or less the
same as marking a checkbox on the state itself,
saying “now you take part in physics” (as being
proposed in the fi nal concept).
Assigning physics with a kind of ‘physics’ action
would infringe, on its turn, the idea behind the
actions. Physics are on another level than actions.
My choice is that it makes more sense marking
a checkbox on the state, instead of connecting a
special physics actions to the state.
It remains the question if this is indeed the best
solution and would fulfi l the expectations of users
the most (a real choice can not be made on the
ground of comments of two subjects).

Reusing
A special fi le extension for the exported logic is
needed to distinguish it from the normal ‘blend’
extension.

18.2 Future development

After the completion of this project there are still
enough aspects that may be explored. Aspects for
which no time was left and/or were overlooked
during the project, but do need attention before
the design can actual be implemented within
Blender. On the other hand, decisions about some
other aspects can probably only be made when
the design is actual implemented within Blender.

These aspects do need ‘real-world’ testing within
the 3D environment of Blender before suitable
choices can be made.
Other aspects were left aside, because they
proved to be not important enough to accomplish
the two main goals (within the given time of the
project) of creating higher level interaction and
ordering logic.

Some aspects that can be explored and further
developed will be listed below in arbitrary order.

Debugging:
Probably the most important aspect that needs
attention is debugging. Debugging of logic net-
works. At the moment debugging occurs by play-
ing the game and watching in what part it will go
wrong. An addition of visual debugging the logic
networks might be a real time saver if networks
can be checked immediately within the (state,
transition or logic) window itself. For example, by
‘fi ring’ color codes trough the connection wires,
watching at what point a signal stops unintended
etc. This is defi nitely an aspect worth exploring.

Ordering of state engines:
States can be placed freely within the state editor
window. This freedom can be useful to a lot of
users, but can also be confusing. Other users than
the initial creator can have diffi culties understand-
ing a state engine. As mentioned before (fi nal
concept) there must be means of automatically
ordering state engines. On what principals, algo-
rithms and/or rules this has to be done has still to
be explored.

Standard icons for states and actions:
It has to be explored what ‘standard’ states and
actions are, before, clear icons (pictures) can
be made. These standard icons (for states and
actions) can prove to be very important to get to
grips with the creation of (high level) interactivity
in the fi rst place and to encourage the use of the
state, transition and action editor.

Triggers, controllers and actuators:
Many of these can be copied from the current
Blender interface for creating interactivity. How-
ever, the current set needs to be reevaluated. The
controllers are a bit of a different story. At the
moment there are only four and in the fi nal design
the user has much more freedom with controllers.
The user is able to connect more than one control-
ler in a row between one trigger and actuator. The
idea is to use many more, but ‘smaller’, control-
lers to build more complex interaction. How many
and what kind of controller ‘bricks’ are needed is
still open as well.

81S e p t e m b e r 2 0 0 1 - M a y 2 0 0 2

J.v.W.

op
ti

m
iz

at
io

n

37 mm

In my opinion these are the most important future
development aspects of the design for creating
interactivity within Blender.

Some smaller aspects are, for instance: In what
order states, from top to bottom, within the action
editor are to be listed? In what manner can a user
see which and how many actions there are con-
nected to a state within the state editor, without
opening the action editor?
What must a spreadsheet editor look like to be
able to edit multiple properties at once? Are spe-
cial ‘transition’ triggers and/or controllers needed?
If so, what kind of triggers and/or controllers?
What will be the order of listing of triggers and
controllers within the logic editor? Must this be
alphabetic or in order of creation?

There will be probably many more questions to
be answered before the creation of (high level)
interactivity works fi ne according to everyone’s
needs and wishes.

Process evaluation19.

I think I have to start fi rst with the most ‘sen-
sational’ event, during my graduate project. Five
months after I started my project (three months
before graduating) the company, Not a Number
BV, went bankrupt. The atmosphere the last week
before bankruptcy was not that good, under-
standably. It was inconvenient for my project, but
it was the most inconvenient for the employees
and Ton Roosendaal (founder of NaN) of course.
Fortunately, my project progressed so far that I
did not need feedback every day/week anymore.
I still had to perfect my concept, but the informa-
tion gathering was fi nished. However, the draw-
back of working at home for three months was to
keep on going and to get a fresh view on certain
aspects.
Besides the personal inconveniences of the bank-
ruptcy, there is also the fact that it is uncertain
if something will be done with the outcomes of
my project. It would be pity if this were not the
case, but luckily there might be a change. At the
moment of writing, it seems that NaN will con-
tinue in a different structure. Yet, it has to be seen
what can and will be implemented.

As was mentioned in the introduction of sec-
tion 14, the design process in this project devi-
ated from the standard Industrial design process
(especially in the concept phase). Usually, three
or more concepts are generated, all fulfi lling the
requirements. Then one concept is chosen that
fulfi lls the needs and wishes of users the best. It is
a process with divergent and convergent phases.
The concept phase I completed was an iterative
process. Just one concept emerged from the ideas
and was further improved step by step. Feedback
was given on each concept by members of the
content creation team. This feedback was used
to improve the concept and resulted eventually in
the fi nal concept.
Designing a user interface is complicated because
many items have to be addressed in one design.
It was therefore different to generate three or
more complete different concepts. Instead, just
one concept was generated and broken down in
smaller parts that gradually improved in every
new concept. This project is not the fi rst user-
interface project with this process: the same pro-
cedure has been reported in other projects at the
faculty of Industrial Design.

The outcome of my project, the fi nal design, can
be a good solution within Blender. Before I started
with this project I did not know much about this
topic and I did not have experience with game
creation at all. Although, I had some experience
with 3D creation programs, starting fresh is a
strength of industrial designers. Not knowing a
lot about one aspect, but knowing enough about
many aspects. So, I could tackle the problem(s)
with a fresh point of view.
As mentioned above, I think the fi nal design is a
good solution for in Blender, but it still has to be
seen to what extend it will be a solution in gen-
eral to the creation of higher level interactivity.
The fi nal design has been created with Blender in
mind and with feedback of professional users of
Blender.

Being over at the NaN offi ce once, in Eindhoven,
I attended a meeting with both developers and
members of the content team. The meeting was
about triggers, controllers and actuators. It had to
be defi ned by the members of the content team in
what manner these had to function actually. This
had to be discussed with the developers, because
that were the people creating the code behind the
functionality. Afterward, I did fi nd out to my sur-
prise that this was the fi rst time (for a long time)
such a meeting took place between users and
developers of the Blender software. Here, another
strength of an industrial designer appears. Being
able to listen to people with totally different back-
grounds and interests and then bringing together
the requirements and wishes.

To conclude, I will quote Warren Spector of ION
Storm Austin (creators of Deus EX and Thief
III) in an interview with gaming magazine Edge
(number 107, February 2002):

“Gaming’s best hope for a grand future is to give
people the power to decide how to interact with
the game world.”

So, the best way to do this is to give people
the power to create their own games without
coding......

APPENDIX

85S e p t e m b e r 2 0 0 1 - M a y 2 0 0 2

J.v.W.

ap
pe

nd
ix

37 mm
Appendix I: Blender features

Extensive feature overview, extracted from
the Blender site (www.blender3d.com).

Features general
- Single integrated program: download size 1.6

MB!
- Modeling of polygon meshes, curves, NURBS,

vector fonts and metaballs
- Deformation lattices and bones
- Animation with keyframes, motion curves,

morphing and inverse kinematics
- Particle systems
- Rendering: solid, transparent, halo/lensfl are
- Sequence editing of images and postproduction

effects
- Real-time 3D engine integrated
- Embedded scripting language (Python) for

advanced control
- Powerful object oriented data system
- File management included

Files
- Saves all work in a single fi le
- Other Blender fi les can be used as libraries
- Read/write image and texture fi les - format

TGA, JPG, Iris, SGI Movie, IFF or AVI
- Import and export DXF, Inventor and VRML 1.0

& 2.0 fi les

Curves
- Bezier, B-spline, polygon
- Procedural extrusion and beveling
- Any curve can be used as a bevel
- Support for vector fonts allowing the use of 3D

text

Meshes
- Uses triangle and square polygons
- Extrude, spin, screw, bend, subdivide, etc.
- Real-time ‘vertex paint’ to add vertex colours
- Subdivision Meshes
- Soft editing tools for organic modeling
- Radiosity solver for calculation of realistic 3D

environments
- Python scripting access for custom modeling

tools

Animation
- Motion paths: Bezier curves, B-splines or poly-

gons
- Motion curves: XYZ translation/rotation/

scaling
- Innovative ‘Ipo’ system integrates both motion

curve and traditional ‘key-frame’ editing
- Vertex key framing for morphing
- Inverse kinematics and Bones

- Character animation editor
- Constraint system
- Animation curves for light, materials, textures

and effects
- Python scripting access for custom and proce-

dural animation effects

Game creation and playback
- Collision detection and dynamics simulation

included
- Supports all OpenGL™ lighting modes, includ-

ing transparencies.
- Defi nes interactive behavior of Objects with a

simple buttons menu
- Python scripting API for sophisticated control

and AI, fully defi ned advanced game logic
- Playback of games and interactive 3D content

without compiling or preprocessing
- 3D Audio, using the Open Source OpenAL™

toolkit
- Multi-layering of Scenes for overlay interfaces
- Content can be saved in a single fi le, and

played back with the Blender 3D Plug-in
- Full Animation features supported within the

real-time engine

Render
- Rendering in foreground with direct output
- Can be initiated with a single key press at any

level
- Three rendering layers: solid, transparent and

halo’s.
- Delta accumulation buffer with jittered sam-

pling for perfect antialiasing
- Resolution up to 10000 x 10000
- Field rendering and pre-gamma correction for

the best video output possible
- Panoramic rendering
- Soft shadow
- Plug-ins for textures and postproduction

Light
- Local lights, spotlights, hemispheres and suns
- Textured lights, spot halo’s
- Shadow buffered system with volumetric

effects
- Selective lighting for individual objects

Windows
- User confi gurable window layout
- 3D Window: wire frame/solid/OpenGL-lighted/

rendered
- Animation curve/keys window
- Schematic diagram window
- Sequence editing window
- Action editor
- File selecting and fi le management window
- Text editor included for scripting and notes

Supported platforms
- Windows 95, 98, 2000, ME, NT (i386)
- Linux (i386, Alpha, PowerPC) glibc 2.1.2
- FreeBSD (i386) 3.4
- BeOS (i386) - no further development planned

for this OS
- SGI Irix (6.5)
- Sun Solaris 2.6 (sparc)
- A Mac OSX version will be available Q4 2001

86 S e p t e m b e r 2 0 0 1 - M a y 2 0 0 2

J.v.W.

37 mm

appendix

Appendix II: Questionnaire

Questionnaire about interactive design with
Blender

- Does the work environment encourage you?

- How long do you already work with Blender?
- What kind of interactive productions have you

made with Blender?

- When you make an interactive production in
Blender, what is the order of working? Where
do you start? Can you describe your design
sequence? (Storyboard, character describing,
interaction diagram etc.)

- What kind of material (paper, pencil etc.) do
you use during the design process?

- Do you always work alone on a project or also
with more people? In the latter case, with how
many did you work on a project and how were
the task divided?

- Can you describe what was different working
with more people on one production compared
to working alone?

- Can you show a production you made? How
was your work process making this particular
production?

- Where did you get your inspiration from for
this project (and others)?

- Can you explain the diffi culties you came
along building this particular game?

- What did you leave from the initial plan during
this project?

- Can you describe your feelings about making
interactive content within Blender?

- What takes a lot time to do? On what task do
you lose time?

- Do you use functions in away they are not
meant for (fi gurative use)?

- Are you happy with the way Blender deals
with interaction creation?

- What can (should) be changed or improved
according to you?

- Do you have an idea how the interaction cre-
ation should look like?

87S e p t e m b e r 2 0 0 1 - M a y 2 0 0 2

J.v.W.

ap
pe

nd
ix

37 mm
 Appendix III: Evaluation concept A

Evaluation concept A

1. Filling in of the state-editor by content employee A. 2. Close-up of
picture one: the states. 3. Filling in of the logic-editor for the hunting-
state, by content employee A. 4. Close-up of picture one: the actions.
5. Filling in of the state-editor by content emplyee B. 6. Filling in of the
logic-editor for the idle-state, by content employee B. 7. Close-up of
picture fi ve: the states. 8. Close-up of picture fi ve: the actions.

1.

2.

3.

4.

5.

6.

7.

8.

88 S e p t e m b e r 2 0 0 1 - M a y 2 0 0 2

J.v.W.

appendix

37 mm
Source listening

[1] Wartmann, Carsten; Game Blender Docu
 mentation (for Blender 2.21 Edition); Sep
 tember 2001

[2] http://www.pong-story.com/intro.htm

[3] Gamasutra
 www.gamasutra.com

[4] Molyneux, Peter; Postmortem: Lionhead
 Studio’s Black & White; June 2001
 (http://www.gamasutra.com/features/
 20010613/molyneux_01.htm)

[5] Corry, Chris; Postmortem: Lucas Arts’ Star
 Wars Starfi ghter; August 2001
 (http://www.gamasutra.com/features/
 20010801/corry_01.htm)

[6] Smith, Brent; Postmortem: Poptop Soft-
 ware’s Tropico; October 2001
 (http://www.gamasutra.com/features/
 20011010/smith_01.htm)

[7] Imlach, Wayne; Postmortem: Muckyfoot’s
 Startopia; October 2001
 (http://www.gamasutra.com/features/
 20011027/imlach_01.htm)

[8] Biessman, Eric; Postmortem: Raven Soft-
 ware’s Soldier of Fortune; September 2000
 (http://www.gamasutra.com/features/
 20000927/biessman_01.htm)

[9] Dybsand, Eric; Game Developers Confer-
 ence 2001: An AI Perspective; April 2001
 (http://www.gamasutra.com/features/
 20010423/dybsand_01.htm)

